Biogeosciences, 14, 42954314, 2017
https://doi.org/10.5194/bg-14-4295-2017

© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Bayesian calibration of terrestrial ecosystem models: a study of
advanced Markov chain Monte Carlo methods

Dan Lu', Daniel Ricciuto?, Anthony Walker?, Cosmin Safta’ , and William Munger4

!Computational Sciences and Engineering Division, Climate Change Science Institute,

Oak Ridge National Laboratory, Oak Ridge, TN, USA

ZEnvironmental Sciences Division, Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA

3Sandia National Laboratories, Livermore, CA, USA

4School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Correspondence to: Dan Lu (lud1 @ornl.gov)

Received: 10 February 2017 — Discussion started: 22 February 2017
Revised: 30 June 2017 — Accepted: 30 August 2017 — Published: 27 September 2017

Abstract. Calibration of terrestrial ecosystem models is im-
portant but challenging. Bayesian inference implemented by
Markov chain Monte Carlo (MCMC) sampling provides a
comprehensive framework to estimate model parameters and
associated uncertainties using their posterior distributions.
The effectiveness and efficiency of the method strongly de-
pend on the MCMC algorithm used. In this work, a dif-
ferential evolution adaptive Metropolis (DREAM) algorithm
is used to estimate posterior distributions of 21 parameters
for the data assimilation linked ecosystem carbon (DALEC)
model using 14 years of daily net ecosystem exchange data
collected at the Harvard Forest Environmental Measurement
Site eddy-flux tower. The calibration of DREAM results in
a better model fit and predictive performance compared to
the popular adaptive Metropolis (AM) scheme. Moreover,
DREAM indicates that two parameters controlling autumn
phenology have multiple modes in their posterior distribu-
tions while AM only identifies one mode. The application
suggests that DREAM is very suitable to calibrate complex
terrestrial ecosystem models, where the uncertain parameter
size is usually large and existence of local optima is always
a concern. In addition, this effort justifies the assumptions of
the error model used in Bayesian calibration according to the
residual analysis. The result indicates that a heteroscedastic,
correlated, Gaussian error model is appropriate for the prob-
lem, and the consequent constructed likelihood function can
alleviate the underestimation of parameter uncertainty that is
usually caused by using uncorrelated error models.

1 Introduction

Prediction of future climate heavily depends on accurate pre-
dictions of the concentration of carbon dioxide (CO;) in
the atmosphere. Predictions of atmospheric CO;, concentra-
tions rely on terrestrial ecosystem models (TEMs) to simu-
late the CO; exchange between the land surface and the at-
mosphere. TEMs typically involve a large number of biogeo-
physical and biogeochemical processes, the representation
of which requires knowledge of many process parameters.
Some parameters can be determined directly from experi-
mental and measurement data, but many are also estimated
through model calibration. Estimating these parameters in-
directly from measurements (such as the net ecosystem ex-
change (NEE) data) is a challenging inverse problem.
Various parameter estimation methods have been applied
to TEMs. For an overview, one can refer to the OptIC (Op-
timization InterComparison) project (Trudinger et al., 2007)
and the REFLEX (REgional FLux Estimation eXperiment)
project (Fox et al., 2009). In classical optimization-based ap-
proaches, inverse problems with a large number of param-
eters can often be ill-posed in that the solution may not be
unique or even may not exist (O’Sullivan, 1986). As an alter-
native approach, the Bayesian framework provides a compre-
hensive solution to this problem. In Bayesian methods, the
model parameters are treated as random variables and their
posterior probability density functions (PPDFs) represent the
estimation results. The PPDF incorporates prior knowledge
of the parameters, mismatch between model and observa-
tions, and observation uncertainty (Lu et al., 2012). Thus,
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compared to other approaches in inverse problems, Bayesian
inference not only estimates model parameters but also quan-
tifies associated uncertainty using a full probabilistic descrip-
tion.

Two types of Bayesian methods are widely used in param-
eter estimation of TEMs, variational data assimilation (VAR)
methods (Talagrand and Courtier, 1987) and Markov chain
Monte Carlo (MCMC) sampling. VAR methods are compu-
tationally efficient; however, they assume that the prior pa-
rameter values and the observations follow a Gaussian distri-
bution, and they require the model to be differentiable with
respect to all parameters for optimization. In addition, VAR
methods can only identify a local optimum and approximate
the PPDF by a Gaussian function (Rayner et al., 2005; Ziehn
et al., 2012). In contrast, MCMC sampling makes no as-
sumptions about the structure of the prior and posterior dis-
tributions of model parameters or observation uncertainties.
Moreover, the MCMC methods, in principle, can converge to
the true PPDF with an identification of all possible optima.
Although it is more computationally intensive than VAR ap-
proaches, MCMC sampling is being increasingly applied in
the land surface modeling community (Dowd, 2007; Zobitz
etal., 2011).

One widely used MCMC algorithm is adaptive Metropolis
(AM) (Haario et al., 2001). For example, Fox et al. (2009)
applied AM in their comparison of different algorithms for
the inversion of a terrestrial ecosystem model; Jarvinen et
al. (2010) utilized AM for estimation of ECHAMS climate
model closure parameters; Hararuk et al. (2014) employed
AM for improvement of a global land model against soil car-
bon data; and Safta et al. (2015) used AM to estimate pa-
rameters in the data assimilation linked ecosystem carbon
model. The AM algorithm uses a single Markov chain that
continuously adapts the covariance matrix of a Gaussian pro-
posal distribution using the information of all previous sam-
ples collected in the chain so far (Haario et al., 1999). As a
single-chain method, AM has difficulty in traversing multidi-
mensional parameter space efficiently when there are numer-
ous significant local optima, and AM can be inefficient for
estimating the PPDFs that exhibit strong correlations, as cor-
related dimensions are better to be updated together (Vrugt,
2016). In addition, the AM algorithm uses a multivariate
Gaussian distribution as the proposal to generate candidate
samples and evolve the chain. AM, therefore, is particularly
suitable for Gaussian-shaped PPDFs, but it may not converge
properly to the distributions with multiple modes. Moreover,
AM suffers from uncertainty about how to initialize the co-
variance of the Gaussian proposal. Poor initialization of the
proposal covariance matrix results in slow adaptation and in-
efficient convergence.

The Gaussian proposal is also widely used in non-AM
MCMC studies that involve TEMs. For example, Ziehn et
al. (2012) used the Gaussian proposal for the MCMC simu-
lation of the BETHY model (Knorr and Heimann, 2011) and
Ricciuto et al. (2008, 2011) utilized the Gaussian proposal in
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their MCMC schemes to estimate parameters in a terrestrial
carbon cycle model. The single-chain and Gaussian-proposal
MCMC approaches have limitations in sufficiently exploring
the full parameter space and share slow convergence in sam-
pling the non-Gaussian-shaped PPDFs and thus may end up
with a local optimum with inaccurate uncertainty represen-
tation of the parameters. Therefore, this poses a question on
whether the AM and the widely used MCMC algorithms with
Gaussian proposal generate a representing sample of the pos-
terior distribution of the underlying model parameters. While
we expect that computationally expensive sampling methods
for parameter estimation yield a global optimum with an ac-
curate probabilistic description, in reality we may in many
cases obtain a local optimum with an inaccurate PPDF due
to the limitations of these algorithms.

In this study, we employ the differential evolution adaptive
Metropolis (DREAM) algorithm (Vrugt et al., 2008, 2009a;
Lu et al., 2014) for an accurate Bayesian calibration of an
ecosystem carbon model. The DREAM scheme runs multi-
ple interacting chains simultaneously to explore the entire pa-
rameter space globally. During the search, DREAM does not
rely on a specific distribution, like the Gaussian distribution
used in most MCMC schemes, to move the chains. Instead, it
uses the differential evolution optimization method to gener-
ate the candidate samples from the collection of chains (Price
et al., 2005). This feature of DREAM eliminates the problem
of initializing the proposal covariance matrix and enables ef-
ficient handling of complex distributions with strong correla-
tions. In addition, as a multi-chain method, DREAM can ef-
ficiently sample multimodal posterior distributions with nu-
merous local optima. Thus, the DREAM scheme is partic-
ularly applicable to complex and multimodal optimization
problems. Recently, Post et al. (2017) reported a successful
application of DREAM in estimation of the complex Com-
munity Land Model (CLM) using 1-year records of NEE ob-
servations. They found that the posterior parameter estimates
were superior to their default values in the ability to track and
explain the measured NEE data.

While multimodality is a potential feature of parameters
in complex models (Kinlan and Gaines, 2003; Stead et al.,
2005; Thibault et al., 2011; Zhang et al., 2013), its existence
has not been well documented in terrestrial ecosystem mod-
eling due to the limitations of methods that have been applied
in most previous studies. In addition, while the importance of
likelihood function choice on Bayesian calibration has been
well realized (Trudinger et al., 2007), the reasonable usage of
an appropriate likelihood function has been barely explored
in land surface modeling. Here we apply DREAM and AM
to a TEM to estimate the parameter distributions based on
a set of synthetic data and real measurement data. In both
cases, we estimate the PPDFs of 21 process parameters in the
data assimilation linked ecosystem carbon (DALEC) model.
The objectives of this study are to (1) present a statistically
sound methodology to solve the parameter estimation prob-
lems in complex TEMs and to improve the model simulation;
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(2) characterize parameter uncertainty in detail using accu-
rately sampled posterior distributions; (3) investigate the ef-
fects of model calibration methods on parameter estimation
and model performance; and (4) justify the usage of the like-
lihood function and explore the influence of the likelihood
function on the model calibration results. This work should
provide ecological practitioners with valuable information on
model calibration and understanding of the TEMs.

In the following Sect. 2, we first briefly summarize the
general idea of Bayesian calibration and describe the AM
and DREAM algorithms. Then in Sect. 3, we apply both al-
gorithms to the DALEC model in a synthetic and a real-data
study. Next in Sect. 4, we discuss the influence of the like-
lihood function on parameter estimation and model perfor-
mance. Finally in Sect. 5, we close this paper with our main
conclusions.

2 Bayesian calibration and MCMC simulation
2.1 Bayesian calibration

Bayesian calibration of a model states that the posterior dis-
tribution p(x|D) of the model parameters x, given observa-
tion data D, can be obtained from the prior distribution p(x)
of x and the likelihood function L(x|D) using Bayes’ theo-
rem (Box and Tiao, 1992) via

p(x|D) =cL(x|D)p(x), ey

where c is a distribution represents the prior knowledge about
the parameters. It is usually inferred from information of pre-
vious studies at similar sites or from expert judgment. In the
absence of prior information, a common practice is to use
uninformative priors within relatively wide parameter ranges
such that the prior distribution has little influence on the es-
timation of the posterior distribution.

The likelihood function measures the model fits to the ob-
servations. Selecting a likelihood function suitable to a spe-
cific problem is still under study (Vrugt et al., 2009b). A
commonly used likelihood function is based on the assump-
tion that the differences between the model simulations and
observations are multivariate normally distributed, leading to
a Gaussian likelihood such as the work of Fox et al. (2009),
Hararuk et al. (2014), and Ricciuto et al. (2008, 2011). In
this work, we also use the Gaussian likelihood, with het-
eroscedastic and uncorrelated variances that are evaluated
from the provided daily observation uncertainties. The as-
sumptions of normality and independence are investigated by
the residual analysis. In addition, we explore the influence of
different choices of the likelihood function on the parameter
estimation and model performance. The effect of data corre-
lations on the inferred parameters was also assessed in our
previous study (Safta et al., 2015).
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2.2 MCMC sampling

In most environmental problems, the posterior distribution
cannot be obtained with an analytical solution and is typi-
cally approximated by sampling methods such as MCMC.
The MCMC method approximates the posterior distribution
by constructing a Markov chain whose stationary distribution
is the target distribution of interest. As the chain evolves and
approaches the stationary, all the samples after chain conver-
gence are used for posterior distribution approximation, and
the samples before convergence, which are affected by the
starting states of the chain, are discarded.

The well-constructed MCMC schemes have been theoret-
ically proven to converge to the appropriate target distri-
bution p(x|D) under certain regularity conditions (Robert
and Casella, 2004, p. 270). However, in practice the conver-
gence rate is often impractically slow, which suggests that
within a limited finite number of iterations, some inefficient
schemes may result in an unrealistic distribution. The ineffi-
ciency is typically resulted from an inappropriate choice of
the proposal distribution used to generate the candidates. Ei-
ther wide or narrow proposal distribution can cause ineffi-
cient chain mixing and slow chain convergence (Geyer, 1992;
Tierney, 1994). Hence, the definition of the proposal distribu-
tion is crucial and determines the efficiency and the practical
applicability of the MCMC simulation.

2.3 AM algorithm

The adaptive Metropolis (AM) algorithm is a modification
to the standard Metropolis sampler (Haario et al., 2001).
The key feature of the AM algorithm is that it uses a single
Markov chain that continuously adapts to the target distribu-
tion via its calculation of the proposal covariance using all
previous samples in the chain. The proposal distribution em-
ployed in the AM algorithm is a multivariate Gaussian dis-
tribution with means at the current iteration x; and having a
covariance matrix C; that is updated along the chain evolu-
tion. To start the chain, AM first selects an arbitrary, strictly
positive definite initial covariance Cy according to the best
prior knowledge that may be very poor. Then after a certain
number of iterations T, the covariance is updated based on
the samples gained so far.

To apply the AM algorithm, an initial covariance Cy must
be defined. The choice of Cy critically determines the suc-
cess of the algorithm. For example, in an extreme case, the
variance of Cyp is so large that no proposals are accepted
within an iteration, and that the chain remains at the initial
state without any movement. This situation continues as the
chain evolves, and the use of updated C; makes no differ-
ence because the variances of C, are essentially zero since
all the previous samples have the same values. Finally, the
AM sampler would get stuck in its initial state without ex-
ploring the parameter space. To alleviate this problem and
start AM fairly efficiently, we can define Cy based on some
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prior knowledge about the target distribution. When such in-
formation is not available, which is usually the case for com-
plex models, some test simulations are needed. For exam-
ple, Hararuk et al. (2014) inferred Cy from a test run of
50000 simulations of a matrix approximation of the com-
munity land model in estimating the PPDFs of soil carbon
related parameters.

The construction of C; is another critical influence on the
AM performance. In practice, some adjustments on C; are
necessary to improve the AM efficiency. For example, when
the chain does not have enough movement after a large num-
ber of iterations, we can shrink C; by some constant to in-
crease acceptance of new samples, and vice versa. The tech-
niques used in the formulation of Co and C; improve the
AM efficiency in some degree for some problems. But, the
computational cost spent on applying these techniques is not
negligible (such as the test runs used for determining the Cy)
and some strategies require some artificial controls (such as
manual adjustment of the scaling factor of C;). Moreover,
determining a reasonable Cp and C; becomes difficult for
high-dimensional problems.

To improve efficiency in high-dimensional case, Haario et
al. (2005) extended the standard AM method to component-
wise adaptation. This strategy applies AM on each parameter
separately. The proposal distribution of each component is a
1-D normal distribution, which is adapted in a similar man-
ner as in the standard AM algorithm, but the componentwise
adaptation does not work very well for distributions with a
strong correlation. Safta et al. (2015) applied an iterative al-
gorithm to break the original high-dimensional problem into
a sequence of steps of increasing dimensionality, with each
intermediate step starting with an appropriate proposal co-
variance based on a test run. This technique provided a rather
reasonable proposal distribution, but the computational cost
used to define the proposal was rather high.

AM is a single-chain method. As a single chain, it may suf-
fer from some difficulties in judging the convergence. Some-
time the most powerful diagnostics cannot guarantee that
the chain has converged to the target distribution (Gelman
and Shirley, 2011). One solution to alleviate the problem is
running multiple independent chains with widely dispersive
starting points and then using the diagnostics for multi-chain
schemes, such as the univariate R statistic (Gelman and Ru-
bin, 1992) and the multivariate R statistic (Brooks and Gel-
man, 1998), to check convergence. When the chain has a
good mixing and all the chains converge to the same PPDF,
the R value is close to one, and in practice the threshold of
1.2 is usually used for convergence diagnosis. On the other
hand, when the chain does not mix well and different chains
converge to the different portion of the target distribution, it
is unlikely that the R will reach the value of 1.2 required to
declare convergence. Generally, this situation suggests that
multiple modes exist in the target PPDF and the MCMC al-
gorithm is unable to identify all the modes.
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2.4 DREAM algorithm

The DREAM algorithm is a multi-chain method (Vrugt,
2016). Multi-chain approaches use multiple chains running
in parallel for global exploration of the posterior distribution,
so they have several desirable advantages over the single-
chain methods, particularly when addressing complex prob-
lems involving multimodality and having a large number of
parameters with strong correlations. In addition, the applica-
tion of multiple chains allows utilizing a large variety of sta-
tistical measures to diagnose the convergence including the
R statistics mentioned above.

DREAM uses the Differential Evolution Markov Chain
(DE-MC) algorithm (ter Braak, 2006) as its main building
block. The key feature of the DE-MC scheme is that it does
not specify a particular distribution as the proposal but pro-
poses the candidate points using the differential evolution
method based on current samples collected in the multiple
chains. Thus, DE-MC can apply to a wide range of problems
whose distribution shapes are not necessarily similar to the
proposal distribution, and it also removes the requirement of
initializing the covariance matrix as in AM. In addition, the
DE-MC can successfully simulate the multimodal distribu-
tions, because it directly uses the current location of the mul-
tiple chains to generate candidate points, allowing the possi-
bility of direct jumps between different modes.

The DREAM algorithm maintains the nice features of the
DE-MC but greatly accelerates the chain convergence. More
information about the DREAM algorithm was presented in
Vrugt et al. (2008, 2009a), Laloy and Vrugt (2012), Lu et
al. (2014), and Vrugt (2016).

2.5 Strategies and capabilities of AM and DREAM in
sampling complex problems

Since multimodality is a potential feature of complex prob-
lems including terrestrial ecosystem models (Stead et al.,
2005; Thibault et al., 2011), it is important to understand the
strategies of AM and DREAM and to investigate their capa-
bilities in sampling the multimodal distributions.

The AM sampler is typically tuned for distributions with a
single mode. For distributions with closely connected modes,
AM can work well with suitable initial values. On the other
hand, for distributions consisting of disconnected modes with
between regions of low probability, even with a reasonably
wide covariance matrix, AM could have a slow convergence
and end up with only one mode (e.g., Fig. 5 in Vrugt, 2016).
To remedy this problem, AM needs an overly dispersed
Gaussian proposal with large initial variances to allow it to
transit between the different modes. But this may result in a
very low acceptance rate as many of the jumps will fall out-
side the target distribution with nearly zero densities. To alle-
viate this problem, Haario et al. (2006) proposed the DRAM
algorithm, which combines the delayed rejection (DR) with
AM. The DR algorithm allows for a very expansive search at
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the beginning by using a large covariance matrix of the pro-
posal, and then the proposal covariance is reduced by a freely
chosen scale factor if the parameters do not have significant
movement. By creating multiple proposal stages, DRAM en-
ables an extensive search and meanwhile alleviates the over-
shooting problem and improves the acceptance rate. How-
ever, as dimensionality increases, the multimodality becomes
more difficult for the algorithms using the Gaussian proposal
because it is highly likely different dimensions have differ-
ent variances and a constant scaling factor can only shrink
the covariance simultaneously.

In contrast, DREAM is designed for sampling high-
dimensional and multimodal problems by running multiple
different chains simultaneously for global exploration. It au-
tomatically tunes the scale and orientation of the proposal
in randomized subspaces during the search (Vrugt et al.,
2009a). As DREAM directly uses the current location of
the multiple chains, instead of the covariance of the Gaus-
sian proposal, to generate candidate points, it enables di-
rect jumps between different modes (including the relatively
far disconnected modes) as long as the initial samples of
the chains are widely distributed over the parameter space.
Laloy and Vrugt (2012) demonstrated that DREAM can suc-
cessfully sample a 25-dimensional trimodal distribution with
equal separation of 10 units between modes. However, for
the same problem with the same number of function evalu-
ations, AM and DRAM converged to only one mode. Note
that to sample a distribution with many modes, one needs to
have some prior information about their rough locations; oth-
erwise no methods can guarantee finding all the modes, es-
pecially when the distance between the modes is very large
and not a constant.

3 Application to a terrestrial ecosystem model

In this section, we applied the DREAM algorithm to the data
assimilation linked ecosystem carbon (DALEC) model to es-
timate the posterior distributions of its parameters. In com-
parison, the AM algorithm was also applied. DALEC is a rel-
atively simple carbon pool and flux model designed specif-
ically to enable parameter estimation in terrestrial ecosys-
tems. We used DALEC to evaluate the performance of AM
and DREAM in model calibration; we compared their ac-
curate simulations of the parameter PPDFs, model’s good-
ness of fit, and predictive performance of the calibrated mod-
els. Previous studies based on MCMC methods that used
Gaussian proposals have not reported multimodality in the
marginal PPDFs of the model parameters, so it is important
to know whether the parameters have multimodality; if the
multimodality exists, we assess whether or not DREAM can
identify the multiple modes and improve the calibration re-
sults and thus the predictive performance.
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3.1 Description of the model and parameters for
optimization

The DALEC v1 model is used here (Williams et al., 2005;
Fox et al., 2009) with some structural modifications (Safta et
al., 2015). DALEC consists of six process-based submodels
that simulate carbon fluxes between five major carbon pools:
three vegetation carbon pools for leaf, stem, and root and two
soil carbon pools for soil organic matter and litter. The fluxes
calculated on any given day impact carbon pools and pro-
cesses in subsequent days.

The six submodels in DALEC are photosynthesis, phenol-
ogy, autotrophic respiration, allocation, litterfall and decom-
position. Photosynthesis is driven by the aggregate canopy
model (ACM) (Williams et al., 2005), which itself is cali-
brated against the soil-plant—atmosphere model (Williams et
al., 1996). DALEC vl was modified to incorporate the phe-
nology submodel used in Ricciuto et al. (2011), driven by
six parameters. This phenology submodel controls the cur-
rent leaf area index (LAI) proportion of the seasonal maxi-
mum LAI (laimax). Spring LAI growth is driven by a linear
relationship to growing degree days (gdd), while senescence
and LAI loss are driven by mean air temperature. To sim-
plify our model structure, senescence and LAI loss are con-
sidered to occur simultaneously. In reality, leaves may still be
present on the trees but photosynthetically inactive due to the
loss of chlorophyll. Here, this inactive LAI is considered to
have fallen and is added to the litter pool. To further reduce
model complexity, the plant labile pool in DALEC v1 was
removed and a small portion of stem carbon is instead re-
moved to support springtime leaf growth each year. The six
phenology parameters are a threshold for leaf out (gdd_min),
a threshold for maximum leaf area index (gdd_max), the tem-
perature for leaf fall (zsmin), seasonal maximum leaf area in-
dex (laimax), the rate of leaf fall (leaffall), and leaf mass per
unit area (/ma), respectively. Given the importance of main-
tenance respiration in other sensitivity analyses (Sargsyan et
al., 2014), we expanded the autotrophic respiration submodel
to explicitly represent growth respiration (as a fraction of car-
bon allocated to growth) and maintenance respiration with
the base rate and temperature sensitivity parameters.

So for the first three plant submodels, deciduous phenol-
ogy has six parameters; ACM shares one parameter, lma,
with the deciduous phenology and employs two additional
parameters, leaf C : N ratio (which is fixed at a constant of 25
in the simulation) and photosynthetic nitrogen use efficiency
(nue); and the autotrophic respiration model computes the
growth and maintenance respiration components and is con-
trolled by three parameters, the growth respiration fraction
(rg_ frac), the base rate at 25°C (br_mr), and temperature
sensitivity for maintenance respiration (q/0_mr).

The allocation model partitions carbon to several vegeta-
tion carbon pools. Leaf allocation is first determined by the
phenology model, and the remaining available carbon is allo-
cated to the root and stem pools depending on the fractional
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Table 1. Nominal values and ranges of the 21 parameters for optimization in the DALEC model, and the maximum a posteriori (MAP)

estimates based on the AM and DREAM samplers.

MAP estimates

ParName Nom. Val. Range AM DREAM
LL= —6662.6 | LL= —6578.3
~ gdd_min 100 10-250 37.90 39.53
§ gdd_max 200 50-500 203.44 201.77
A tsmin 5 0-10 4.88 7.87
T laimax 4 2-7 2.01 2.00
R leaffall 0.1 0.03-0.95 0.067 0.035
Ima 80 20-150 136.81 147.45
LE) nue 7 1-20 8.90 8.21
<
»  alo_mr 2 14 1.00 1.00
< brmr 10~4 10=5-1072 7.39 x1073 6.35 x1073
rg_frac 0.2 0.05-0.5 0.06 0.066
< astem 0.7 0.1-0.95 0.75 0.74
E; tstem 1/(50 x 365)  1/(250 x 365)—1/(10 x 365) 1.98 x1073 1.63 x107°
_  troot 1/(5 x 365) 1/(25 x 365)-1/365 8.55 x10™% 7.88 x10~4
—
o qlO_hr 2 14 2.98 2.68
£ brlit 1/(2 x 365) 1/(5 x 365)-10/(5 x 365) 497 x1073 536 x1073
E br_som 1/(30 x 365)  1/(100 x 365)—1/(10 x 365) 279 1073 2.88 x107>
dr 1073 10~4-102 2.46 x1073 339 x1073
~ stemc_init 5000 1000-15 000 1070.9 1417.8
©  rootc_init 500 100-3000 100.56 100.61
2 lite_init 600 50-1000 60.74 66.77
somc_init 7000 1000-25 000 2029.1 4708.2

Parameter units refer to Table 1 of Safta et al. (2015). The LL represents the log likelihood evaluated at the MAP parameter estimates;

the larger the value is, the better the model fit.

stem allocation parameter (astem). The litter fall model re-
distributes the carbon content from vegetation pools to lit-
ter pools and is based on the turnover times for stem (zstem)
and root (troot). The last submodel is a decomposition model
that simulates heterotrophic respiration and the decomposi-
tion of litter into soil organic matter (SOM). This model is
driven by the temperature sensitivity of heterotrophic respi-
ration (¢I0_hr), the base turnover times for litter (br_lif) and
SOM (br_som) at 25 °C, and by the decomposition rate (dr)
from litter to SOM.

Model parameters are summarized in Table 1. These pa-
rameters were grouped according to the six submodels that
employ them, except for /ma, which impacts both the de-
ciduous leaf phenology and ACM. The nominal values and
numerical ranges for these parameters were designed to re-
flect average values and broad uncertainties associated with
the temperate deciduous forest plant functional type that in-
cludes Harvard Forest (Fox et al., 2009; White et al., 2000;
Ricciuto et al., 2011). Observed air temperature, solar radia-
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tion, vapor pressure deficit, and CO; concentration were used
as boundary conditions for the model.

In order to reduce computational time, we employed tran-
sient assumptions for running DALEC. That is, for any given
set of parameter values, DALEC was run one cycle only for
15 years between 1992 and 2006 where observation data are
available. Under this assumption, four additional parameters
were used to describe the initial states of two vegetation car-
bon pools (stemc_init and rootc_init) and the two soil car-
bon pools (litc_init and somc_init), as also summarized in
Table 1. Thus, a total of 21 parameters were considered and
estimated in this study. To avoid the influence of prior dis-
tributions on the investigation of the posteriors estimated by
AM and DREAM, uniform priors were used for all parame-
ters with the ranges specified in Table 1.

3.2 Calibration data

The calibration data consist of the Harvard Forest daily net
ecosystem exchange (NEE) values, which were processed for
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Figure 1. Estimated marginal posterior probability density functions (PPDFs) of the 21 parameters using the AM and DREAM algorithms,
along with the true parameter values to generate the pseudo-data in the synthetic case.

the NACP site synthesis study (Barr et al., 2013) based on
flux data measured at the site (Urbanski et al., 2007). The
daily observations cover a period of 15 years starting with
the year 1992 and part of the data in the year 2005 is miss-
ing. Hill et al. (2012) estimated that daily NEE values fol-
lowed a normal distribution, with standard deviations esti-
mated by bootstrapping half-hourly NEE data (Papale et al.,
2006; Barr et al., 2009). These standard deviations have val-
ues between 0.2 and 2.5, with the mean value about 0.7. To-
tal 14 years 5114 NEE data (years from 1992 to 2004 and
year 2006) were considered here for model calibration and
their corresponding standard deviations were used to con-
struct the heteroscedastic, diagonal covariance matrix of the
Gaussian likelihood function by assuming the data were un-
correlated. In Sect. 4, we examine the independent, Gaussian
error assumption using residual analysis and investigate the
influence of error models on parameter estimation and model
performance.

3.3 Synthetic study with pseudo-data

We first applied AM and DREAM to a synthetic case to eval-
uate their capability in parameter estimation. The same peri-
ods of daily NEE data were generated with the nominal pa-
rameter values in Table 1. These synthetic data for calibra-
tion were then corrupted with Gaussian errors having means
at zero and the same standard deviations with the observed
NEEs.

DREAM launched 10 parallel chains starting at values
randomly drawn from the parameter prior distributions. AM
used one chain and the chain has the same initialization with
DREAM. In addition, AM also requires the initialization of
the covariance matrix of its Gaussian proposal. We first drew
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some samples from the parameter space and computed the
initial covariance. However, this initialization caused a slow
convergence of AM with an extremely small acceptance rate
(about 0.01 % after 1 x 10° iterations). The reason could be
that for this rather high-dimensional problem with very di-
verse parameter ranges, the candidate samples are easily out-
side the target distribution when they are drawn from the
Gaussian proposal. To facilitate the AM convergence, we
started the chain from the true parameter values and con-
structed the initial covariance from samples around the true
values. This setup can only be done in a synthetic case with
information of true parameters available; practically it needs
some test runs to get information about the underlying distri-
butions. In addition, this initialization of AM makes an un-
fair comparison with DREAM that launched chains blindly,
but on the other hand, it suggests DREAM’s ease of use and
setup, its robustness and efficiency.

Chain convergence was assessed via the Gelman—Rubin
R statistics. Figure 1 presents the estimated marginal PPDFs
of the 21 parameters from both AM and DREAM samples
after convergence along with their true values. The two al-
gorithms produce very similar distributions that both enclose
the true values very well. All the parameters show one mode
in their PPDFs and the true values are located or close to
the modes. The results indicate that for this unimodal prob-
lem both algorithms can successfully infer the underlying
parameter distributions, although AM needs a proper initial-
ization for its convergence. To further evaluate the calibra-
tion accuracy, we investigate the sum of squared weighted
residuals (SSWR) for the optimal parameters. If the param-
eter optimization is reasonable, the calculated SSWR should
follow a chi-squared distribution with its mean equal to the
k degrees of freedom, i.e., the number of calibration data
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minus the number of calibrated parameters, in this study
k=5114 —21 =5093. The resulted SSWR is 5044 close to
the mean value 5093 of the chi-squared distribution. This
once again suggests the accuracy and reasonability of our pa-
rameter estimation.

In addition, Fig. 1 indicates that about half of the parame-
ters are well constrained, when we define a well-constrained
parameter as its posterior distribution occupying at most half
the range of the prior distribution (Keenan et al., 2013). This
result is consistent with some of previous studies on DALEC
calibration using NEE data alone. For example, in the syn-
thetic study of Fox et al. (2009), their MCMC simulation
(M1) showed that 16 of 17 parameters were well constrained.
Similarly, the synthetic study in Hill et al. (2012) indicated
that 20 of 23 parameters had their 90 % confidence intervals
occupy less than half of the prior range.

Whether a parameter is identifiable depends on the model,
model parameters, and the calibration data. When the param-
eter related processes are necessary to simulate the model
outputs whose corresponding observation data are sensitive
to the parameters, the parameters can usually be identified
and sometimes well constrained. For example, Keenan et
al. (2013) showed that in their FOBAAR model with 40 pa-
rameters, many parameters could not be constrained even
with the consideration of several data streams together. They
found that these unidentifiable parameters might be redun-
dant in the model structure representation. Roughly speak-
ing, for a simple model with a few number of parameters, the
parameters can be more identifiable than the complex models
with a large parameter size (Richardson et al., 2010; Weng
and Luo, 2011). On the other hand, if the calibration data are
sensitive to the parameters, even a complex model can some-
times be well constrained by using a single type of observa-
tions. For example, Post et al. (2017) estimated eight CLM
parameters using 1-year records of half-hourly NEE observa-
tions at four sites, and found that for most sites the CLM pa-
rameters can be well constrained with their 95 % confidence
intervals close to the maximum a posteriori estimates. For the
only site where the parameter uncertainties were relatively
large, they concluded that the simulated NEE was less sen-
sitive to these parameters. In our and those synthetic studies
of Fox et al. (2009) and Hill et al. (2012), all the parameter
related processes are necessary for DALEC simulation and
most parameters were shown to be sensitive to the observa-
tion data (Safta et al., 2015), this explains to some extent that
many DALEC parameters can be well constrained in these
synthetic studies.

3.4 Real-data study

In the real-data study, the measured NEE data with given
standard deviations were used for DALEC calibration. Both
AM and DREAM algorithms were applied to infer the un-
known parameters. Different from the synthetic case, the
real-data study involves model structural errors besides the
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Figure 2. Univariate and multivariate Gelman—Rubin R statistics
(a) for the last 1000000 iterations from 10 independent AM runs
and (b) for the last 100 000 iterations from the DREAM simulation
using 10 interacting chains. The values less than the threshold of
1.2 suggest chain convergence.

measurement errors. We again use the heteroscedastic, un-
correlated, Gaussian likelihood function for calibration and
examine these error assumptions in Sect. 4 through residual
analysis.

DREAM launched 10 parallel chains starting at values ran-
domly drawn from the parameter prior distributions, and each
chain evolved 300000 iterations. Chain convergence was
assessed via both the univariate and multivariate Gelman—
Rubin R statistics. Figure 2b plots the R values of the 21 pa-
rameters for the last 100000 iterations. The figure suggests
that the last 50 000 samples of each chain (i.e., total 500 000
samples from 10 chains) can be used for the PPDF approxi-
mation as the R has values below the threshold of 1.2.

AM used one chain and the chain has the same initializa-
tion of the first sample with DREAM. For the initialization
of the Gaussian covariance in the AM proposal, we first drew
some samples from the parameter space and constructed the
covariance. However, this initialization caused a high rejec-
tion rate and ended up with essentially a single parameter
state after hundreds of thousands of iterations. To facilitate
the convergence of AM, we constructed the initial covariance
based on the first 200 000 samples from the DREAM simula-
tion. We conducted 10 independent AM runs, so the same R
statistics can be used for convergence diagnosis. Each AM
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Figure 3. Estimated marginal posterior probability density functions (PPDFs) of the 21 parameters using the AM and DREAM algorithms

in the real-data study.

chain simulated 3000000 samples, so that the number of
function evaluations in one AM chain is the same as that of
DREAM using 10 chains. The R values of all parameters
based on the 10 AM runs for the last 1 000 000 iterations are
shown in Fig. 2a. The figure indicates that AM has converged
and the last 500 000 samples from one chain were used for
the PPDF approximation.

The estimated PPDFs from AM and DREAM are pre-
sented in Fig. 3, and the optimal parameter estimates, as rep-
resented by the maximum a posteriori (MAP), are summa-
rized in Table 1. Figure 2 shows that more than half of the
parameters are constrained and some well-constrained pa-
rameters are edge hitting, where the mode of these param-
eters occur near one of the edges of their allowable ranges
and most of the parameter values are clustered near the edge
such as stemc_init, rootc_init, and litc_init. As we can see in
the synthetic case, these edge-hitting parameters (e.g., tstem,
stemc_init, rootc_init, and litc_init) have wide confidence in-
tervals that almost occupy the entire allowable ranges, in-
dicating that the NEE data should provide little informa-
tion about these parameters. This edge-hitting behavior may
be caused by a compensation for model structural errors
and data biases (Braswell et al., 2005), and we do not con-
sider these edge-hitting parameters to be well constrained
despite small posterior uncertainties. The tight uncertainty
bounds on these parameters are likely unrealistic and could
contribute to overconfidence in model predictions. However,
quantifying model structural error is an on-going research
topic and no formal results have been published to our knowl-
edge. We will investigate the influence of model structural
errors on parameter estimation in future studies.

In comparison of the results between AM and DREAM,
Fig. 3 indicates that they produce very similar PPDFs
for many parameters, such as gdd_max, laimax, br_som,
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stemc_init, and rootc_init; however, for parameters tsmin
and leaffall, their estimated PPDFs are substantially differ-
ent. This also can be seen in Table 1 where the differences
of MAP values for most parameters are relatively small be-
tween the two algorithms, the relative difference for tsmin
and leaffall is 38 and 94 %, respectively. The parameter tsmin
represents the temperature triggering leaf fall and the leaf-
fall represents the rate of leaf fall on days when the tem-
perature is below tsmin. We further analyze the simulations
of these two parameters from AM and DREAM in Fig. 4.
Figure 4a and b illustrate two separated modes in the esti-
mated marginal PPDFs of tsmin and leaffall obtained from
DREAM, while AM only identifies one mode for both pa-
rameters and they dramatically differ from any modes sim-
ulated by DREAM. For example, the single mode of tsmin
identified by AM gives a lower temperature threshold (mean-
ing a later initiation of senescence) that is compensated for
by a higher estimate of leaffall rate compared to DREAM.
As shown in the trace plots of Fig. 4c and d, all 10 indepen-
dent runs of AM converged to a single mode, with values
of tsmin between 4.8 to 5.0 and values of leaffall between
0.06 and 0.075. In contrast, each of the 10 parallel chains of
DREAM, as exhibited in Fig. 4e and f, jumps back and forth
between two modes. And the two parameters compensate for
each other by jumping in opposite directions, where tsmin is
more likely to be near the mode with a smaller value of 7.9
than that of 8.35 and leaffall is more likely to be near the
mode of a larger value of 0.035 than that of 0.031.

In addition, the simulated joint PPDFs of the two pa-
rameters zsmin and leaffall are different between AM and
DREAM. As illustrated in Fig. 5, AM results exhibit a neg-
ligible correlation between the two parameters with the cor-
relation coefficient of —0.042, while DREAM results show
that the two parameters are strongly negatively correlated
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Figure 4. AM and DREAM results for parameters tsmin and leaffall in the DALEC model. The estimated marginal posterior distributions of
(a) tsmin and (b) leaffall; Trace plots of (¢) sampled tsmin and (d) sampled leaffall with AM using 10 independent chains; and trace plots of
(e) sampled zsmin and (f) sampled leaffall with DREAM using 10 interacting chains. The evolution of each chain is coded with a different

color.

with the correlation coefficient of —0.95. As demonstrated
in Fig. 5b, the samples of tsmin and leaffall from DREAM
fall almost perfectly on the line with slope of —1, where the
mode with smaller ¢smin values corresponds to the mode of
larger leaffall and the similar correspondence can be found
for the other pair of modes.

The existence of two modes for tsmin and leaffall and the
negative correlation between the two parameters are not un-
reasonable as we used multiple years of observations for pa-
rameter estimation. It is possible that in some years the senes-
cence is triggered later (i.e., a smaller tsmin) but proceeds at
a faster rate (i.e., a larger leaffall), while in some other years
the senescence is triggered earlier (i.e., a larger tsmin) but
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proceeds at a slower rate (i.e., a smaller leaffall). Given our
model simplification of concurrent senescence and leaf fall
and our use of NEE rather than LAI observations as a con-
straining variable, we note that these optimized parameters
are more likely to reflect the process of chlorophyll loss than
actual leaf loss. Cool temperatures are a key driver of senes-
cence at this site (Richardson et al., 2006).

Figure 6a highlights the years in red where the model
based on the right mode of zsmin and the left mode of senes-
cence rate (leaffall) has a better fit to the observed NEE,
i.e., years 1994, 1995, 1998, 1999, and 2006. The remaining
years are highlighted in blue where the left mode of tsmin
and the right mode of leaffall result in a better model fit.
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Taking years 1992 and 1994 as an example, we examined
the leaf area index (LAI) in the period of senescence. Fig-
ure 6b shows that at the first few days of September in both
years, the values of LAI were the same around 2.0; after that
the timing of senescence during the two years differs dra-
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matically. In year 1994, the value of LAI started decreas-
ing on 7 September, and then decreased slowly over sev-
eral distinct cool periods during the rest of September and
early October until it hit zero in 7 November; the process
took about 61 days. In contrast, in year 1992, the value of
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LAI remained near the maximum value during all of Septem-
ber, then dropped rapidly in October and hit zero also on
7 November; this process took about 40 days. The changes
in the LAI between the two years reflect the variability in the
time of year when the leaves start to drop and the rate of leaf
drop. Although the leaf fall in 1992 was triggered later than
in 1994, the leaves in 1992 dropped at a faster rate, resulting
in LAI approaching zero at the same time of the year.

Figure 6¢ depicts the recorded lowest temperature of the
days between 1 September and 20 November for years 1992
and 1994, where the red line highlights the period between
the first leaf and the last leaf drops in 1994. The blue line
highlights the corresponding period of leaf fall in 1992. Since
the senescence was triggered in the early September of 1994,
the temperature of triggering leaf fall was relatively high,
about 8.1 °C (associated with the higher mode of tsmin) as
shown in Fig. 6c¢. In the rest days of September in 1994 fol-
lowing the senescence trigger, temperatures remained warm.
The slower leaf fall rate associated with periodic warm con-
ditions (temperatures above tsmin) and the lower mode of
leaffall caused a slow leaf fall in September of 1994 as shown
in Fig. 6b. In comparison, in 1992, senescence was triggered
at the end of September with a low temperature of 2.6 °C.
Then in October with colder temperatures, the leaves drop at
a rapid rate associated with the consistent cold temperatures
and higher mode of leaffall. Especially in late October, the
temperatures are consistently below zsmin, causing a fast rate
of leaf fall, as shown in Fig. 6b, where the decreasing rate of
the LAI in the late October of 1992 is very large. This indi-
cates that a higher temperature trigger is usually associated
with a lower leaf fall rate and vice versa.

The bimodality identified in the DREAM simulation and
examined in the scenarios above reflects the inability of
the model structure to predict the observations consistently
with a single set of parameters. This bimodality examined in
DREAM may be caused in part by an incomplete representa-
tion of the senescence process. Using a temperature threshold
(parameter zsmin) and a constant rate of leaf fall (parameter
leaffall) to predict senescence is almost certainly an oversim-
plification. In reality, the process of senescence is also af-
fected by day length. Longer days and warmer temperatures
cause a relatively slow rate of leaf fall, whereas shorter days
and cooler temperatures accelerate the rate that the leaves fall
(Leigh et al., 2002; Saxena, 2010). The higher mode of tsmin
means that senescence is initiated earlier, when day lengths
are still relatively long. This may partially explain why this
mode is associated with a lower mode of the leaffall param-
eter. Other factors not represented in DALEC are also likely
to play a role such as soil moisture, or a more complex rela-
tionship with spring phenology (Keenan et al., 2014, 2015).

The difference in estimated parameters between AM and
DREAM causes different simulations of NEE, especially
during the autumn. As an example, Fig. 7 illustrates the com-
parison of the simulated NEE to observations for a month in
autumn of the year 1995 based on MAP estimates obtained
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Figure 7. Simulated NEE values based on the optimal parameters
(i.e., the MAP values listed in Table 1) estimated by the AM and
DREAM algorithms in October 1995. The root mean square error
(RMSE) indicates that DREAM produces a better model fit than
AM.

under AM and DREAM. Visual inspection indicates that the
simulated NEE from the DREAM-calibrated parameters pro-
vides a better fit to the observations, as also indicated by the
smaller root mean squared errors (RMSEs). In addition, the
maximum log likelihoods listed in Table 1 suggest that over-
all the DREAM-estimated parameters produce a better model
fit to the observations, comparing —6578.3 with the smaller
AM value of —6662.6.

3.5 Assessment of predictive performance

To further compare the calibration results between AM and
DREAM, we explore their predictive skills based on the sam-
pled PPDFs of model parameters. We employed the Bayesian
posterior predictive distribution (Lynch and Western, 2004)
to assess the adequacy of the calibrated models. Specifi-
cally, the posterior distribution for the predicted NEE data,
p(y|D), is represented by marginalization of the likelihood
over the posterior distribution of model parameters x as

p(yID) = / p(y1x)p(x| D)dx. @)

In approximation of p(y|D), we used the converged MCMC
samples from p(x|D). The last 500 samples of each chain
(total 500 x10 = 5000 samples) were considered; for each
parameter sample we drew 20 samples of the 14 years NEE
data from their normal distributions, where the mean values
are the model simulations. Then the total 100 000 prediction
samples were used to approximate the posterior predictive
density p(y|D).

From the estimated p(y|D), we extracted the 95 % con-
fidence intervals for daily NEE values in the year 1995 and
presented the results in Fig. 8. The top panel corresponds to
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Figure 8. 95 % confidence intervals of the simulated NEE values in
year 1995 based on the parameter samples from AM and DREAM.
Two measures of predictive performance, CRPS statistic and predic-
tive coverage, indicate that DREAM outperforms AM in prediction.

the results of AM and the bottom panel to DREAM. Over-
all, the predictive intervals from both algorithms cover well
the observed NEE for the entire time range with occasional
spikes outside the intervals. Closer visual inspection indi-
cates that DREAM produces better predictive performance
than AM. As seen during the period in October, the predic-
tive interval of DREAM can enclose most of the observed
NEE while AM actually has under-prediction, causing the
observations outside the intervals.

In order to quantitatively compare the predictive perfor-
mance of the calibrated models based on AM and DREAM,
we defined two metrics, a probabilistic score called CRPS
and predictive coverage. The CRPS (Gneiting and Raftery,
2007) measures the difference between the cumulative dis-
tribution function (CDF) of the observed data and that of the
predicted data. The lower the value of the CRPS is, the bet-
ter the predictive performance. The predictive coverage mea-
sures the percent of observations that fall within a given pre-
dictive interval. A larger value of the predictive coverage sug-
gests better predictive performance. Figure 8 shows that AM
gives a CRPS value of 0.48, while the value of DREAM is
0.43. The lower value of DREAM indicates that, on average,
DREAM produces tighter marginal predictive CDF that are
better centered around the NEE data, suggesting its superior
predictive performance to AM in terms of both accuracy and
precision. In addition, the predictive coverage of DREAM is
larger than that of AM, attesting once again to its superior
performance in prediction.
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3.6 Investigation of reliability of the algorithms

Bayesian calibration of TEMs is challenging due to high
model nonlinearity, high computational cost, a large num-
ber of model parameters, large observation uncertainties, and
the existence of local optima. Thus, a robust and efficient
MCMC algorithm is desired to give reliable probabilistic de-
scriptions of the TEM parameters.

In this section, we investigate the influence of the pro-
posal initialization on the computational efficiency and relia-
bility of AM. In above analysis, the initial covariance matrix
of AM was constructed based on DREAM samples before
convergence. This setting facilitated the convergence of AM
but resulted in AM false convergence to inaccurate PPDFs,
leading to a relatively poor calibration and predictive per-
formance. We implemented another AM simulation here for
further examination. In this new simulation, we constructed
two independent AM chains; both chains initialized Cy using
the DREAM samples affer convergence, but one chain only
used tsmin samples around its left mode and leaffall sam-
ples around its right mode, and the other chain used tsmin
samples around its right mode and leaffall samples around
its left mode. Each chain evolved 3 000 000 iterations, and
for the last 1000000 iterations the convergence diagnostic
R values were calculated and shown in Fig. 9a. The figure
indicates that most parameters have R less than the thresh-
old of 1.2 except parameters tsmin and leaffall, whose values
are far above 1.2 and no signs show that they are going sig-
nificantly smaller in the following 1 000 000 iterations. This
suggests that the two chains converged to different optima
for these two parameters. We then estimated PPDFs using
the last 500000 samples from each chain respectively. The
results for tsmin and leaffall are shown in Fig. 9b—e. The fig-
ures illustrate that the samples from one AM chain can only
identify one mode, and this mode is consistent with the sam-
ples used to construct the initial covariance matrix C.

As a single-chain sampler, it is conceptually possible for
AM to become trapped in a single mode (Jeremiah et al.,
2011). Consider a distribution with two far-separated modes
and assume that the chain is initialized near one of the two
modes (both samples initialization and proposal covariance
initialization). At the beginning of the sampling, AM will
explore the area around the mode where it is initialized and
start identifying the first mode. Since the candidate samples
generated by the Gaussian proposal have higher Metropolis
ratios (Eq. 2) in the nearby area than in the far-away regions
of the identified mode, the chain is hardly to move to the
other mode. When the Gaussian proposal covariance matrix
C; begins to update, the chance of the chain jumping to the
other mode depends on the relative scale of the proposal co-
variance and the distance between the two modes. When the
modes’ separation exceeds the range of the proposal, AM is
less likely to escape the identified local mode.

Although the two AM chains can only simulate one of the
two modes for zsmin and leaffall, the estimated PPDFs for
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Figure 9. Results of two independent chains of AM with the initial covariance matrix constructed using the converged DREAM samples.
The R statistic in (a) suggests that different AM chains converged to different zsmin and leaffall values. One chain captures (b) the left mode
of tsmin and (c) the corresponding right mode of leaffall, and the other chain identifies (d) the right mode of zsmin and (e) the corresponding
left mode of leaffall. No single AM chain can capture all the modes of the two parameters within a reasonable number of MCMC iterations.

the other 19 parameters from the two chains are close to each
other and both similar to the DREAM results. This finding
once again shows the reasonable existence of the two sep-
arated modes and their equivalent importance. With an im-
proved initialization of Cy in the new simulation, the perfor-
mance of AM also improved as it can accurately simulate
unimodal PPDFs and capture one mode for the multimodal
PPDFs. This investigation suggests that for AM an appro-
priate initialization of its Gaussian proposal has a signifi-
cant impact on its performance. We made several test runs
of AM, and only when we initialized Cy using the complete

Biogeosciences, 14, 4295-4314, 2017

set of converged DREAM samples was AM able to produce
PPDFs similar to the ones resulted from DREAM with iden-
tifying all the possible optima. However, the information of
areasonable Cy in practice is either unavailable or very com-
putationally expensive to obtain.

4 Discussion
The choice of likelihood function plays an important role in

the Bayesian parameter estimation, and the likelihood con-
struction depends on the error model assumption. In this
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study, we assumed a heteroscedastic, uncorrelated, Gaussian
error model. However, this simplistic assumption may not
be realistic for complex TEMs. In this section, we examine
whether the assumed error model provides an accurate repre-
sentation of residuals between the simulated and observed
NEEs. If the assumptions are not satisfied, we consider a
more flexible error model and investigate the influence of the
corresponding likelihood function on parameter estimation
and model performance.

Figure 10 presents results of residual analysis based on
the heteroscedastic, uncorrelated, Gaussian assumption. The
plot of residuals versus simulated NEE in Fig. 10a justifies
the assumption of heteroscedastic variances; the density plot
of residuals in Fig. 10D justifies the assumption of normal-
ity, but the autocorrelation plot of residuals in Fig. 10c indi-
cates that the errors are significantly correlated at a lag of 4,
which violates the independence assumption. This violation
has been reported in several time-series data models, such as
the TEM in Ricciuto et al. (2008), the rainfall-runoff model
in Feyen et al. (2007), and the groundwater reactive transport
model in Lu et al. (2013). The correlated errors are likely to
be observed in models where systematic model errors exist
like the DALEC model in this study.

According to the residual analysis, we consider a het-
eroscedastic, correlated, Gaussian error model and construct
the likelihood function correspondingly. Similar to Schoups
and Vrugt (2010), the heteroscedasticity was explicitly ac-
counted for using a linear model o; = op + o1 E;, where o;
represents the error standard deviation, og and o are param-
eters to be inferred from the data and E; is the mean value of
NEE. The correlation was simulated by the pth-order autore-
gressive model AR(p). This new error model adds six extra
parameters besides the original 21 TEM parameters, where
parameters og and o are related to the heteroscedastic error
model and ¢1, ¢2, ¢3, and ¢4 are from the AR(4) correla-
tion model. We set up a DREAM simulation to estimate the
PPDFs of the 27 parameters and compared the results with
those using the uncorrelated error assumption.

www.biogeosciences.net/14/4295/2017/

Figure 11 indicates that the six error model parameters
are well identified in current parameter ranges. The het-
eroscedastic parameters og and o7 approach 1 and 0, respec-
tively, which suggests that a constant variance may be rea-
sonable. This finding contradicts what we usually assumed —
that the data errors are heteroscedastic. The reason for this
could be the epistemic error or forcing data errors. Alterna-
tively, an extended prior distribution of o¢ and o7 may give
different results. More work is needed to find out the underly-
ing reasons. The nonzero ¢1, ¢2, ¢3, and ¢4 values indicate
that a AR(4) correlation model is necessary. This new het-
eroscedastic, correlated, Gaussian error model is appropriate
as the resulted residuals demonstrate consistent features with
the a priori assumptions. As it is shown in Fig. 12, the resid-
uals are randomly distributed around the zero line (Fig. 12a),
normally distributed as assumed (Fig. 12b), and no longer
correlated after considering the AR(4) model (Fig. 12c).

The PPDFs of the 21 TEM parameters using the corre-
lated Gaussian likelihood are presented in Fig. 13, associ-
ated with the results from the uncorrelated Gaussian like-
lihood. In comparison, we found that the two error model
assumptions produced different PPDFs for most parameters.
The most remarkable difference is that the bimodality of
parameters tsmin and leaffall disappeared when using the
correlated error assumption. As discussed in Sect. 3.4, the
identified bimodality from the uncorrelated likelihood may
be caused in part by the model structural error with an in-
complete representation of the senescence process. The new
likelihood function considers model error probabilistic struc-
tures (Lu et al., 2013) and somehow alleviates the effect of
model errors on the parameter estimation, resulting in a rel-
atively flat PPDF of tsmin and unimodal PPDF of leaffall.
In addition, Fig. 13 indicates that parameter uncertainty is
larger in the correlated likelihood than the uncorrelated one
for most parameters, and fewer parameters are well con-
strained in the correlated likelihood than the uncorrelated
case. For example, rootc_init and litc_init have much wider
uncertainty bounds in the correlated likelihood. The synthetic

Biogeosciences, 14, 4295-4314, 2017
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study shows that these two parameters have wide confidence
intervals that almost occupy the entire allowable ranges, in-
dicating that the NEE data should provide little information
about these parameters. The tight uncertainty bounds result-
ing from the uncorrelated error assumption are likely unre-
alistic and could contribute to overconfidence in model pre-
dictions. The appropriate correlated error assumption con-
siders the error correlation that reduces the data informa-
tion for calibrating parameters, thus alleviating the problem
of underestimation of parameter uncertainties. The underes-
timation of parameter uncertainty using uncorrelated error
model was also reported in Ricciuto et al. (2008), Schoups

Biogeosciences, 14, 4295-4314, 2017

and Vrugt (2010), and Lu et al. (2013). Moreover, Fig. 13 in-
dicates that some parameters have similar PPDFs for the two
different likelihood choices, such as gdd_min and ql0_mr.
Those parameters that are not much affected by the model
error assumptions should, in theory, be reasonably well de-
termined in parameter estimation. And according to Safta et
al. (2015), these less changed parameters are indeed sensitive
parameters.

The difference in the parameter PPDFs from the two like-
lihood functions results in different model performance as
shown in Fig. 14, where we took the simulations in Octo-
ber of 1995 as an example. Although the overall RMSEs are
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D. Lu et al.: Bayesian calibration of terrestrial ecosystem models 4311
‘ —— Uncorrelated likelihood - - - Correlated likelihood
80 s N

w
E 0.1 60 ggg 60 :' \
e 10 a0 'y
£ 005 0 200 .
g K 20 s 100 s SN

! - of—==== 0 = 0 > -

160 180 200 220 2 22 6 7 8 0.02 0.04 0.06 0.05 0.1
gdd_max laimax tsmin Leaffall rg_frac

1500

100 20 4000

w
[a)
& 1000 4000
g
© 500 501\ 10 2000 5 2000
= \y ,' ~) r
0 0 0 0 ol Sz === 0
1 1.05 10 15 5 10 15 444648 5 5254
ql0_mr troot 107 tstem 1078 br_lit x107°
x10°
N 800 6 0.01
23 600 o 18
a 4 q
x 0.2 '
g 2 400 0.005 m
(=) 2 '
o, 0.1 05
£ 200 N '
Seon 0N o NS s
0 0 === [V 0 0
5000 10000 15000 100 200 300 500 1000 3000 7000 11000
br_som x 10—5 dr X 10—3 stemc_init rootc_init litc_init somc_init

Figure 13. Estimated marginal posterior probability density functions (PPDFs) of the 21 TEM parameters using the uncorrelated and corre-

lated Gaussian likelihoods.

= : :

—— Observation

== Uncorrelated likelihood (RMSE = 0.9)
4 Correlated likelihood (RMSE = 0.9)

ot

4 . ! . . . .
1 6 11 16 21 26 31
October 1995
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from the uncorrelated and correlated Gaussian likelihoods in Oc-
tober 1995.

similar, the simulations on a single day are different. This
is not surprising, as MCMC is a Bayesian calibration and
the calibration results depend on the choice of the likelihood
function, mainly the assumptions of the error model. In this
study, the heteroscedastic, correlated, Gaussian error model
is more reasonable than the uncorrelated one.

5 Conclusions
In this work, we apply two advanced MCMC algorithms,
AM and DREAM, in the Bayesian calibration of the terres-

trial ecosystem model DALEC. In both synthetic and real-
data studies, we found that AM is sensitive to the algorithm
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initializations. When it starts with a proper initialization,
through prior information or some test runs or even some
dimension-reduction strategies, AM can produce reasonable
approximation of the parameter posterior distributions. How-
ever, AM still shows some difficulties in sampling multi-
modal distributions with the Gaussian proposal. By com-
parison, DREAM’s performance does not depend on initial-
ization of the algorithm and can fast converge to the high-
dimensional and multimodal distributions. Thus, DREAM is
particularly suitable to calibrate complex terrestrial ecosys-
tem models, where the uncertain parameter size is usually
large and existence of local optima is always a concern. The
application indicates that, compared to AM, DREAM can
accurately simulate the posterior distributions of the model
parameters, resulting in a better model fit, superior predic-
tive performance, and perhaps identifying structural errors or
process differences between the model and ecosystem from
which observations were used for calibration.

In Bayesian calibration, the choice of likelihood function
plays an important role in parameter estimation. In this effort,
we justify the assumptions of error model used in construct-
ing the likelihood function and find that a heteroscedastic,
correlated, Gaussian error model is reasonable for this prob-
lem as supported by the residual analysis.
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