

Supplement of

Sediment and carbon deposition vary among vegetation assemblages in a coastal salt marsh

Jeffrey J. Kelleway et al.

Correspondence to: Jeffrey J. Kelleway (jeffrey.kelleway@mq.edu.au)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

SUPPLEMENTARY INFORMATION

Table S1. Elevation data (mean \pm standard error) for each of five replicate plots in each vegetation assemblage. The number of tides exceeding each mean plot elevation at a nearby tidal gauge are provided as an indicator of likely inundation patterns for the four deployment periods

Vegetation	Plot	Elevation	December	December	January	January
assemblage	#	$(\text{mean} \pm \text{SE})$	neap	spring	neap	spring
		cm above LAT	Number of tides exceeding mean plot eleva		t elevation	
Sarcocornia	1	$151.20 \hspace{0.1 in} \pm \hspace{0.1 in} 0.58$	3	7	1	6
	2	$155.20 \hspace{0.2cm} \pm \hspace{0.2cm} 0.57$	1	7	0	6
	3	151.40 ± 1.22	3	7	1	6
	4	$148.30 \hspace{0.1 in} \pm \hspace{0.1 in} 0.59$	3	8	2	10
	5	$178.37 \hspace{0.1in} \pm \hspace{0.1in} 0.33$	0	6	0	5
Sporobolus	1	$155.17 \hspace{0.2cm} \pm \hspace{0.2cm} 0.91$	1	7	0	6
	2	$156.63 \hspace{0.1in} \pm \hspace{0.1in} 0.35$	1	7	0	6
	3	$156.90 \hspace{0.1 in} \pm \hspace{0.1 in} 0.50$	1	7	0	6
	4	158.27 ± 1.29	1	6	0	6
	5	$162.80 \hspace{0.2cm} \pm \hspace{0.2cm} 0.44$	1	6	0	6
Juncus	1	$181.33 \hspace{0.1in} \pm \hspace{0.1in} 0.45$	0	6	0	5
	2	$185.70 \hspace{0.2cm} \pm \hspace{0.2cm} 0.17$	0	6	0	5
	3	$187.10 \hspace{0.1 in} \pm \hspace{0.1 in} 0.29$	0	6	0	5
	4	$179.70 \hspace{0.2cm} \pm \hspace{0.2cm} 0.45$	0	6	0	5
	5	$183.37 \hspace{0.2cm} \pm \hspace{0.2cm} 0.44$	0	6	0	5

Table S2. Regression statistics for medium-term surface accumulation rates based up marker horizon measurements. This data compares regression models where the y-intercept was not forced (method used in this study) and regression models where the y-intercept was forced to 0.

	Approach used: Not forcing y- intercept = 0		Forcing y-intercept = 0		
Vegetation assemblage	Linear accretion rate (mm) ± SE	R ² ; P-value	Linear accretion rate (mm y ⁻¹) ± SE	R ² ; P-value	
Sarcocornia	0.78 ± 0.18	R ² = 0.16; P<0.001	0.92 ± 0.09	R ² = 0.59; P<0.001	
Sporobolus	0.88 ± 0.22	R ² = 0.14; P<0.001	1.30 ± 0.11	R ² = 0.65; P<0.001	
Juncus	1.74 ± 0.13	R ² = 0.68; P<0.001	1.70 ± 0.06	R ² = 0.91; P<0.001	

Community	Tide	%C	%N	C:N
Sarcocornia	December neap	4.18	0.31	13.59
	December spring	3.37	0.25	13.69
	January neap	3.07	0.21	14.72
	January spring	3.56	0.24	14.65
Sporobolus	December neap	4.50	0.31	14.72
	December spring	6.56	0.37	17.81
	January neap	3.88	0.24	16.26
	January spring	4.04	0.27	14.80
Juncus	December neap	16.66	0.85	19.57
	December spring	14.36	0.81	17.62
	January neap	16.81	0.85	19.70
	January spring	9.05	0.48	18.72

Table S3. Elemental composition and C:N ratio for organic component of unidentified residues collected on filter papers.

Fig S1. Plots of bulk material (all mineral, litter and unidentifiable organic components) retained within vials against the surface elevation of the study plot each vial was located within. Regression lines and statistics are included where there was a significant (P<0.05) linear fit. Note the log scale on the Y axes. DW = dry weight; AHD = Australian Height Datum.

Fig S2. Plots of bulk material (all mineral, litter and unidentifiable organic components) retained on filters against the surface elevation of the study plot each filter was located within. There were no significant (P<0.05) linear fits. Note the log scale on the Y axes.

Fig S3. Daily rainfall (mm) records before, during and after filter and vial installation periods. Installation periods are shaded in grey. DN = December neap; DS = December spring; JN = January neap; JS = January spring.