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Abstract. Extreme hydrometeorological conditions typically
impact ecophysiological processes on land. Satellite-based
observations of the terrestrial biosphere provide an impor-
tant reference for detecting and describing the spatiotempo-
ral development of such events. However, in-depth inves-
tigations of ecological processes during extreme events re-
quire additional in situ observations. The question is whether
the density of existing ecological in situ networks is suffi-
cient for analysing the impact of extreme events, and what
are expected event detection rates of ecological in situ net-
works of a given size. To assess these issues, we build a
baseline of extreme reductions in the fraction of absorbed
photosynthetically active radiation (FAPAR), identified by
a new event detection method tailored to identify extremes
of regional relevance. We then investigate the event detec-
tion success rates of hypothetical networks of varying sizes.
Our results show that large extremes can be reliably detected
with relatively small networks, but also reveal a linear decay
of detection probabilities towards smaller extreme events in
log–log space. For instance, networks with ≈ 100 randomly
placed sites in Europe yield a ≥ 90 % chance of detecting the

eight largest (typically very large) extreme events; but only a
≥ 50 % chance of capturing the 39 largest events. These find-
ings are consistent with probability-theoretic considerations,
but the slopes of the decay rates deviate due to temporal au-
tocorrelation and the exact implementation of the extreme
event detection algorithm. Using the examples of AmeriFlux
and NEON, we then investigate to what degree ecological
in situ networks can capture extreme events of a given size.
Consistent with our theoretical considerations, we find that
today’s systematically designed networks (i.e. NEON) reli-
ably detect the largest extremes, but that the extreme event
detection rates are not higher than would be achieved by
randomly designed networks. Spatio-temporal expansions of
ecological in situ monitoring networks should carefully con-
sider the size distribution characteristics of extreme events if
the aim is also to monitor the impacts of such events in the
terrestrial biosphere.
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1 Introduction

Many lines of evidence point towards an intensification of
certain hydrometeorological extreme events, such as hot tem-
perature extremes or droughts in many regions of the world
over the next few decades (IPCC, 2012). Consequently, much
research focuses on understanding how extreme hydrome-
teorological events affect ecosystems and their functioning
(overviews of the state of research and concepts are given
in, for example, Smith, 2011; Reyer et al., 2013; Niu et al.,
2014; Frank et al., 2015). For instance, ecosystem responses
could be manifested in extreme anomalies of phenology (Ma
et al., 2015), biogeochemical fluxes (Frank et al., 2015), or
even in altered ecosystem structure due to induced mortality
(Hartmann et al., 2015). Global analyses of the geographical
extent and integrated anomalies of extremes in the terrestrial
biosphere reveal that only a very few extremes affect large
areas, whereas most events are only of very local relevance
(Reichstein et al., 2013). Nevertheless, the integrated effects
of extreme events may have global relevance. For instance,
Zscheischler et al. (2014a) showed that extreme anomalies
in gross primary production (GPP) to a large extent explain
global inter-annual variability in gross carbon uptake.

Earth observations (EOs), especially satellite remote-
sensing data, encode relevant information on anomalous
ecosystem functioning (Pfeifer et al., 2012; McDowell et al.,
2015). Examples include the exploration of soil moisture
anomalies in tandem with climate patterns to understand
anomalous vegetation responses (Nicolai-Shaw et al., 2017),
snow-cover-induced albedo anomalies with consequences
for local climate (Chen et al., 2017), and the impact of
weather extremes on vegetation indices to track anomalies
in productivity and explain vector-borne disease outbreaks
(Anyamba et al., 2014), among many others. The consistent
and contiguous spatiotemporal data coverage and, more im-
portantly, the fact that observations of the land surface typi-
cally integrate a plethora of processes make EOs very attrac-
tive for detecting extremes affecting the land surface.

Although EOs enable the detection of extremes in the
terrestrial biosphere, a deeper understanding of impacts on
ecosystem functioning can be gained from combining EOs
with in situ observations (Frank et al., 2015; Babst et al.,
2017). In fact, ecological in situ networks play an increas-
ingly important role in analysing ecological phenomena and
often provide a complementary perspective on natural phe-
nomena to EOs (Nasahara and Nagai, 2015; Papale et al.,
2015; Wingate et al., 2015) and complement model analyses
(Rammig et al., 2015; Sippel et al., 2017). One prominent
example is FLUXNET, with its proven record of advancing
our understanding of the functioning of terrestrial ecosys-
tems (Balddocchi, 2014). FLUXNET assembles data on the
turbulent land–atmosphere exchanges of CO2, H2O, and en-
ergy via the eddy covariance (EC) technique (Aubinet et al.,
2000, 2012) as they are collected in regional networks at the
country or continent scale (e.g. the pan-European Network

Integrated Carbon Observation System (ICOS), AmeriFlux,
AsiaFlux). Today, many additional networks are operational
or are concatenating data from past campaigns. For instance,
the International Soil Moisture Network (ISMN) includes a
wide range of soil-moisture observations at different depths
(Dorigo et al., 2011, 2013); phenological observations are
collected in EUROPhen (Wingate et al., 2015) or Phenocam
(Richardson et al., 2013), and one could easily extend this
list.

The site distribution in space of ecological in situ monitor-
ing networks is typically sparse. One obvious and common
critique is that networks emerging either as voluntary asso-
ciations of sites or being constructed on the basis of existing
sites (naturally) cannot provide an equitable representation
of the world’s ecosystems (Schimel et al., 2015). In fact, ge-
ographic clustering of sites (Oliphant, 2012) as well as in-
coherence in their temporal continuity is problematic. How-
ever, it has also been shown that the problem of spatiotem-
poral representation for “upscaling” (sensu Jung et al., 2009;
Xiao et al., 2012; Tramontana et al., 2016) is relatively minor
compared to the advantages of the sheer size of the network
(Papale et al., 2015).

In this paper we aim to understand the potential of eco-
logical in situ networks of varying size for monitoring the
impact of extreme events. This paper addresses this issue in
three steps. (1) We propose an approach for detecting ex-
tremes that are of regional relevance. This step is important to
avoid a bias toward considering extremes that take place only
in high-variance regions, and may be a relevant contribution
beyond our application. (2) We explore a series of random
networks of varying sizes to explore the expected detection
rates. We aim to understand the observed patterns using prob-
abilistic approaches and formulate a theoretical expectation
of detection probabilities of extremes. (3) We then analyse
the detection probabilities in two real networks (NEON and
AmeriFlux) and compare these to random networks of iden-
tical size. The paper concludes with an outlook on how our
remarks could lead to improvements in network design that
could be implemented to improve the detection of extreme
events.

2 Data

2.1 Earth observations

We required a catalogue of extreme events experienced by
terrestrial ecosystems in the past several years to analyse the
suitability of in situ networks for detecting them. To create
such a catalogue of extreme impacts, we used extreme nega-
tive anomalies of the fraction of absorbed photosynthetically
active radiation, FAPAR. These values are a dimensionless
spatiotemporal indicator of how much solar radiation energy
(in the PAR domain) is effectively absorbed by vegetation,
i.e. converted by photosynthesis (Pinty et al., 2009; McCal-
lum et al., 2010).
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FAPAR is considered an “essential climate variable”
(ECV) (Global Terrestrial Observing System, 2008) because
it supports a large variety of studies on the states and variabil-
ity of the biosphere (e.g. Knorr et al., 2007; Verstraete et al.,
2008) and plays an increasingly important role in the inves-
tigation of global biogeochemical cycles (in particular car-
bon and water fluxes). For instance, FAPAR can be conceptu-
ally related to GPP (typically estimated from EC tower mea-
surements). This relationship is of the general form GPP=
ε×FAPAR×PAR, where ε is some “light use efficiency”
and PAR is the “photosynthetically active radiation” (e.g.
Monteith, 1977); one may also include other limiting factors.
Consequently, FAPAR is an important basis for empirical es-
timates of GPP (Jung et al., 2008; Beer et al., 2010; Tramon-
tana et al., 2016) and other relevant ecosystem–atmosphere
fluxes (e.g. evapotranspiration, ET; Jung et al., 2010) or is
directly used as input to diagnostic biosphere models (Seixas
et al., 2009; Carvalhais et al., 2010). Given the tight link
between FAPAR and land-surface fluxes, this variable has
been used in various studies as a reference for monitoring
extremes affecting terrestrial ecosystems (Zscheischler et al.,
2013; Reichstein et al., 2013).

The temporal variability of FAPAR is influenced by veg-
etation development, but likewise encodes, e.g. fire events
and other extreme reductions of FAPAR that are assumed
to have a pronounced effect on GPP. Here we use FAPAR
data derived by the JRC-TIP approach (TIP-FAPAR; Pinty
et al., 2011). These estimates are based on the MODIS
broadband visible and near-infrared surface albedo prod-
ucts from NASA Collection 5 at 1 km spatial resolution
(MCD43B.005; Schaaf et al., 2002, available on demand
from co-author Thomas Kaminski). These satellite data cover
the entire surface every 16 days and the data range from 2000
to 2014; in this study we use data covering Europe and the
contiguous US (excluding Alaska). In the following we de-
note this data set as a 3-D data cube

X= {xuvt : ∀u ∈ 1, . . .,U ;v ∈ 1, . . .,V ; t ∈ 1, . . .,T } ,

where u is the index across the U grid longitudes, v the cor-
responding index on V latitudes and t is the index on the T
time steps. Each element xuvt is called a voxel and is charac-
terized by a well-defined space–time volume.

2.2 In situ networks

First, we create artificial random in situ networks in order to
systematically study the effects of varying network sizes and
as a reference for the analysis of existing networks. Then we
analyse existing or recently established in situ networks for
their capability to detect the impacts of extreme events.

We use the geographical locations of EC flux tower net-
works but to the actual measurements. Our main target is
FLUXNET, a global collection of EC data collected (www.
fluxdata.org; for in-depth descriptions see Baldocchi, 2008;
Balddocchi, 2014). FLUXNET is a bottom-up initiative of

regional networks which decided to bring their data to a
central repository. Hence, there is no systematic sampling
design, resulting in unbalanced spatial coverage biased to-
wards central Europe and the contiguous US (Papale et al.,
2015). In the US, FLUXNET is mainly composed of the re-
gional network AmeriFlux https://ameriflux.lbl.gov/ and we
use the geographical coordinates of their towers. In Europe,
an overview of the most widely used EC can be found in
the European Fluxes database http://www.europe-fluxdata.
eu, which will be partly maintained in the future by ICOS
https://www.icos-cp.eu. Here, we rely on the site distribution
described in the LaThuile data set (Balddocchi, 2014).

The National Ecological Observatory Network (NEON;
http://www.neoninc.org/; Keller et al., 2008) is an initiative
to monitor ecosystems of the United States and was con-
structed using a systematic sampling design chosen to equi-
tably represent the dominant ecoregions across the US. Com-
parable to AmeriFlux, NEON sites are equipped with EC
towers, but also a large suite of additional instrumentation
(SanClements et al., 2015), and human-based observations
are recorded frequently (Kao et al., 2012). We also use the
site coordinates of NEON to compare these with AmeriFlux
in the US.

3 Methods

3.1 Regional extreme event flagging

The question of how to define extreme events in spatiotem-
poral data cubes is key to the evaluation of the suitability
of ecological in situ networks. One approach would be to
define some global threshold and identify values exceed-
ing this threshold as potential extremes (“peak over thresh-
old”). Choosing a global threshold setting is suitable when
the question is about how extremes add up to global anoma-
lies (Zscheischler et al., 2014a), i.e. when one is working
with extensive data properties where the target is the inte-
gral over space and time. However, the consequence of set-
ting a global threshold is that values that are flagged as po-
tential extremes will occur exclusively in high-variance re-
gions, whereas low-variance regions will apparently never
experience extreme events. An alternative would be using
only highly local thresholds (defined over time at each spatial
point xuv). However, the latter approach would necessarily
lead to an equal spatial distribution of extreme event occur-
rences, which is also not desirable. We want to define ex-
tremes relative to regions that are characterized by a similar
ecophysiology; i.e. we want to compare each grid cell with
other grid cells that have a comparable phenology and search
for extremes across these geographical locations. However,
as our approach should be entirely data driven, we refrain
from using precomputed definitions of ecoregions.

In the following we develop a strategy to define thresholds
of regional relevance. This is an attempt to find a compromise
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between fully local and global thresholding. Our idea builds
on the concept of optical types (Ustin and Gamon, 2010),
as they have been concretely elaborated for EOs by Huesca
et al. (2015). The key idea offered by them is that similar
autocorrelation functions allow us to classify ecosystems ac-
cording to their temporal dynamics (see also Houborg et al.,
2015). Huesca et al. (2015) use the leading principal com-
ponents of the autocorrelation estimated at each pixel across
time lags. We have developed a similar scheme to identify
regions in the EOs that are of similar dynamics, but we use
mean seasonal cycles instead of the autocorrelation patterns.
The rationale of our choice is that we want to also maintain
differences in amplitude and phasing. The main steps applied
for obtaining a regional threshold are the following (for a full
description of the regional event detection method, see Ap-
pendix A):

1. Estimate mean seasonal cycles of the data sets under
scrutiny at each grid cell u, v. The mean seasonal cycles
are centred around a mean of zero.

2. Reduce the temporal dimensionality of the mean sea-
sonal cycles (MSCs) by a principal component analy-
sis such that each principal component (PC) represents
a main feature underlying the seasonal cycles. The or-
thogonal basis for the PCs can be approximated using
a random subset of MSCs, rendering the approach very
efficient in dealing with this very large data set. Figure 1
shows the first three PCs as an RGB image map for Eu-
rope. Although the nonlinearity of colour perception by
the human eye limits the quantitative informative value
of the map, similar colours still represent regions of sim-
ilar phenological dynamics in FAPAR, so one can gain
an impression of environmental heterogeneity in the in-
vestigated area.

3. Identify pixels of comparable phenology by binning the
scores of the MSCs on the three leading PCs as illus-
trated in Fig. A1 into bins of equal size. Note that the
bins are very small compared to the length of the PC,
guaranteeing a very fine binning.

4. Estimate a characteristic FAPAR anomaly threshold in
each bin, considering all grid cell u, v belonging to this
bin and grid cell u, v in the adjacent bins. Note that in
the case of binning the leading three PCs, we have all
grid cells u, v in 27 bins to estimate an FAPAR anomaly
threshold as a quantile of the anomalies. Figure 2 illus-
trates the resulting regional threshold of FAPAR anoma-
lies. In southern European ecosystems, smaller negative
anomalies of FAPAR (i.e. higher values in Fig. 2) would
be used to flag values as potential extremes. The over-
all geographical pattern suggests that low-variance re-
gions (i.e. arid ecosystems) typically require smaller de-
viations from the expected variability to be considered
abnormal situations.

Figure 1. The top three principal components of the mean sea-
sonal cycles of FAPAR over Europe visualized as red (R), green
(G) and blue (B) channels. The first component accounts for 84 %
of the variance. The cumulative explained variances in the first two
components explain 95 % of the variance, and the first three com-
ponents sum up to 97 %. Similar RGB colour combinations in-
dicate comparable mean phenological patterns. These similarities
are used to define overlapping regions of comparable phenology.
Within each phenological region we estimate suitable and spatially
varying thresholds as references for flagging potential extreme re-
ductions in FAPAR.

Figure 2. Map of the regionally varying FAPAR threshold used for
detecting extreme events. These thresholds are derived within each
subregion as defined by the leading PCs of the mean seasonal cy-
cles. The gradient between central and southern Europe indicates
that we may classify an event as extreme in one ecosystem that
would be considered part of the normal variability elsewhere; i.e.
arid ecosystems have lower thresholds of extremeness in FAPAR
compared to humid areas.

The rationale behind this approach is primarily that simi-
lar mean seasonal cycles indicate which pixels form a “phe-
nological cluster”, requiring the application of similar quan-
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tiles. Additionally, the identification of these clusters based
on the leading PCs avoids complications of an analogous
analysis in geographical space where regions of similar phe-
nology might be spatially separated by some barrier like a
different land cover type, orography, or a body of water.

3.1.1 Contiguous spatiotemporal extremes

Based on the regional extreme threshold (Fig. 2) one may flag
individual events as potential (“candidate”) extremes. How-
ever, these initially flagged values may likewise reflect obser-
vational noise. Zscheischler et al. (2013) therefore proposed
only considering events as extremes if larger geographical ar-
eas are synchronously affected or if the extreme persists over
some temporal threshold (a very similar idea was proposed in
the context of monitoring droughts by Lloyd-Hughes, 2012).
This idea is realized by identifying clusters in the data cube
where the spatial or temporal voxel neighbours are likewise
flagged as potential (“candidate”) extremes. Each of these
clusters is subsequently considered a singular event; for a
conceptual illustration, see Fig. 3.

A critical step of this process is defining the search space
around each voxel for detecting potential neighbour extremes
that should be concatenated. Throughout this paper we con-
sider the direct neighbourhood around a central voxel as fol-
lows:

– We define a spatial search space z. Two voxels xuvt and
xu′v′t (u 6= u′; v 6= v′) are connected if |u− u′| ≤ z and
|v−v′| ≤ z to obtain a spatial connectivity structure for
a given t .

– We also define a temporal search horizon τ from the
central voxel to compare xuvt and xuvt ′ (t 6= t ′) connect-
ing them if |t − t ′| ≤ τ .

Visually speaking, we search a square in space and a short
line structure in time centred on a locally detected extreme
event. Note that a wide range of alternative spatiotempo-
ral connectivity structures could be used, for instance em-
phasizing the temporal dimension by extending the search
space along the t axis. Our choices of z= 5 (correspond-
ing to 25 km) and τ = 1 (16 days) are adjusted ad hoc to
the specific properties of the TIP-FAPAR data with its rel-
atively high spatial resolution. By setting z= 5 we guaran-
tee that, for example, similar vegetation types (from which
we would assume a similar responsiveness to some extreme
event) could be concatenated to one extreme, even if these
vegetation types are spatially fragmented due to a mosaic of
land cover types. In time we search only starting from the
central voxel, but given that we do this at each v, u combi-
nation, relatively complex spatiotemporal structures are al-
lowed. Each event may consist of a set of voxels with char-
acteristic geometric properties such as the event average or
maximum duration across all affected grid cells, or the maxi-
mum areal extent. Another interesting property is the average

Figure 3. Conceptual visualization of the presented approach. An
extreme occurs over a well-defined spatiotemporal domain (which
could be asymmetric as shown here on the latitude–longitude pro-
jection). The rank of an extreme can be determined, for example, by
the anomaly integrated by the red voxels, or the maximum spatial
extent (grey area), or the duration along the time axis, amongst other
properties. Black lines indicate the spatial position and active time
of three in situ measurement stations. In this example, only one site
would have coincided with the extreme and would be considered as
a potential basis for exploring the in situ effects of the event.

duration of an extreme per affected grid cell. Another way of
looking at these events is to integrate the variable anomaly
over the voxels affected by an event, and one could also de-
fine additional metrics.

3.1.2 Specific setting for this study

In summary, in this study we used the following settings:

– Mean seasonal cycles computed over a time span from
2001 to 2014.

– The first three PCs binned using a grain size of 4 % of
the range of the first PC.

– For each bin in the PC space and its surrounding 26 cells
we estimate the quantile= 0.025. The FAPAR-anomaly
values corresponding to this quantile are assigned as the
threshold for the grid cells corresponding to this central
bin.

– The search space for detecting extreme events is param-
eterized with z= 5 and τ = 1 corresponding here to a
search space of ±5 km and ±16 days.

www.biogeosciences.net/14/4255/2017/ Biogeosciences, 14, 4255–4277, 2017
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Figure 4. Comparison of average detection rates for randomly placed networks of different sizes in Europe for the period from 2000 to 2014.
The colour code shows the moderately exponentially increasing size of networks under consideration. Lines show the average percentage of
detected events by (a) rank, (b) integrated FAPAR anomaly, (c) affected spatial area and (d) event duration. The black line shows the case of
a hypothetical network of 103 towers.

3.2 Coinciding in situ observations and 3-D extremes

In situ observations typically capture subgrid-level processes
or footprints. For the sake of simplicity, here we assume that
each point measurement is representative of one pixel xuv
[1 km2] and we intersect geographical positions u and v of
the in situ data with the occurrences of 3-D extremes. This
approach allows us to answer the hypothetical question of
whether a certain observation site would have detected an
extreme in the past. An intersection considering the time do-
main as well would allow us to understand if an extreme had
a chance of being effectively observed. Along these lines,
we can also investigate whether random placement of towers
would have improved or deteriorated the capability to detect
extreme events.

4 Results

4.1 Random networks

To better understand expected extreme event detection rates,
we initially explore random networks and their hypotheti-
cal capability to detect extreme FAPAR reductions. We focus
on Europe and vary the network sizes from n= 5, . . .,10000
sites on a logarithmic scale, asking how many of the detected
extremes can be identified for each size class. More precisely,
we investigate the probability that an extreme event of a given
size m (measured in terms of affected area) will be detected
by n hypothetical towers P(m,n). All following analyses are
based on repeating the tower placement 100 times per size
class. We mimic real site placement by assuming that a tower
is not mobile – i.e. it remains active at a given location over
the entire period covered by the FAPAR observations.

Figure 4 shows the average detection success rates for the
random networks. The ranks r shown in Fig. 4a are derived
here from the integrated spatiotemporal FAPAR anomalies
(i.e. the total impact); the latter are displayed in Fig. 4b.
Across network sizes we find that empirical event detection

probabilities increase with event impact. These increases typ-
ically follow a straight line in the log–log plot (power-law-
like behaviour) for small extremes and then level off for very
large event sizes. To better illustrate this pattern, we selected
the network of size n= 103 and display it as black lines in
Fig. 4. This specific network size has a P ≥ 90 % chance of
detecting the eight largest extreme events (according to the
ranks of integrated FAPAR anomaly; see Fig. 4a). This suc-
cess rate declines rapidly for smaller events; for example, we
have only a ≥ 50 % chance of capturing the r = 39th largest
event. An analogous pattern is found for the detection proba-
bilities assessed in terms of spatial extents (Fig. 4c). In con-
trast, investigating the event durations (Fig. 4d) did not reveal
such a clear pattern, which could be explained by the fact that
we are dealing with a relatively short time series, in which
only a few discrete duration classes can be recognized. The
fact that global impacts of extreme events in the terrestrial
biosphere behave similarly to those at smaller spatial extents
is expected because these properties are known to be strongly
correlated as shown in, for example, Reichstein et al. (2013).
This study also reported that the duration of extreme events
is less strongly correlated with their impact, as we would also
suspect from Fig. 4.

A different view on this phenomenon is offered by Fig. C1
showing the detection likelihood for extremes of a given rank
r across varying network sizes. Extremes of low rank (i.e.
large in impact) need very small networks to be detected
with rates near to 100 %, whereas high-rank events (of small
impact) need much larger networks to reach similar detec-
tion rates. The detection probability scales linearly in log–
log space with network size, indicating that one would need
to inflate in situ networks by orders of magnitude in order to
detect small-scale events at comparable rates to large-scale
extremes.

Biogeosciences, 14, 4255–4277, 2017 www.biogeosciences.net/14/4255/2017/
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4.1.1 Statistical considerations

The results shown in Fig. 4c are an empirical approach to
describe the detection probability of extremes characterized
by a given spatial extent m (measured, for example, in terms
of the number of pixels or area affected during an event) us-
ing a network constructed with n randomly placed towers. In
other terms, this figure reports the probability P(m,n) that
at least one tower detects the extreme and a single extreme
event of spatial extent m is detected by a single randomly
placed tower with probability

p =
m

mmax
, (1)

where mmax is the maximum possible extent m (in our case
the maximally affected area across all time steps). However,
an equivalent question is the probability that one extreme is
not detected by any of the n towers. According to the bino-
mial distribution, the latter probability is (1−p)n, and our
estimated probabilities should be described by

P (m,n)= 1− (1−p)n

= 1−
(

1−
m

mmax

)n
. (2)

This formulation helps explain the parallel decline (linear
in log–log) in the detection probabilities for small extremes:
we can rewrite Eq. (2) as

P (m,n)= 1− exp
(
n ln

(
1−

m

mmax

))
. (3)

A Taylor expansion of Eq. (3) for a small number of towers
n and small event sizes m/mmax (here realized by assuming
that |n ln(1− m

mmax
)| � 1) yields

P (m,n)≈− ln
(

1−
m

mmax

)
n. (4)

Further adjusting this formula for small extremes with
|
m

mmax
| � 1 gives

P (m,n)≈
m

mmax
n, (5)

which, in a logarithmic form, reads

lnP (m,n)≈ lnm+ lnn− lnmmax. (6)

We expect that this equation explains the empirically iden-
tified parallel lines of positive slope in Fig. 4 and compare
our empirical findings to this theoretical expectation. Fig-
ure 5 compares the expected and observed detection prob-
abilities. The levelling-off of event detection probabilities
for large events is indeed theoretically expected, but the log-
linear scaling for small events is expected to be steeper sensu
Eq. (2).
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Figure 5. Comparison of the affected area of extremes (continu-
ous lines are a subset from Fig 4c) and the theoretical expectation
according to a binomial distribution and uncorrelated data (dashed
lines) for varying network sizes (shown as different colours). Our
empirical detection probability is lower than the theoretical ex-
pected ones for large extremes and higher for small extremes. How-
ever, the overall pattern of the expected detection probabilities is
well captured by the theoretical expectation.

In other words, the observed detection probabilities for
small extremes are higher than expected, whereas detection
probabilities of large extremes are lower in random networks
compared to theoretical expectations. Our hypothesis is that
these discrepancies are related to the spatiotemporal correla-
tion structure of the extreme events, which is not taken into
account in the above theoretical analysis.

In order to investigate the discrepancy revealed in Fig. 5,
we performed a series of simulations using artificial data
that are characterized by varying spatiotemporal correlation
structures, and compared these to the expected detection
rates. The results of these experiments are reported in Ap-
pendix B. There are very few effectively independent ob-
servations because the extremes are highly autocorrelated in
time. Hence, these strong correlations lead to the fact that the
largest spatiotemporal extremes tend to occur at some dis-
tance from the boundary of the domain (i.e. from the coasts).
Because the networks are randomly placed, i.e. without re-
gard to the differentiated occurrence probabilities of large vs.
small extremes, this leads to the observed underestimation of
detection probabilities for large extremes. A simple thought
experiment can intuitively explain this effect: imagine a land-
scape that consists of a contiguous, relatively large mainland
(e.g. Europe) and a number of islands or otherwise discon-
nected regions (e.g. Great Britain, Ireland, Sicily) that are all
far enough from the mainland that spatiotemporal extremes
can by definition not be connected, i.e. exceeding the search
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space z. In addition, imagine that the few largest extremes
that affect the mainland exceed the size of any of the islands.
In this case, any tower randomly placed on an island can-
not contribute to detecting large extremes, which intuitively
illustrates why not taking into account the effects of auto-
correlation and edge effects in our analysis results in overly
optimistic theoretical predictions of detection rates based on
the binomial distribution for real-world landscapes. Contrar-
ily, for medium-sized and small events, the chosen spatial
search space of z= 5 leads to an overestimation of detection
probabilities in the real data as compared to the theoretical
predictions. Nonetheless, the theoretical predictions provide
an exact expectation under simplified settings (i.e. no bound-
ary effects, and an event search only in directly adjacent grid
cells (z= 1); see Appendix B) and are thus useful for illus-
trating and understanding the almost linear scaling of detec-
tion rates and the size of extremes in log–log space.

4.2 Scaling issues

One doubt in applying a regional event detection approach
was whether key aspects of extreme event distributions
would be affected. Occurrence probabilities of extreme
events in the terrestrial biosphere have often been reported to
follow a power law of the form p(m)∝m−α in the tails, i.e.
for some values≥mmin (see Reichstein et al., 2013; Zscheis-
chler et al., 2014a, for scaling examples in FAPAR and gross
primary production respectively). Using a maximum likeli-
hood estimator as suggested by Clauset et al. (2009) and
Clauset and Woodbard (2013), we analyse the scaling char-
acteristics of contiguous areas affected by extreme events.
We find that the event properties follow a power law (see
Fig. C3). The probabilities of areas affected by extremes in
both areas decline with α = 1.85±0.007 (uncertainties given
as standard errors from 1000 bootstrap samples).

Without over-interpreting these patterns (i.e. many pro-
cesses could lead to the emergence of these power laws, some
of which are discussed in Zscheischler et al., 2014b) we con-
sider that this property could be exploited to inform network
design issues. According to Newman (2005) and others, there
are a few considerations pointing in this direction: the expec-
tation value E[m(r)] of an extreme event of rank r (in this
formulation, the largest event has rank 1 as in Fig. 4a) has
the form

E [m(r)]= cr−
1
α−1 , (7)

where α is the scaling exponent, and c is some normalization
constant – both can be obtained from a fit to the empirically
obtained rank function m(r). Applying Eq. (7) would allow
us to study the network detection probability as a function of
rank (see Figs. 4a and C1) and we can insert the expressions

into Eq. (2):

P (m,n)= 1−
(

1−
m(r)

mmax

)n
= 1−

(
1−

cr−
1
α−1

mmax

)n
. (8)

Furthermore, using the approximated log–log form of the
network detection probability (Eq. 7) yields

lnP (m,n)≈−
1

α− 1
lnr + 1lnn+ lnc− lnmmax. (9)

This equation may explain the parallel lines for ranks r cor-
responding to small extreme event extents m(r) (see e.g.
Fig. C1). More importantly, it relates the scaling exponent
to the expected detection probabilities. In other words, gain-
ing insights about the scaling behaviour of the extremes can
be used to formulate clear expectations about event detection
probabilities of a given rank and size.

4.3 Comparing AmeriFlux and NEON

Our results so far show that random networks may differ
somewhat from our expected detection rates for various rea-
sons. But the overarching hypothesis is that even relatively
small networks may have a good chance of detecting large-
scale extreme events. We therefore consider the configuration
of real EC networks. We now focus on the US (continental ar-
eas only) instead of Europe. We have two networks with very
different histories and therefore configuration – AmeriFlux
and NEON – and we consider them both together. Again, we
compare our results to random networks of equal size.

The starting point for our considerations was whether eco-
logical in situ networks have effectively been able to detect
the most relevant extreme events experienced by land ecosys-
tems due to their network construction, or if these were lucky
circumstances. We therefore ranked the 100 largest events
detectable in the continental US by their integrated FAPAR
anomalies. We then counted the number of events that could
have been detected by at least one of the AmeriFlux or
NEON towers, or by taking both together (if all towers would
have been active over the entire monitoring period). Figure 6
shows the number of detected events for these three network
configurations (of NEON, AmeriFlux, and both together) as
a function of their rank.

Due to its large network size, AmeriFlux detects many
more extremes than NEON (128 vs. 39 sites in the contigu-
ous US, excluding Alaska and islands). Concatenating both
networks helps increase the detection rates for small events.
Our next question was whether these detection rates are com-
parable to random networks of the same size. For the case
of NEON we find that the median detection rate of randomly
designed networks is slightly higher compared to the real net-
work – which still remains above the 2.5 percentile. At first
glance this is an unexpected finding: we would expect that
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undesired vicinity may occur by chance in a random network,
increasing redundancy among towers in space compared to
the very systematic sampling design of NEON (Keller et al.,
2008). We conclude here that while the design efforts used
in establishing NEON may pay off for certain studies, they
are not an effective means to maximize the detection of ex-
tremes. This observation again reflects the lack of spatial reg-
ularity in the occurrence of extremes.

The equivalent experiment conducted on the AmeriFlux
network yields much higher detection rates for the ran-
dom networks compared to the established network (Fig. 6).
We attribute this difference to one particular characteristic
of AmeriFlux: many of the sites in this network are co-
located on purpose (e.g. to explore spatial heterogeneity or
to monitor different disturbance regimes in adjacent and
hence climatologically similar ecosystems). Figure 6 shows
that AmeriFlux sites have a relatively high degree of spa-
tial clustering. If the target were to analyse continental ex-
treme events and guarantee monitoring the largest events,
the AmeriFlux configuration would be suboptimal. In other
words, the spatial autocorrelation in an ecological in situ net-
work that was not systematically designed can be outper-
formed by a random (and hence spatially independent) net-
work.

Another aspect to investigate in this context is concate-
nating NEON and AmeriFlux (both data sets are intended to
be freely available to the research community, Fig. 6 dashed
line). Our results show that this approach would marginally
increase the detection capacity. One reason for this marginal
improvement is again that AmeriFlux and NEON sites are
partly geographically co-located and that AmeriFlux – de-
spite being a bottom-up activity – already has a significant
spread across the country that is competitive with a novel
network designed for the purpose of capturing large-scale ex-
tremes.

5 Discussion

5.1 Regionalized event detection

Reliable event detection algorithms are a prerequisite to ad-
dressing the question of how effective in situ networks are
for detecting extreme events of a given geographical extent.
Our aim here is to classify events as “extreme” if they exceed
an anomaly value that is unusual across regions that follow
the same main phenological pattern. This contribution could
be relevant to other studies beyond the present application.
This method has advantages over using a global threshold,
which fundamentally changes the obtained picture and leads
to a few hotspots of extremes in regions where the data have
high variability (for the case of GPP, see Zscheischler et al.,
2014b). The effect of building on regional thresholds to de-
lineate which anomalies should be considered “extreme” (re-
call Fig. 2) is that we find only very moderate geographi-

Figure 6. Comparison of the potential of NEON (39 terrestrial
sites) and AmeriFlux (128 sites) for detecting extremes defined
by varying thresholds in the contiguous continental US (exclud-
ing Alaska and islands). The purple dashed line shows a merged
AmeriFlux–NEON network. Dashed lines enveloped by a 95th per-
centile range are detection rates of random networks. The sizes of
the random networks correspond to NEON (blue) and AmeriFlux
(brown) and summarize 100 repetitions. We also show the 1 : 1 line,
which would correspond to perfect detection performance and is the
theoretical limit.

cal clustering of event occurrences (not shown). From our
viewpoint, this is very logical, as there is no reason why rela-
tive extremes should preferentially happen in certain regions.
Methods of this kind are particularly relevant in times of
increasing availability of EOs to detect impacts rather than
referring to anomalous observations in the meteorological
records, which may or may not affect terrestrial ecosystems.
In fact, all of the largest extreme events that have had se-
vere impacts on agriculture and human well-being and at-
tracted the attention of the media are well detectable with
our approach. Prominent examples are the 2003 European
heat wave (e.g. Ciais et al., 2005), the 2010 Russian heat
wave (e.g. Bastos et al., 2014), or the 2012 US drought
(e.g. Schwalm et al., 2012), which are all easily detectable
both from climate records and remote sensing data. How-
ever, the smaller the spatial extents become, the more rele-
vant a remote-sensing-based regional assessment will be. We
also expect that a regionalization of this kind could be useful
when using more advanced multivariate event detection al-
gorithms (see e.g. Flach et al., 2017) that can tap into the full
potential of many EOs.
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Regarding the details of the chosen methodological ap-
proach, one may question why we propose simply binning
the leading PCs derived from the MSC of our EOs. This
approach was mainly developed to effectively deal with the
very high resolution of the underlying data, seeking a very
efficient subgridding approach. One alternative would have
been to cluster the PCs directly. However, besides the com-
putational costs, conventional clustering methods lead to a
non-uniform partitioning of the space spanned by PCs. This
non-uniform partitioning makes it slightly more complicated
to identify neighbouring clusters, which is necessary to sta-
bilize the quantile-based computation of anomaly thresholds.
Having an equal meshgrid over the PCs that we can also com-
pute on a subset of MSCs renders the approach very efficient
for very large data sets and is completely data adaptive. It was
very important for this exercise to have many small classes,
in order to compute a very well regionalized anomaly thresh-
old (shown in Fig. 2), which would not have been achiev-
able using classical climate classifications of ecoregions. A
more detailed follow-up study should explore the question of
how the choice of the various parameters affects the event de-
tection accuracies. A crucial question in this context will be
whether one can tune these parameters such that a baseline
of events is well detected.

A further argument in favour of our approach was that we
rely on a limited number of events detected in a finite time
horizon of available satellite data. Monitoring 15 years of ex-
treme events probably does not allow us to conclude any-
thing about the future occurrences of extreme events. In this
sense, this study can only be read as a call for (re)considering
the density of ecological networks in network design stud-
ies. An alternative would be to also consider climate projec-
tions and put more emphasis on more “vulnerable” ecore-
gions. Non-stationary climate and environmental conditions
notwithstanding, we have to acknowledge that extremes are
too rare to derive a spatial occurrence probability using data
from the satellite era only.

5.2 Relevance for network design

To the best of our knowledge, there are only a few realized
examples of systematically designed in situ ecological net-
works. One of the best examples is NEON, which is there-
fore particularly interesting in the context of this study. The
underlying design principle is to cluster environmental con-
ditions and states, including precipitation, radiation, topogra-
phy and water table depth, among others (Hargrove and Hoff-
man, 2004). These delineated ecoregions are taken to be rep-
resentative of approximately homogeneous areas in the mean
land–climate system state, and yield an equitable representa-
tion of land-surface processes in upscaling activities (e.g. the
spatiotemporal inter- and extrapolation of land–atmosphere
fluxes of CO2, H2O and others; Jung et al., 2011; Xiao et al.,
2012; Papale et al., 2015) or model–data integration studies
(sensu Williams et al., 2009).

Our finding that concatenating NEON and AmeriFlux
would have yielded only a minimal increase in detection ca-
pacities for extreme events can be understood as a call to
avoid co-locating towers in relatively close vicinities – at
least when the objective of detecting extreme events is highly
relevant. In fact, when the objective is to monitor and un-
derstand the impacts of climate extremes on ecosystems, we
show here that probability-theoretical expectations should be
taken into account but would need to be extended to con-
sider temporal autocorrelation as well as the event detection
approaches chosen. In our case, the latter had a relatively
large footprint (z= 5) in order to not miss events that may
appear fragmented due to, for example, heterogeneous land-
scape characteristics. Clearly, one would need to determine
such parametric choices depending on the type of extreme
events and underlying question.

Nevertheless, we think that the remarks presented here
could become useful elements for quantitative network de-
sign studies. In our area, earlier considerations in this di-
rection have put their emphasis on reducing the uncertain-
ties for upscaling fluxes from the site level to continental
or global flux fields (Papale et al., 2015). Focusing on this
first-order question is of course essential, before focusing on
detecting rare anomalies. This is also reflected in the alter-
native methodological avenues that were used for address-
ing the network design problem. For instance, carbon cy-
cle data assimilation systems (CCDAS; Rayner et al., 2005)
were very useful for quantitative network design (QND; see
e.g. Kaminski et al., 2010; Kaminski and Raynner, 2017),
i.e. to evaluate real or hypothetical candidate networks in
terms of their ability to constrain target quantities of inter-
est. The quantitative network design (QND) approach within
a Carbon Cycle Data Assimilation Scheme (CCDAS) al-
lows us to combine terrestrial, atmospheric and ultimately
also oceanic data streams. A key finding so far was that EC
networks with one site per ecosystem type achieve excel-
lent performance. QND studies have also been performed for
EO data streams such as column-integrated atmospheric CO2
(Kaminski et al., 2010; Kaminski and Raynner, 2017). But
again, none of these studies so far have attempted to unravel
the impacts of extreme events on the terrestrial biosphere,
which might be a relevant pursuit for subsequent studies.

Overall, this study can be also seen as a prototype. In
Appendix B we show that analogous studies can be effec-
tively implemented. There we use the ISMN and detect EO
anomalies using a drought indicator. This very brief analy-
sis stresses one additional aspect that we have effectively ig-
nored through the main paper: the importance of keeping net-
work measurements alive over time. Many of the sites have
only been active for short monitoring periods, leading to sub-
stantial losses in event detection rates. It is the continuously
sustained measurement networks that will substantially im-
prove event detection rates in the long term.
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6 Conclusions

This study tries to understand to what degree ecological
in situ networks such as AmeriFlux or NEON can capture ex-
treme events of a given size that affect land ecosystems. We
find, for instance, that the 10 largest that have occurred in the
US between 2000 and 2014 would all have been identified
with the current networks, offering a good perspective for
in-depth site-level analyses of these phenomena. Concretely,
this finding means that there is a high chance of capturing
major extreme events – beyond the very few (2–3) prominent
events that may receive major media coverage such as the
2003 heatwave in Europe or the 2012 US drought. In general,
we find that “large” extreme events could have been detected
in a very reliable way, whereas there was a linear decay of
detection probabilities for smaller extreme events in log–log
space. We can explain this general behaviour with straight-
forward considerations in probability theory, but the slopes
of the decay rates deviate: while we find lower detection rates
for the very large extremes, the opposite is the case for very
small extremes. Experiments with artificial networks reveal
that these deviations stem both from autocorrelation issues
and the exact implementation of the detection algorithm.

Our original motivation for pursuing this study was the
question of whether one could optimize the design of eco-
logical in situ networks for maximizing the detection rates of
extreme events. Indeed, we find some general rules; for ex-
ample, when the goal is detecting very large events (i.e. low-
rank events), network sizes can differ by up to 2 orders of
magnitude but still yield nearly comparable detection rates.
Only if the goal was to reliably enhance the detection prob-
abilities of small-scale events would a disproportionate “in-
vestment” in large networks be required, which would then
also become orders of magnitude more efficient compared to
the small networks.

However, any inference on the future spatial occurrence
probability of extremes is not tenable based on data from a
decade of observation. It is not only data paucity that lim-
its our insights here: quantitative network design is per se
non-trivial in a changing world. We find, however, that cer-
tain general patterns could be taken into consideration, for in-
stance the fact that event occurrence probabilities are clearly
inversely related to detection probabilities on a very well de-
fined and robust scale, and that the power law distribution
of extreme event size seems to have practical relevance for
network design purposes.

Data availability. The JRC-TIP product based on MODIS collec-
tion 5 at 1 km resolution is available upon request from the corre-
sponding author.
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Appendix A: Regional event detection

In the following we develop a strategy for defining thresh-
olds of regional relevance that are computationally suitable
for dealing with high-resolution remote sensing data like the
1 km FAPAR data considered here. Our aim is to find re-
gions of comparable phenology. Our assumption is that the
expected seasonal cycle in FAPAR is a good representation
of overall phenology and hence ecosystem type.

The first step considers the data set of mean seasonal FA-
PAR patterns F=

{
f(n,s) : ∀n ∈ 1, . . .,N;s ∈ 1, . . .S

}
, where

each point n is pointing to a geographical location u, v and
contains the local mean of seasonal observations s.

In the second step, we use principal component analysis
(PCA) to reduce this S-dimensional data set. In other words,
we seek orthogonal components that represent the main gra-
dient along the covariances of the seasonal cycles. More for-
mally, the covariances of these centred mean seasonal cycles
are given as

C= FtF . (A1)

Common patterns of seasonality are identified by first es-
timating the k leading eigenvectors,

CEk = λkEk , (A2)

where Ek the kth eigenvector of length S, and λk the corre-
sponding eigenvalue. The scores of the kth principal compo-
nent are given by

Ak = FEk , (A3)

and k leadingAk can be interpreted as a proxy for the charac-
teristic patterns underlying the mean seasonal cycles across
space. Figure 1 visualizes the three leading principal compo-
nents as an RGB-colour composite, revealing a distinct map
of European phenological regions.

Third, the question is how to identify regions of similar
phenology in this continuous space spanned by the principal
components. One could use, for instance, some clustering al-
gorithm. However, given the high density of spatial points
and the continuous sampling, an equivalent approach is to
choose an equidistant grid in the space of the principal com-
ponents. We choose a very dense grid, such that each cell is
as wide as 4 % of the range of the first PC. We then define an
FAPAR anomaly threshold as a predefined quantile based on
the distribution of FAPAR values separately for each grid cell
and its 26 neighbours in the space of the leading 3 PCs. This
threshold is assigned to all points in the respective grid cell
represented herein. This threshold is assigned to the all points
represented therein. Figure A1 illustrates this approach in de-
tail.

We have now proposed a FAPAR threshold for each point
and can map this threshold back to the geographical space by
remapping each point to the known geographical coordinates
u, v. This is shown in Fig. 2.

Figure A1. Illustration of identification of regions with similar
threshold: we define a grid in the space of the leading PCs (geo-
graphically shown in Fig. 1), where each mesh width corresponds to
4 % of the total min–max range of the first PC. We assign percentile
thresholds as calculated over a 3×3×3 set of mesh elements (shown
in orange) and assign these percentiles to the central dots (shown in
red). For the sake of clarity, we illustrate the approach only in the
space of the leading two PCs.

Appendix B: Spatiotemporal correlations

Figure 5 reveals a strong discrepancy between theoretical and
observed detection probability. Here we investigate this dis-
crepancy further. We generated Gaussian data but introduced
varying spatiotemporal correlation structures of different de-
grees. We followed the approach suggested by Venema et al.
(2006a, b) to simulate data with a power law power spectrum
of some prescribed exponential spectral decay. The method
combines an approach for generating spatial fields of a de-
sired correlation structure that likewise have a similar tem-
poral correlation. The idea is that the Fourier coefficients
of some artificial data (white noise) are forced to decay as
a power law function across frequencies i.e. proportionally
to f−β . An inverse transformation to space yields a corre-
lated data field. If we choose β = 0, it corresponds to un-
correlated, β =− 3

5 to moderately correlated, and β =− 8
5 to

highly correlated data. These artificial data sets are visual-
ized in Fig. B1g–i. We used a simplified event search radius
(z= 1, τ = 1) and investigate two cases:

1. Ignoring the time domain: in this case, the empirically
identified detection rates correspond exactly to the the-
oretical detection probabilities. This finding reveals that
the spatial correlation structure does not explain a de-
viation from the theoretically expected pattern (com-
pare Fig. B1a—c). This is explained by the fact that,
although patterns of extreme anomalies might be corre-
lated in space, the tower placement is still random and
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Figure B1. Artificial data example. (a) Detection probabilities when ignoring the time domain for varying network sizes. In this case, the
empirically identified detection rates correspond exactly to the theoretical detection probabilities. If we induce moderate spatiotemporal
correlations in (b), and stronger ones in (c), we still find an excellent fit to the theoretical expectation because we still have relatively sparse
networks and the towers are independent samples of the underlying distribution. If the detection rates over space and time are considered,
however, the events are no longer independent due to their temporal autocorrelation, and thus the largest extremes tend to cluster towards the
centre of the domain. Parts (e) and (f) show these lower detection rates, and (g), (f), (i) are the data corresponding to results in the columns.

for sufficiently sparse networks and relatively contigu-
ous landscapes (i.e. only small edges, no islands, etc.) it
has no effect.

2. Considering spatial and temporal correlations: in this
case we find a tendency towards lower detection prob-
abilities. This effect becomes more pronounced with
larger extremes and spatiotemporal autocorrelation (see
Fig. B1d–f) due to a stronger tendency for large spa-
tiotemporal extremes to occur away from the domain’s
boundaries; thus any tower that is randomly placed
close to a boundary would have a disproportionately low
chance of detecting large extremes.

However, the approximation of the expected probabilities
for the small events is still inconsistent with our empirical
finding (recall Fig. 5). Hence, we repeat the artificial experi-
ment using the exact algorithmic settings applied to the FA-
PAR data: we allow for a tolerance radius (z� 1, τ = 1) to
identify each extreme by a given tower. Again we distinguish
the two cases:

1. Ignoring the time domain: using a large search radius
for detecting extremes (which is clearly necessary in
real and e.g fragmented landscapes) leads to increased
event detection rates. This effect can lead to higher de-
tection rates that exceed the simple statistical expecta-
tions as derived from the binomial distribution by sev-
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Figure B2. Artificial data example considering the actual event detection algorithm. (a) Detection probabilities when ignoring the time
domain for varying network sizes. In this case, the empirically identified detection rates dramatically overestimate the theoretical detection
probabilities. If we induce moderate spatiotemporal correlations in (b), and stronger ones in (c), we still find this pattern, but it is less
pronounced for the very large events. This shows that having a large footprint for the event detection algorithm leads to an overestimation of
the detection rates of small extremes. If the detection rates over space and time are considered, however, the events are no longer independent
due to their temporal autocorrelation. Parts (e) and (f) reveal lower deviations from the expected detection rates, which is a compensating
effect of the autocorrelation and event detection method setting. The data corresponding to results in the columns are shown in (g), (f), and (i).

eral orders of magnitude in the case of small extremes
(see Figs. B2a–c).

2. Considering the full spatiotemporal case reduces the
discrepancy slightly (i.e. for large events that would be
detected anyway), but still results in an overestimation
(see Fig. B2d–f). For very large events, the lines may
even cross in the case of strongly autocorrelated data.

These numerical experiments highlight some of the issues
that need to be considered in evaluating real networks or
quantitative network-design: the phenomena we aim to mon-
itor are highly autocorrelated in time, which leads to consid-

erable edge effects for large events. Therefore, theoretically
expected detection rates estimated from the binomial distri-
bution are overly optimistic for large events – unless the ef-
fects of autocorrelation and edge effects as a consequence for
large events are analytically taken into account.
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Appendix C: Supplementary figures
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Figure C1. Average detection rates of extremes of given ranks (each line represents the rank of an extreme event) across varying network
sizes in logarithmic representation (a) and linear representation (b). Small ranks indicate large impact extremes that typically also affect large
areas (see Fig. 4). The figure shows that detection rates scale with smaller network sizes and then tend to saturate – i.e. we find a convergence
towards full detection rates.

Figure C2. Comparison of the affected area of extremes (Fig. 4c)
and the theoretical expectation according to a binomial distribution.
Our empirical detection probability is lower for the very large ex-
tremes, and higher for the small extremes. The problem is more
pronounced for small network sizes.
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Figure C3. The probability distribution of areas affected by extremes in (a) Europe and (b) the US. The tails of the distributions can be
described by power laws. The average scaling exponent for the tails is 1.85 for both cases.
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Appendix D: Analogous example for soil moisture

D1 On the ISMN

The approach for testing a network design for its capacity to
detect extremes is generic by construction. As an additional
demonstration we explore the capacity of the International
Soil Moisture Network (ISMN) (http://ismn.geo.tuwien.ac.
at/; Dorigo et al., 2011), a steadily growing initiative that
comprises collections of soil moisture only. Comparable to
FLUXNET there is no specific funding for measurement
campaigns, and ISMN crucially depends on the contributions
of historical observations by the respective communities.

D1.1 Methodology

Direct observations of soil moisture from satellites are avail-
able (Liu et al., 2011), but these data still suffer from concate-
nating different data sources. In fact these transitions make
the data set very problematic for detecting extremes – or in
other words, extreme event detection may identify the data
merging edges. Alternatives are classical drought indicators
that can be derived from climatological data only. Here, we
rely on the standardized precipitation index (SPI) for detect-
ing extreme events as extracted from SPI and compare it to
a random network of the same size (Fig. D1). The SPI is ex-
tracted following standard methodology (McKee et al., 1993)
from monthly ERA-Interim rainfall data (Dee et al., 2011),
using a 3-monthly aggregation window over the 1979–2011.
We use the SPI only for illustration purposes until more ro-
bust EOs for soil moisture become available – i.e. we as-
sume that low SPI values are proxies for low soil moisture
contents.

Further, a local 10th percentile threshold is applied on
the SPI time series to flag dry events with subsequent de-
tection of the large connected events. The choice of the
local threshold is consistent with the typical meteorologi-
cal/climatological use of SPI time series. Hence, in contrast
to biophysical applications as presented in the main part of
the paper, global or regional thresholds might not be physi-
cally meaningful for evaluating the local impacts of climate
variables. Since meteorological reanalyses typically operate
at much coarser resolution than EO data sets, for the anal-
ogous analysis presented here both the spatial and temporal
search space are chosen to comprise only the spatially and
temporally adjacent voxel (i.e. z= 0.5◦ and τ = 1 month in
the SPI data set).

To evaluate the ISMN, all station locations and the peri-
ods of active data sampling of each station were used for
spatiotemporal intersection with the SPI extremes in two dif-
ferent setups: firstly, we consider all stations active only in
periods when these stations were collecting data (“dynamic”
network), and secondly, a “static” (counterfactual) situation
is taken into account, where all stations are taken as active
throughout the entire ERA-Interim period. The comparison
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Figure D1. International Soil Moisture Network and its capacity to
detect SPI extremes in Europe. Again red line shows the reduction
of detection capacity due to inactive towers. Randomly placing ob-
servation years in space and time leads to higher detection rates for
large extremes, and lower rates for small extremes.

was restricted to Europe due to data availability (i.e. most
regional networks that form ISMN are operated in Europe
Dorigo et al., 2011).

D1.2 Results

If we consider the full spatiotemporal intersection we find
that only the first five SPI extremes would have affected ar-
eas where the ISMN has stations (Fig. D1, red line). Higher
ranked extremes are less likely of being detected. An an-
nual random site placement (grey lines) would have been
more efficient in identifying the extremes. In fact the cur-
rent geographical coordinates u, v would have only reached
the potential of a random network if they had been oper-
ated without ceasing over the entire monitoring period (blue
lines). But that would have implied much more measurement
years than the random site placement. For very high ranks
of extremes (the very small events) the continuously oper-
ated real-world network would have outperformed the ran-
dom network. These results are consistent with the results
shown in the main paper.

An interesting feature of ISMN is that the network has
changed its structure over the last decades to a very large
extent. In the eighties, all station locations are confined to
eastern Europe (Fig. D2a). In the last decade, western Eu-
ropean station networks became active, but both the num-
ber and data availability from eastern European stations were
severely reduced (Fig. D2b). This change in network design
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Figure D2. International Soil Moisture Network and its capacities to detect SPI extremes in Europe vs. a random network for the 1980s (a)
and 2000s (b).

materializes strongly in the spatial locations of the detected
events: while in the 1980s most extremes in eastern Europe
were “seen” by at least one tower and the detection rates
in western Europe were poor, this pattern is reversed in the
last decade (Fig. D2). Further, both decades highlight that a
static random tower placement is more efficient than the cur-
rent network, which is explicable by the high degree of site
clustering. The importance of maintaining continuous obser-
vation alive becomes even more evident if one analyses the
network development over time in more detail (Fig. D3). In
conclusion, the complementary analysis presented here sub-
stantiates the main paper in that the consideration of both the
spatial location and the availability of historical data is a cru-
cial element to reconstruct the impacts of extreme events in
the recent past.
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Figure D3. Number of stations in the International Soil Moisture Network over time confronted with drought-affected area.
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