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Abstract. The performance of the competition module of
the CLASS–CTEM (Canadian Land Surface Scheme and
Canadian Terrestrial Ecosystem Model) modelling frame-
work is assessed at 1◦ spatial resolution over North Amer-
ica by comparing the simulated geographical distribution of
its plant functional types (PFTs) with two observation-based
estimates. The model successfully reproduces the broad ge-
ographical distribution of trees, grasses and bare ground al-
though limitations remain. In particular, compared to the two
observation-based estimates, the simulated fractional vege-
tation coverage is lower in the arid southwest North Ameri-
can region and higher in the Arctic region. The lower-than-
observed simulated vegetation coverage in the southwest re-
gion is attributed to lack of representation of shrubs in the
model and plausible errors in the observation-based data
sets. The observation-based data indicate vegetation frac-
tional coverage of more than 60 % in this arid region, despite
only 200–300 mm of precipitation that the region receives
annually, and observation-based leaf area index (LAI) values
in the region are lower than one. The higher-than-observed
vegetation fractional coverage in the Arctic is likely due to
the lack of representation of moss and lichen PFTs and also
likely because of inadequate representation of permafrost in
the model as a result of which the C3 grass PFT performs
overly well in the region. The model generally reproduces
the broad spatial distribution and the total area covered by
the two primary tree PFTs (needleleaf evergreen trees, NDL-
EVG; and broadleaf cold deciduous trees, BDL-DCD-CLD)
reasonably well. The simulated fractional coverage of tree

PFTs increases after the 1960s in response to the CO2 fertil-
ization effect and climate warming. Differences between ob-
served and simulated PFT coverages highlight model limita-
tions and suggest that the inclusion of shrubs, and moss and
lichen PFTs, and an adequate representation of permafrost
will help improve model performance.

1 Introduction

The terrestrial ecosystem plays an important role in regulat-
ing climate and weather through land–atmosphere exchange
of water and energy (Cramer et al., 2001; Garnaud et al.,
2015; Pielke et al., 1998; Ran et al., 2016) and in mitigat-
ing climate change by sequestering atmospheric CO2 (Bo-
nan, 2008; Timmons et al., 2016). The projected sink of at-
mospheric CO2 is uncertain due to disagreements among the
Earth system models (Arora et al., 2013; Friedlingstein et al.,
2006) primarily due to differing responses of their terrestrial
ecosystem modules to future changes in atmospheric CO2.
This uncertainty arises primarily because of the differences
in the strength of the CO2 fertilization effect on the land
carbon cycle components (Arora et al., 2013; Cramer et al.,
2001; Friend et al., 2013) but also because of differences in
the response of vegetation. Models differ in how the spatial
distribution of vegetation, and its composition, changes in
response to changing climate and increasing CO2 (Cramer
et al., 2001). These differences are also resolution dependent.
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For example, models with coarse grid resolutions cannot ex-
plicitly resolve climatic niches, which in turn potentially con-
tributes to biases in simulated vegetation distribution (Melton
and Arora, 2016; Shrestha et al., 2016).

Vegetation responds to changes in climate and atmo-
spheric CO2 concentration by changing its structural at-
tributes including leaf area index (LAI), rooting depth, veg-
etation height, and canopy mass, as well as its areal extent.
Structural vegetation changes generally occur over seasonal
to decadal timescales (Kramer and Kozlowski, 1979), while
the slower areal extent changes typically occur on decadal to
centennial timescales (Ritchie and Macdonald, 1986). The
dynamic behaviour of vegetation affects weather and cli-
mate due to its strong control over biophysical processes. At
hourly to daily timescales, vegetation affects the exchange
of water and energy between the land surface and the at-
mosphere primarily through the control of leaf stomata. At
longer seasonal, annual and decadal timescales, vegetation
affects components of energy and water balance through its
structure (LAI, rooting depth, etc.) and its areal extent and
albedo of the land surface. Conversely, the dynamics of veg-
etation are directly influenced by climate and the competitive
ability of the plants. In this way vegetation responds to cli-
mate by changing its structure and areal extent depending on
the colonization ability of plants. These climate–vegetation
interactions have been well documented (e.g. Gobron et al.,
2010; Wang et al., 2011).

Natural vegetation is typically characterized in dynamic
global vegetation models (DGVMs) based on a limited num-
ber of plant functional types (PFTs; Sitch et al., 2003) be-
cause it is impossible to represent thousands of species in
a model. Species characterized by similar attributes, mainly
based on their form and interactions with the environment
(Box, 1996), are grouped together as a single PFT. For ex-
ample, tree species with similar leaf form such as fir (Abies),
spruce (Picea) and pine (Pinus) are classified as needleleaf
evergreen (NDL-EVG) trees. The geographical distribution
of the PFTs in DGVMs is determined by their ability to grow
and increase their areal extent given certain climate and soil
conditions and their competitive ability.

One way of representing competition between PFTs in
DGVMs is through the use of the Lotka–Volterra (LV) equa-
tions. While originally developed for predator–prey com-
petition, the LV equations have been used in a number of
DGVMs (Arora and Boer, 2006; Brentnall et al., 2005; Cox,
2001; Zhang et al., 2015). The use of the classical form of
the LV equations for modelling competition between PFTs,
however, leads to an amplified expression of dominance
in that the dominant PFT ends up occupying a dispropor-
tionately large fraction of a grid cell, leading to little co-
existence between PFTs. Arora and Boer (2006) proposed
changes to the classical implementation of the LV equa-
tions for modelling competition between PFTs to reduce this
amplified expression of dominance. Their approach, which
has been implemented in the CLASS–CTEM (Canadian

Land Surface Scheme and Canadian Terrestrial Ecosystem
Model) modelling framework and which allows improved
co-existence of PFTs compared to the classical LV equations,
has been shown to simulate vegetation distribution reason-
ably well at the global (Melton and Arora, 2016) as well
as point (Shrestha et al., 2016) scales. Both these studies
used climate averaged over ∼ 3.75◦ spatial resolution. The
CLASS–CTEM framework consists of the Canadian Land
Surface Scheme (CLASS) coupled to the Canadian Terres-
trial Ecosystem Model (CTEM), which is a dynamic vegeta-
tion model.

In this paper, we evaluate the competition module of the
CLASS–CTEM modelling framework at the regional scale
over the North American domain at 1◦ spatial resolution.
This resolution is much finer than the 3.75◦ resolution used in
the Melton and Arora (2016) study and therefore in principle
should allow a more realistic simulation of the geographical
distribution of PFTs as climate niches are resolved.

The rest of this paper is organized as follows: Sect. 2 de-
scribes the CLASS–CTEM modelling framework, details of
the observation-based data and the experimental setup. Re-
sults are presented in Sect. 3, and a discussion follows in
Sect. 4. Finally, a summary and conclusions are provided in
Sect. 5.

2 Model, data and methods

2.1 CLASS–CTEM model

The results presented here are obtained by coupling version
2.0 of CTEM (Melton and Arora, 2016), which dynami-
cally simulates fractional coverage of its PFTs, to version 3.6
of CLASS (Verseghy et al., 1993). CTEM simulates terres-
trial processes for seven non-crop and two crop PFTs (Ta-
ble 1) and prognostically tracks carbon in three living veg-
etation components (leaves, stems and roots) and two dead
carbon pools (litter and soil). The terrestrial ecosystem pro-
cesses simulated in this study include photosynthesis, au-
totrophic respiration, heterotrophic respiration, dynamic leaf
phenology, allocation of carbon from leaves to stem and root
components, fire, land use change and competition between
PFTs which dynamically determines the fractional cover-
age of each PFT. The amount of carbon in the leaf, stem
and root components is used to estimate structural attributes
of vegetation. LAI is calculated from leaf biomass using
PFT-dependent specific leaf area, which determines the area
of leaves that can be constructed per kg C of leaf biomass
(Arora and Boer, 2005); vegetation height is calculated based
on stem biomass for tree PFTs and LAI for grass PFTs; and
rooting depth is calculated based on root biomass (Arora and
Boer, 2003). CTEM operates at a time step of 1 day except
for photosynthesis and leaf respiration, which are calculated
every 30 min for consistency with CLASS’ energy and water

Biogeosciences, 14, 4733–4753, 2017 www.biogeosciences.net/14/4733/2017/



R. K. Shrestha et al.: An assessment of geographical distribution of different plant functional types 4735

Table 1. Plant functional types (PFTs) represented in CTEM and their relation to CLASS PFTs.

CLASS PFTs CTEM PFTs CTEM PFT symbol

Needleleaf trees Needleleaf evergreen trees NDL-EVG
Needleleaf deciduous trees NDL-DCD

Broadleaf trees Broadleaf evergreen trees BDL-EVG
Broadleaf cold deciduous trees BDL-DCD-CLD
Broadleaf drought/dry deciduous trees BDL-DCD-DRY

Crops C3 crops CROP-C3
C4 crops CROP-C4

Grasses C3 grasses GRASS-C3
C4 grasses GRASS-C4

balance calculations which require stomatal resistance calcu-
lated by the photosynthesis module of CTEM.

CLASS simulates the energy and water balance compo-
nents at the land surface and operates at a 30 min time step.
Liquid and frozen soil moisture and soil temperature are eval-
uated for three soil layers (with maximum thicknesses of 0.1,
0.25 and 3.75 m). The actual thicknesses of these permeable
soil layers are determined by the depth to bedrock, which is
specified on the basis of the global data set of Zobler (1986).
CLASS distinguishes four PFTs (needleleaf trees, broadleaf
trees, crops and grasses) which map directly to the nine PFTs
represented in CTEM as shown in Table 1. Needleleaf trees
in CTEM are divided into deciduous and evergreen types,
broadleaf trees are divided into cold and drought deciduous
and evergreen types, and crops and grasses are divided into
C3 and C4 types based on their photosynthetic pathways. In
coupled mode, CLASS uses the dynamically simulated veg-
etation attributes (including LAI, vegetation height, canopy
mass and rooting depth) and stomatal resistance calculated
by CTEM, and CTEM uses the soil moisture, soil tempera-
ture and net shortwave radiation calculated by CLASS. The
coupling frequency between CLASS and CTEM is 1 day.

2.1.1 Competition parameterization

Competition between PFTs in CTEM is parameterized fol-
lowing Arora and Boer (2006), who presented a modified
version of the LV equations. The approach is described in
detail by Melton and Arora (2016) and briefly summarized
here. Consider, for simplicity, two PFTs that exist in a grid
cell with fractional coverages f1 and f2. Let PFT 1 represent
a tree PFT and PFT 2 represent a grass PFT. The bare frac-
tion of grid cell not covered by any vegetation is represented
by fB. As a result, f1+ f2+ fB = 1. The rate of change of
fractional coverages of the two PFTs and bare fraction, for
this example, are given by

df1

dt
= c1f

β

1 (1− f1)− m1f1, (1)

df2

dt
= c2f

β

2 (1− f1 − f2)− c1f
β

1 f2− m2f2, (2)

dfB

dt
= −c1f

β

1 fB− c2f
β

2 fB+ m1f1 + m2f2 , (3)

where c1, c2 and m1, m2 are the colonization and mortal-
ity rates for PFT 1 and PFT 2, respectively. Colonization
and mortality rates cannot be negative. Equations (1) and (2)
show that PFT 1 can invade the fraction covered by PFT 2
and the bare fraction and that PFT 2 can only invade the bare
fraction. PFT 2 is not allowed to invade the fraction covered
by PFT 1 because it is ranked lower than PFT 1. In CTEM,
the superiority or ranking of the seven natural non-crop PFTs
is based on the tree–grass distinction and their colonization
rates. Trees are always considered to be superior to grasses
because of their ability to shade them (Siemann and Rogers,
2003). Within the tree and grass PFTs the dominance is de-
termined dynamically based on the colonization rate. The ex-
ponent β (0 ≤ β ≤ 1), an empirical parameter, controls the
behaviour of the LV equations. For β = 1, the equations rep-
resent the classical form of the LV equations. The equilib-
rium fractional coverages for PFT 1 and 2 and bare fraction
for this classical form of the LV equations, denoted by f̃1,
f̃2, and f̃B, are given by

f̃1 = max
{(

c1− m1

c1

)
, 0
}
, (4)

f̃2 = max


 (c2− m2)−

(
1+ c2

c1

)
(c1− m1)

c2

 , 0

 ,
(5)

f̃B =

(
m1f̃1+ m2f̃2

)(
c1f̃1+ c2f̃2

) . (6)

In Eqs. (1) and (2), if the fractional coverages of PFT 1
and PFT 2 are initially zero then the PFTs cannot expand
for β = 1, implying that a minimum seeding fraction is al-
ways required. Furthermore, in Eq. (5) as long as (c1−m1)
is greater than (c2−m2) then the equilibrium solution for
f2 will always be zero and PFT 2 will not be able to coex-
ist with PFT 1. These features of the classical form of the LV
equations are avoided when β = 0, following Arora and Boer
(2006). The equilibrium fractional coverages for PFT 1 and
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Figure 1. Spatial distribution of mean annual (a) precipitation (mm) and (b) temperature (◦C) across North America. Grid cells with perma-
nent ice/glaciers have been masked out.

2 and bare fraction for the case with β = 0 are given by

f̃1 =

(
c1

c1+ m1

)
, (7)

f̃2 =
c2
(
1− f̃1

)
(c1+ c2+ m2)

=

(
c2m1

(c1 + m1) (c1+ c2+ m2)

)
,

(8)

f̃B =

(
m1f̃1+ m2f̃2

)
(c1+ c2)

. (9)

Unlike the classical version of the LV equations, the mod-
ified version of the equations with β = 0 does not require
a minimum seeding fraction, and PFTs are able to increase
their areal extent as long as the climate is favourable and ci
is positive. Also, as long as m1 > 0 and c2 > 0 then PFT 2 is
able to coexist at equilibrium with PFT 1. Other values of β
between 0 and 1 give the dominant PFT varying levels of ac-
cess to subdominant PFTs, but coexistence is most possible
in the case with β = 0.

The calculations of colonization and mortality rates are de-
scribed in detail in Melton and Arora (2016). Briefly, the col-
onization rate depends on the net primary productivity (NPP)
of a PFT. The better a PFT performs for given climatic and
soil conditions, the higher is its colonization rate. The mor-
tality rate represents the combined effect of four different
processes: intrinsic or age-related mortality, growth or stress
mortality, mortality due to disturbance and mortality due to
adverse climate which ensures that tree PFTs do not venture
outside their bioclimatic zones.

2.2 Forcing data

The Climate Research Unit–National Centers for Environ-
mental Prediction (CRU–NCEP) reanalysis data set (Viovy,
2012) is used to drive the model. The meteorological vari-
ables (surface temperature, pressure, precipitation, wind,
specific humidity, and incident shortwave and long-wave ra-
diation fluxes) are available at a spatial resolution of 0.5◦×
0.5◦ and at a 6-hourly time interval for the period 1901–
2010. These data are interpolated to 1◦ resolution spatially

and disaggregated to half-hourly time resolution, a standard
CLASS–CTEM model integration time step. Temperature,
pressure, wind, specific humidity and long-wave radiation
are linearly interpolated in time while shortwave radiation is
assumed to change with the solar zenith angle with maximum
radiation occurring at solar noon. Following Arora (1997),
the 6-hourly precipitation amount (P , mm/6 h) is used to esti-
mate the number of wet half-hours (wh) in a given 6 h period
for P > 0 as

wh = integer
(
max

[
1,min(12, 2.6log(6.93P))

])
. (10)

The total precipitation amount is then distributed randomly
but conservatively over these wet half-hours. For instance,
if 7 out of 12 half-hour intervals are calculated to be wet
using Eq. (10) then seven random numbers varying between
0 and 1 are generated and the 6-hourly precipitation amount
is divided into seven parts in proportion to their respective
random numbers.

Figure 1 shows the spatial distribution of mean annual pre-
cipitation and surface temperature over the North American
domain considered in this study. Mean annual precipitation
values range from less than 200 mm in the arid southwest US
and the high Arctic to more than 1500 mm on the Pacific
coast. Mean annual temperature varies from around 24 ◦C
near the southern limit of the domain in Mexico to less than
−20 ◦C in the Arctic tundra.

2.3 Observation-based data

2.3.1 Fractional coverage of PFTs

Observation-based estimates of fractional coverages of PFTs
are based on a modified version of the Wang et al. (2006) data
set (hereafter WANG06) and the Moderate Resolution Imag-
ing Spectroradiometer land cover product (hereafter MODIS;
Friedl et al., 2013). These data are used to evaluate the model
results.
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Table 2. Reclassification of the 17 MODIS land cover classes into the nine CTEM PFTs.

SN Items Tree Crop Grass Bare Reference

NDL-EVG NDL-DCD BDL-EVG BDL-DCD

1 Woody savanna 0.1 0.4 0.25 0.25
2 Water bodies 1
3 Urban built-up areas 0.05 0.05 0.1 0.8
4 Savanna 0.05 0.3 0.4 0.25 Wang et al. (2006)
5 Permanent wetlands 0.25 0.75
6 Permanent snow and ice 1 Wang et al. (2006)
7 Open shrublands 0.1 0.15 0.35 0.4 Wang et al. (2006)
8 Needleleaf evergreen 1 Wang et al. (2006)
9 Needleleaf deciduous 0.8 0.1 0.1 Wang et al. (2006)
10 Mixed forest 0.45 0.45 0.1 Wang et al. (2006)
11 Grasslands 0.65 0.35 Wang et al. (2006)
12 Croplands 0.9 0.1 Wang et al. (2006)
13 Cropland natural veg. mosaic 0.2 0.5 0.2 0.1 Wang et al. (2006)
14 Closed shrublands 0.2 0.2 0.4 0.2 Wang et al. (2006)
15 Broadleaf evergreen 1 Wang et al. (2006)
16 Broadleaf deciduous 1 Wang et al. (2006)
17 Bare ground 1 Wang et al. (2006)

The WANG06 data set was developed for use by CTEM in
simulations in which competition is turned off and prescribed
fractional coverage of PFTs is used. It combines observation-
and model-based data to estimate the annual change in frac-
tional coverage of CTEM’s nine PFTs from 1850 to 2000.
The global land cover data set for the year 2000 (GLC2000),
which is considered as a base year for environmental assess-
ment, divides the global land cover into 22 types and is avail-
able at 1 km resolution. WANG06 (their Table 2) mapped
the GLC2000 data to CTEM’s nine PFTs aggregated to 0.5◦

resolution. The GLC2000 data were then extrapolated back
to 1850 by adjusting the changes in crop area based on the
then available Ramankutty and Foley (1999) crop data set.
Here, we use a modified version of the WANG06 data set
which is based on the HYDE version 3.1 crop data set (Hurtt
et al., 2011) and generate an estimate of fractional coverage
of CTEM PFTs for the period 1850–2012.

The MODIS data set is based on the International
Geosphere-Biosphere Programme (IGBP) global vegetation
data and University of Maryland’s science data set classifi-
cation schemes at 0.25◦ spatial resolution. The data are de-
rived from the NASA HDF-EOS MODIS/Terra land cover
type data set. The data set is for the period 2001 to 2014 and
contains 17 land cover types which we map to CTEM’s nine
PFTs following the logic used in Wang et al. (2006) as shown
in Table 2. The fractional coverage of each of the nine CTEM
PFTs is first obtained at 0.25◦ resolution for each year using
the mapping scheme described in Table 2. These fractional
coverages are then re-gridded to the 1◦ spatial resolution for
individual years. Finally, the data are averaged over the pe-
riod 2001–2014 to evaluate model results. MODIS data are
known to exhibit substantial interannual variability. Brox-
ton et al. (2014), for instance, report that globally 40 % of

land pixels show land cover change one or more times dur-
ing the 2001–2010 period. This does not necessarily indicate
changes in land cover but rather these differences are due
to low accuracy in categorizing the remotely sensed vegeta-
tion into one of the 17 MODIS land cover types, as Broxton
et al. (2014) note. This low accuracy is itself attributed to
the fact that many landscapes include mixtures of vegetation
classes. Our re-gridding of fractional coverages to 1◦ spatial
resolution and averaging over the 2001–2014 time period to
obtain climatology of land cover alleviates some of the un-
certainty since the effect of inaccurately classified land cover
categories is reduced due to both spatial and temporal aver-
aging.

The separation of the broadleaf deciduous PFT into its
drought and cold deciduous components is performed via
the approach used by WANG06. They assumed that below
24◦ N deciduousness is caused by soil moisture limitation
and hence all broadleaf deciduous trees below this latitude
are drought deciduous, and above 34◦ N deciduousness is
caused by low temperatures and so all broadleaf deciduous
trees above this latitude are cold deciduous. Between 24◦ N
and 34◦ N, following WANG06, we assume a linear transi-
tion from drought deciduous to cold deciduous trees. Finally,
the separation of grasses into their C3 and C4 components
is based on the geographical distributions of the C3 and C4
fractions in the WANG06 data set.

2.3.2 Gross primary productivity and LAI

Observation-based estimates of gross primary productivity
(GPP) are based on Beer et al. (2010). These data are based
on the ecosystem-level GPP obtained using eddy covariance
measurements from more than 250 stations across the globe.
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Beer et al. (2010) extrapolated GPP values based on these
eddy covariance flux data to the global scale using diagnos-
tic models for the period 1982–2008, and the average over
this time period is used to evaluate the model results. LAI
data used for validation are the same as those used by Anav
et al. (2013) and are based on Zhu et al. (2013), who use
normalized difference vegetation index (NDVI) data from
the Advanced Very High Resolution Radiometer (AVHRR)
satellite to calculate average LAI for the period 1981–2010.

2.4 Experimental setup

2.4.1 Equilibrium pre-industrial simulation

The equilibrium pre-industrial simulation was initialized
from zero biomass and zero fractional coverage for all non-
crop PFTs. The fractions of C3 and C4 crop PFTs in each
grid cell are specified corresponding to year 1850 based on
the HYDE 3.1 data set. The model was then run for 600 years
driven by 1901–1925 CRU–NCEP climate data cycled re-
peatedly. These data do not show any warming trend (Wen
et al., 2011) as opposed to the later part of the 20th cen-
tury. Atmospheric CO2 concentration was set to 285 ppm,
corresponding to the pre-industrial 1850 level. This pre-
industrial equilibrium simulation yields initial conditions in-
cluding fractional coverages of PFTs and carbon in all the
live and dead pools for the transient 1850–2010 simulation.
The 600-year simulation is sufficient for fractional vegetation
cover and carbon pools to reach equilibrium.

2.4.2 Transient historical simulation

The transient historical simulation is performed for the pe-
riod 1851–2010, and its carbon pools and fractional cov-
erage of non-crop PFTs are initialized from the equilib-
rium pre-industrial simulation as mentioned above. The years
1851 to 1900 of this historical simulation are driven with
CRU–NCEP climate data corresponding to the period 1901–
1925, cycled twice. For the period 1901–2010 the climate
data corresponding to each year are used. Time-varying con-
centrations of atmospheric CO2 are supplied for the period
1851–2010 based on the values used in the fifth Coupled
Model Intercomparison Project (CMIP5, https://tntcat.iiasa.
ac.at/RcpDb/), which are extended past 2005 to 2010 based
on data from the National Oceanic and Atmospheric Admin-
istration (ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_
annmean_gl.txt). The annual time-varying fractional cover-
ages of C3 and C4 crop PFTs in each grid cell are based on
the HYDE 3.1 data set. The crop fractions in a grid cell are
not available for colonization and neither are they subject to
disturbance by fire. Competition between PFTs occurs over
the remaining non-crop fraction of a grid cell. As the total
crop fraction in a grid cell changes over time (based on the
HYDE 3.1 data set), the fractional area available for compe-
tition also changes.

The simulated results are evaluated against their
observation-based counterparts using averaged values
over the last 30 years of the simulation corresponding to the
period 1981–2010. This is the same and/or very close to the
time period for the modified WANG06 land cover data set
(1981–2010), Beer et al. (2010) GPP (1982–2008) and Zhu
et al. (2013) LAI (1981–2010). The only exception is the
MODIS-based land cover data which are available for the
2001–2014 period.

3 Results

3.1 Continental-scale values of PFT coverage

Figure 2a compares the simulated vegetation areas summed
over our North American domain with the WANG06 and
MODIS observation-based estimates. In the absence of an-
other measure of uncertainty, we use the range between
these two observation-based estimates and assess whether
simulated areal coverage of a given land cover type lies
within or outside this range. The simulated total vegetated
area over North America (14.8× 106 km2) is very similar
to the modified WANG06- (14.4× 106 km2) and MODIS-
based (14.2× 106 km2) estimates. At the most basic tree–
grass–bare ground level, the simulated areas are closer to
the MODIS-based estimates than to the estimate based
on the modified WANG06 data. The simulated area cov-
ered by tree PFTs (7.8× 106 km2) is 6 % lower than the
MODIS-derived estimate (8.2× 106 km2) and 21 % lower
than WANG06 (9.7× 106 km2). The simulated grass cover-
age (4.7× 106 km2) is 35 % higher than the MODIS-derived
estimate (3.5×106 km2). Both simulated and MODIS-based
estimates of area covered by grass PFTs are, however, sub-
stantially higher than the WANG06 (2.4×106 km2) estimate.
Averaged over the North American region, the simulated par-
titioning of land area (excluding cropland area) covered by
trees, grasses and bare ground (45, 27 and 28 %) is much
closer to the MODIS-based data (48, 20 and 32 %) than to
the modified WANG06-based data (56, 14 and 30 %).

Figure 2b shows a comparison of simulated areas of indi-
vidual PFTs with observation-based estimates. This is a more
stringent test of the performance of the competition module
of CTEM. The observation-based estimates of areas of all in-
dividual PFTs are available for the modified WANG06 data
set. The MODIS-based estimates were derived based on the
mapping of MODIS’ 17 land cover types to CTEM PFTs as
shown in Table 2, which itself is mostly based on WANG06.
In Fig. 2b, the observation-based estimates show that needle-
leaf evergreen and broadleaf cold deciduous (BDL-DCD-
CLD) are the dominant tree PFTs across North America
and the model is able to reproduce this aspect. The simu-
lated total area of the NDL-EVG tree PFT (3.9×106 km2) is
28 % lower than WANG06 (5.3× 106 km2) and 15 % lower
than the MODIS-based estimate (4.7× 106 km2). The simu-
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Figure 2. Comparison of observation-based and simulated vegetation areas summed over the North American domain: (a) grass, tree, crop,
bare ground and total vegetated area; (b) individual PFT areas; and (c) evolution of simulated vegetation areas summed over the domain.

lated total area of BDL-DCD-CLD tree PFT (3×106 km2) is
13 % lower than WANG06 (3.4× 106 km2) and 3 % greater
than the MODIS-based (2.9× 106 km2) estimate. Overall,
the model is able to capture the areas covered by indi-
vidual PFTs reasonably well. However, differences remain
between observations-based and simulated estimates, espe-
cially the larger simulated area for C3 grasses than for both
observation-based estimates. Reasons for these differences
include limitations in the model but also the manner in which
remotely sensed vegetation is categorized into broad-scale
vegetation types and then mapped onto CTEM’s nine PFTs,
as discussed later.

In both Fig. 2a and b, although simulated areal coverages
at the basic tree–grass–bare ground level and for individual
PFTs (except for C3 grasses) are comparable to observation-
based estimates, they are outside the range defined by differ-
ence of the WANG06 and MODIS-based estimates.

Figure 2c shows the time series of simulated areas summed
over the domain covered by tree and grass PFTs, the total
vegetated area and the remaining bare ground. The specified
area covered by crop PFTs, based on the HYDE 3.1 data set,
is also shown and first increases over the historical period
and then stabilizes, and in fact somewhat decreases, in asso-
ciation with cropland abandonment over the northeastern US.
The increase in the crop area results in a decrease in the area
covered by tree and grass PFTs up until the time when the
crop area stabilizes around 1970. In the model, this causes
land use change emissions associated with deforestation. Af-
ter this time, as vegetation productivity responds to increas-

ing atmospheric CO2 concentration, the area covered by tree
PFTs increases somewhat and colonizes available bare areas
and those covered by grass PFTs. This leads to a small reduc-
tion in the area covered by grass PFTs as well as bare ground
and the associated increase in the total vegetated area.

3.2 Geographical distribution of PFTs

3.2.1 Total vegetated and bare ground fractions

Figures 3 and 4 compare the geographical distribution of
simulated total vegetated and bare fractions across North
America with the two observation-based estimates derived
from the modified WANG06 and MODIS data sets. The
two observation-based estimates are also compared amongst
themselves. The metrics used are the averaged root mean
square difference (RMSD) and spatial correlations (R2).

The observation-based geographical distribution of vege-
tated fraction in Fig. 3 (middle column) shows densely vege-
tated land over the eastern part of the continent and less veg-
etation coverage over colder regions in the north and drier
regions in the south-central and southwest US. These broad-
scale patterns are consistent with the precipitation and tem-
perature climatologies of the region (Fig. 1). The model rea-
sonably reproduces the observed vegetation distribution (left
panel) with some obvious limitations. Simulated vegetation
cover is underestimated across the arid southwest US, Great
Plains and part of the Canadian Prairies (right panel) due to
lower simulated fractional coverage of tree and grass PFTs
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Figure 3. Spatial distribution of total vegetated coverage across North America. Model-simulated results are shown in the left column (a) and
the two observation-based estimates are shown in the middle column (b, d). The right column (c, e, f) shows the difference between model-
and observation-based estimates (simulated minus WANG06 in c, and simulated minus MODIS in e), and the observation-based estimates
themselves (MODIS minus WANG06 in f) along with the root mean square difference (rmsd) and spatial correlation (R2) between the two
estimates being compared.

over these regions (shown in Sect. 3.2.2). The model overes-
timates vegetation coverage in Northern Canada because of
higher simulated grass cover in the Arctic as discussed be-
low in more detail. The spatial correlation and RMSD when
comparing simulated vegetated fraction to both observation-
based estimates are 0.79 and around 18 %, respectively. The
spatial correlation and RMSD between the two observation-
based estimates themselves are 0.86 and around 14 %, re-
spectively.

The simulated and observation-based bare ground frac-
tions across North America are compared in Fig. 4. The
observation-based estimates show that bare ground fraction
is higher in Arctic Canada and Alaska where, of course,
cold temperatures limit vegetation growth and in the south-
west US, Great Plains and the Prairies where low rainfall
limits vegetation growth (Fig. 1). The biases in simulated
bare ground fraction mirror those in the simulated vege-
tated fraction but in an opposite manner. The model under-
estimates bare ground fraction across Arctic Canada due to

higher simulated grass cover as discussed in the next section.
The model overestimates the bare ground fraction generally
across the arid and semi-arid southwest US, Great Plains and
the Prairies. The spatial correlations and RMSDs when com-
paring simulated bare ground fraction to both observation-
based estimates and when comparing the two observation-
based data sets amongst themselves are the same as those for
the total vegetation fraction in Fig. 3.

3.2.2 Tree and grass cover

Figure 5 compares the simulated tree cover with the two
observation-based estimates. The model reasonably repro-
duces the broad-scale patterns including the Canadian boreal
forest and the temperate forests across the southeastern US.
However, the model simulates lower tree cover across the
western part of the continent compared to both observation-
based estimates particularly over the southwestern US, which
is characterized by arid climate (Fig. 1). The observation-
based estimates do not particularly well agree over this re-
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Figure 4. Spatial distribution of bare ground coverage across North America. Model-simulated results are shown in the left column (a) and
the two observation-based estimates are shown in the middle column (b, d). The right column (c, e, f) shows the difference between model-
and observation-based estimates (simulated minus WANG06 in c, and simulated minus MODIS in e), and the observation-based estimates
themselves (MODIS minus WANG06 in f) along with the root mean square difference (rmsd) and spatial correlation (R2) between the two
estimates being compared.

gion either. The MODIS-derived estimate suggests around
25 % tree cover in the southwestern US, while the WANG06-
derived estimate suggests a tree cover of around 60 % over
a large area in the region. The spatial correlation and RMSD
when comparing simulated tree cover to both observation-
based estimates are around 0.68 and around 17 %, respec-
tively. The spatial correlation and RMSD between the two
observation-based estimates themselves are 0.75 and around
15 %, respectively. Possible reasons for differences between
simulated and observation-based estimates are discussed in
detail in the discussion section and include the fact that
the CLASS–CTEM framework does not currently represent
shrubs and that there are limitations in the observation-based
data sets themselves. Shrubs are more prevalent in arid and
semi-arid regions where they are better suited to grow com-
pared to both trees and grasses.

Figure 6 compares the geographical distribution of the
simulated grass cover with the two observation-based es-
timates. The broad geographical distribution of simulated

grass cover compares well with the two observation-based
estimates, with the notable exception of the Arctic region in-
cluding Alaska and Northern Canada, where the model over-
estimates grass cover. This overestimation of grass cover in
the Arctic region is also the reason for the overestimation
of total vegetation fraction and the underestimation of bare
fraction that was seen earlier in Figs. 3 and 4, respectively.

As shown in Fig. 6, the spatial correlation and RMSD
when comparing simulated grass cover to both observation-
based estimates lie between 0.33 and 0.38 and between
around 15 and 17 %, respectively. The spatial correlation
and RMSD between the two observation-based estimates
themselves are 0.54 and around 9 %, respectively. The two
observation-based estimates disagree most markedly over the
western half of the US, where the MODIS-derived estimates
of grass cover are higher.
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Figure 5. Spatial distribution of tree coverage across North America. Model-simulated results are shown in the left column (a) and the
two observation-based estimates are shown in the middle column (b, d). The right column (c, e, f) shows the difference between model-
and observation-based estimates (simulated minus WANG06 in c, and simulated minus MODIS in e), and the observation-based estimates
themselves (MODIS minus WANG06 in f) along with the root mean square difference (rmsd) and spatial correlation (R2) between the two
estimates being compared.

3.2.3 Needleleaf evergreen and broadleaf cold
deciduous trees

Figure 7a and b compare the geographical distribution of
NDL-EVG and BDL-DCD-CLD trees, respectively, with
their observation-based estimates. These two are the primary
tree PFTs which exist in the North American domain consid-
ered here.

In Fig. 7a, the overall simulated coverage of NDL-EVG
trees is lower than both observation-based estimates as was
also seen in Fig. 2b. The simulated values are primarily lower
in western Canada and over a large area in the western US
according to estimates based on the modified WANG06 data
set. This is also the case along the wide swath of the Cana-
dian boreal forest. The model overestimates the coverage of
NDL-EVG trees in the eastern US. The spatial correlation
and RMSD when comparing simulated coverage of NDL-
EVG trees to both observation-based estimates lie between
0.36 and 0.40 and between around 16 and 17 %, respec-

tively. The spatial correlation and RMSD between the two
observation-based estimates themselves are 0.52 and around
16 %, respectively.

The geographical distribution of BDL-DCD-CLD trees is
compared with its observation-based estimates in Fig. 7b. Al-
though the simulated domain-summed area of BDL-DCD-
CLD trees (3×106 km2) is comparable to estimates based on
the modified WANG06 (3.4× 106 km2) and MODIS (2.9×
106 km2) data sets, there are two primary limitations in its
simulated geographical distribution. First, the simulated val-
ues are generally overestimated in Canadian boreal forests
and underestimated in the eastern US. Second, the model
simulates near-zero coverage in the arid southwestern US.
The spatial correlation and RMSD when comparing simu-
lated coverage of BDL-DCD-CLD trees to both observation-
based estimates are around 0.3 and around 12 %, respec-
tively. The spatial correlation and RMSD between the two
observation-based estimates themselves are 0.60 and around
8 %, respectively.
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Figure 6. Spatial distribution of grass coverage across North America. Model-simulated results are shown in the left column (a) and the
two observation-based estimates are shown in the middle column (b, d). The right column (c, e, f) shows the difference between model-
and observation-based estimates (simulated minus WANG06 in c, and simulated minus MODIS in e), and the observation-based estimates
themselves (MODIS minus WANG06 in f) along with the root mean square difference (rmsd) and spatial correlation (R2) between the two
estimates being compared.

3.2.4 C3 and C4 grasses

Figure 8a and b compare the simulated geographical distribu-
tion of C3 and C4 grasses with observation-based estimates.

In Fig. 8a, the most obvious limitation of the model is
its excessive simulated grass coverage in Alaska and in
Arctic Canada. Other than this, the model reproduces the
broad geographical distribution of C3 grasses including the
Great Plains of the US and the Canadian Prairies, where
a large extent of grasslands is observed. The overestimated
grass coverage at high latitudes leads to a total simulated
C3 grass area (4.4× 106 km2) that is higher than estimates
based on the modified WANG06 (1.9×106 km2) and MODIS
(2.8×106 km2) data sets. The spatial correlation and RMSD
when comparing simulated coverage of C3 grasses to both
observation-based estimates lie between 0.34 and 0.38 and
between around 15 and 17 %, respectively. The spatial cor-
relation and RMSD between the two observation-based esti-
mates themselves are 0.54 and around 12 %, respectively.

Figure 8b shows the distribution of C4 grasses which
mostly occur in the tropics and do not occupy large ar-
eas in North America (as was also seen in Fig. 2b). The
modelled geographical distribution of C4 grasses is larger
than observation-based estimates, but the absolute fractions
remain small so that the simulated area covered over the
whole domain (0.35×106 km2) is actually smaller than esti-
mates based on the modified WANG06 (0.45×106 km2) and
MODIS (0.7×106 km2) data sets. The spatial correlation and
RMSD when comparing simulated coverage of C4 grasses to
both observation-based estimates lie between 0.12 and 0.16
and between around 3 and 5 %, respectively. The spatial cor-
relation and RMSD between the two observation-based esti-
mates themselves are 0.62 and around 5 %, respectively.

We do not compare the spatial distribution of broadleaf
evergreen (BDL-EVG) and broadleaf drought deciduous
(BDL-DCD-DRY) trees with the two observation-based es-
timates for three reasons: (1) the geographical distribution
of these PFTs is limited to a small total area in our do-
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Figure 7. Spatial distribution of needleleaf trees (upper section) and broadleaf cold deciduous trees (lower section) across North America.
Model-simulated results are shown in the left column (a) and the two observation-based estimates are shown in the middle column (b, d).
The right column (c, e, f) shows the difference between model- and observation-based estimates (simulated minus WANG06 in c, and
simulated minus MODIS in e), and the observation-based estimates themselves (MODIS minus WANG06 in f) along with the root mean
square difference (rmsd) and spatial correlation (R2) between the two estimates being compared.
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Figure 8. Spatial distribution of C3 grasses (upper section) and C4 grasses (lower section) across North America. Model-simulated results
are shown in the left column (a) and the two observation-based estimates are shown in the middle column (b, d). The right column (c, e, f)
shows the difference between model- and observation-based estimates (simulated minus WANG06 in c, and simulated minus MODIS in e),
and the observation-based estimates themselves (MODIS minus WANG06 in f) along with the root mean square difference (rmsd) and spatial
correlation (R2) between the two estimates being compared.
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main; (2) the geographical distribution of the BDL-EVG tree
PFT based on observations cannot be directly compared to
simulated values because, when mapping land cover types
to CTEM PFTs in WANG06, evergreen shrubs (which exist
much farther north than 30◦ N) are assigned to the BDL-EVG
tree PFT; and (3) the geographical distribution of the BDL-
DCD-DRY tree PFT in the observation-based data sets is
based on the arbitrary latitudinal thresholds of 24 and 34◦ N
as mentioned earlier.

3.3 LAI and GPP

Figure 9 compares the geographical distribution of simu-
lated LAI and GPP with observation-based estimates for the
present day. In Fig. 9a, the simulated geographical distribu-
tion of LAI compares well with the observation-based esti-
mates. The spatial correlation and RMSD between simulated
and observation-based estimates are 0.74 and 0.81 m2 m−2

(the m2 m−2 unit implies m2 of leaf area per m2 of ground
area), respectively. The domain-averaged simulated LAI of
2.5 m2 m−2 is higher than the observation-based estimate of
2.1 m2 m−2. The model captures the broad geographical pat-
terns with higher LAI over the boreal forest region in Canada
and also in the eastern US similar to observations. However,
some differences remain particularly over the drier south-
west US where the model simulates bare ground with neg-
ligible LAI but observations suggest a small LAI of around
1 m2 m−2. In contrast, the model slightly overestimates LAI
over Northern and Arctic Canada where it simulates a higher
fractional coverage of C3 grasses, as seen earlier.

Consistent with the geographical distribution of LAI, the
simulated GPP is overestimated in the eastern US and the
Canadian boreal forest (Fig. 9b). The broad geographi-
cal distribution of GPP, similar to LAI, is consistent with
the observation-based estimates. The spatial correlation and
RMSD between simulated and observation-based estimates
are 0.78 and 225 g Cm−2 yr−1, respectively. The domain-
averaged simulated GPP of 737 gCm−2 yr−1 is higher than
the observation-based estimate of 628 gCm−2 yr−1. As with
LAI, the simulated GPP is lower than observations over the
drier southwest region of the US where the model simulates
more bare ground than observation-based estimates, and the
model overestimates GPP over Northern and Arctic Canada.

Figure 10 shows the time series of annual domain-
averaged GPP, LAI, net primary productivity and domain-
summed net biome productivity (NBP). The NBP term is
essentially the net atmosphere–land CO2 flux which is the
result of all terrestrial ecosystem processes including photo-
synthesis, autotrophic and heterotrophic respiration, fire and
land use change. NBP values of zero indicate that the sys-
tem is in equilibrium such that carbon gained by photosyn-
thesis is equal to carbon lost by respiration and other pro-
cesses. Simulated GPP, LAI and NPP all show an increase
over the 20th century due to the increase in atmospheric CO2
concentration and the associated change in climate. The in-

crease in CO2 drives the increase in GPP and subsequently
in NPP and LAI through the CO2 fertilization effect. The
net result of this gradually increasing NPP is that the terres-
trial ecosystems become a sink of carbon, and this is seen
in the resulting positive values of NBP. The simulated sink
over the North American domain for the periods 1990–2000
and 2000–2010 is around 0.4 and 0.5 PgCyr−1, respectively.
Crevoisier et al. (2010) compare the carbon sink over the
North American region from five studies (their Table 1) for
time periods in the 1990s and 2000s. These reported sinks
vary from 0.81±0.72 to 1.26±0.23 PgCyr−1 for the period
1992–1996 and 0.58 PgCyr−1 for the period 2001–2006,
and Crevoisier et al. (2010) themselves estimate a value of
0.51± 0.41 PgCyr−1 for the period 2004–2006. The sinks
simulated by CLASS–CTEM over the 1990s and 2000s are
broadly consistent with these estimates.

3.4 Added value of finer spatial resolution

Figure 11 assesses the added value of running the model and
performing competition between PFTs at the 1◦ spatial res-
olution used in this study compared to the 3.75◦ resolution
used in the Melton and Arora (2016) study which evaluated
the performance of CLASS–CTEM’s competition module at
the global scale. For Fig. 11, the Melton and Arora (2016) re-
sults were extracted for the North American domain used in
this study, and observation-based estimates of fractional cov-
erage of tree, grass and total vegetation from the modified
WANG06 land cover product were re-gridded to the 3.75◦

resolution. The resulting spatial correlations and RMSDs be-
tween the simulated and the WANG06 estimates for frac-
tional coverage of tree, grass and total vegetation, at the two
spatial resolutions, are summarized in Fig. 11. When com-
pared to the modified WANG06 data the RMSDs are some-
what lower (Fig. 11a), and spatial correlations (Fig. 11b) are
slightly higher for the model’s implementation at 3.75◦ reso-
lution, compared to the model’s implementation at 1◦ resolu-
tion. This indicates that the model’s performance is slightly
better at the coarser 3.75◦ resolution. Recall that competition
between PFTs occurs over the non-crop fraction of each grid
cell. For this reason, we do not perform this analysis for the
MODIS-based land cover product because the crop areas that
are specified in the model are exactly the same as those in the
modified WANG06 land cover product, making comparison
of simulated and observation-based fractional coverages of
PFTs more consistent for the modified WANG06 land cover
product.

4 Discussion

Competition between PFTs, which determines their frac-
tional coverage, is one of the several processes that the
CLASS–CTEM modelling framework simulates. Other than
competition between PFTs, terrestrial ecosystem processes
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Figure 9. Spatial distribution of grid-averaged maximum LAI (m2 m−2) (upper row) and grid-averaged GPP (gC m−2 yr−1) (bottom row)
across North America. Simulated values are shown in (a), observation-based values in (b) and differences between them are shown in (c),
which also shows the root mean square difference (rmsd) and spatial correlation (R2) between simulated and observation-based values.

Figure 10. Time series evolution of (a) domain-averaged GPP (gCm−2 yr−1), (b) domain-averaged LAI (m2 m−2), (c) domain total NBP
(Pg Cm−2 yr−1) and (d) domain-averaged NPP (gCm−2 yr−1).

of photosynthesis, autotrophic and heterotrophic respiration,
allocation of carbon from leaves to stem and root compo-
nents, dynamic leaf phenology, fire and land use change are
also modelled. These aspects of the model have been eval-
uated at point (Arora, 2003; Arora and Boer, 2005; Melton
et al., 2015), regional (Garnaud et al., 2015; Peng et al.,
2014; Arora et al., 2016) and global (Arora and Boer, 2010;
Melton and Arora, 2014, 2016) scales. A typical model eval-
uation exercise at the global scale compares model-simulated
geographical and latitudinal distribution of GPP, vegetation

biomass, and soil carbon with their respective observation-
based estimates such as those from Beer et al. (2010),
Ruesch and Holly (2008), and the Harmonized World Soil
Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). Model
evaluation exercises help in identifying model limitations but
also yield opportunities to improve model performance by
tuning model parameters. The CLASS–CTEM model also
participated in the 2016 TRENDY intercomparison of ter-
restrial ecosystem models whose results contributed to the
global carbon project (Le Quéré et al., 2016). The competi-
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Figure 11. Comparison of the performance of the model at the 1◦ spatial resolution in this study with that at the 3.75◦ spatial resolution
in the Melton and Arora (2016) study. The Melton and Arora (2016) global results were extracted for the North American domain. Spatial
correlations and root mean square differences are used as metrics for the comparison between simulated and the observation-based estimate
based on the modified WANG06 land cover product for fractional coverage of total vegetation, tree and grass.

tion module of the CLASS–CTEM modelling framework has
been previously evaluated at point scales (Arora and Boer,
2006; Shrestha et al., 2016). In addition to assessing frac-
tional coverage at which PFTs equilibrate, these point-scale
evaluations also assess the time the PFTs take to reach their
equilibrium fractional coverages against empirical data and
whether the succession patterns are realistically simulated
(e.g. grasses should colonize a given area before trees in-
vade the area covered by grasses). This paper focusses on
evaluation of the competition module of the CLASS–CTEM
modelling framework at a regional scale.

Dynamically simulated fractional coverages of PFTs add
another degree of freedom to a model compared to the case
where the fractional coverages of its PFTs are specified. This
is a more stringent test of a model’s performance. Errors
in the simulated geographical distribution of PFTs will, of
course, lead to corresponding errors in the geographical dis-
tribution of primary terrestrial ecosystem carbon pools and
fluxes. Yet, the CLASS–CTEM model is broadly able to
reproduce the geographical distributions of GPP and LAI.
Limitations, of course, remain. In particular, the simulated
LAI and GPP are high in Alaska and in Northern and Arctic
Canada, and these variables are lower than their observation-
based estimates in arid regions of the western US. The simu-
lated fractional vegetation coverage reflects these patterns.

It is difficult to conclusively determine whether these
model limitations are due to the limitations in the bio-
geochemistry parameterizations of the model for its exist-
ing PFTs or the simple structural limitation that the model
does not represent shrub, moss and lichen PFTs. Shrubs are
adapted to grow in arid and semi-arid regions, whether in
cold or hot climates (where neither grasses nor trees are able
to grow), and their representation in the model would likely
help to increase the fractional vegetation cover in arid regions
including those in the western US. At high latitudes grass
growth is inhibited by mosses and lichens which flourish
in cold and damp conditions. A representation of moss and
lichen PFTs and improved representation of permafrost in the
model would likely help to decrease simulated grass cover-

age in Arctic regions. In the current version of the CLASS–
CTEM model bioclimatic limits are used only for tree PFTs
to ensure that these PFTs do not venture outside their pre-
determined bioclimatic zones. In the model, bioclimatic lim-
its are not used for grasses, and their geographical distribu-
tion is entirely the result of plant physiological processes and
their competitive interactions with the tree PFTs and amongst
themselves. Since, in the Arctic region, grasses do not face
competition from tree PFTs, and moss and lichen PFTs are
not represented in the model, they are free to increase their
expanse – climate permitting, of course. Another possible
reason for higher-than-observed grass coverage in the Arctic
region is that in the current implementation of CLASS only
three permeable soil layers with maximum thicknesses of
0.1, 0.25 and 3.75 m are represented, and a boundary condi-
tion of zero heat flux is assumed across the bottommost layer.
This simple representation does not allow modelling per-
mafrost realistically. Permafrost is more realistically mod-
elled with multiple permeable and impermeable (extending
into the bed rock) layers that go sufficiently deep (> 30 m at
least) to capture the slow evolution of soil temperatures in re-
sponse to climate warming (Teufel et al., 2017). The current
setup of three layers that go only 4.1 m deep produces soil
temperatures that are warmer than in the setup when perme-
able and impermeable layers are sufficiently deep and pro-
duces permafrost extent that is lower than observation-based
estimates (Koven et al., 2013). It is likely that warmly biased
soil temperatures in the current setup contribute to promote
grass growth and allow it to cover a larger area in the Arc-
tic region than would be the case when permafrost is more
realistically modelled.

The lower-than-observed fractional vegetation cover in the
arid and semi-arid regions of the western US, however, may
not solely be due to model limitations alone. Here, we argue
that the manner in which remotely sensed land cover types
are mapped to CTEM PFTs and the errors in calculating
bare ground fraction in remotely sensed products also con-
tribute to the mismatch between modelled and observation-
based values of fractional vegetation cover. We illustrate this
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Figure 12. Scatterplots of (a) simulated LAI vs. simulated total vegetation coverage, (b) observed LAI vs. MODIS-derived total vegetation
coverage and (c) observed LAI vs. WANG06 total vegetation coverage. (d) Comparison of the fitted curves represented by solid lines, with
an inset map of North America showing the subdomain of interest bounded by a red rectangle.

by comparing the functional relationship between LAI and
total vegetation cover. Figure 12a shows this relationship
for model-simulated values. As expected, as LAI increases
so does the total vegetation cover. The relationship between
these two variables is fairly tight in the model, and the green
line is an exponential fit. The red dots in the figure corre-
spond to grid cells that lie in the region identified in the inset
in Fig. 12d and broadly correspond to the western half of
the US. Figure 12b and c show the same relationship but
between the observation-based estimate of LAI from Zhu
et al. (2013) (as mentioned in Sect. 2.3.2) and the total veg-
etation cover based on the WANG06- and MODIS-derived
land cover data sets, respectively. The blue and magenta lines
in Fig. 12b and c are the corresponding exponential fits.
When compared with Fig. 12a, Fig. 12b and c show much
more scatter around the fitted curves, and the overall relation-
ship appears to break down for the red dots corresponding to
the grid cells in the western US. A careful look at the red dots
in Fig. 12b and c shows that the observation-based vegetation
cover in the western US for a large fraction of grid cells is
around 60 % regardless of the observation-based LAI which
ranges between 0.1 and 1.5 m2 m−2. Clearly, it is physically
unrealistic to achieve fractional vegetation coverage of 60 %
below LAI values of 0.6 m2 m−2, and this indicates that the
fractional vegetation cover in this region is likely overesti-
mated in both observation-based data sets.

There are at least two ways in which errors in total vegeta-
tion cover can occur. The first relates to the method by which
the fractional vegetation cover is calculated for the land cover

types in the original remotely sensed land cover products –
that is, for the 22 land cover types in the GLC2000 data set
upon which the WANG06 data are based and the 17 land
cover types in the MODIS data set. An example of such an er-
ror for arid regions is illustrated by Lawley et al. (2014), who
suggest that the MODIS soil fractional cover product, at least
in its present form, is unsuited to monitoring sparsely veg-
etated arid landscapes and generally unable to separate soil
from vegetation in situations where NDVI is low. The second
way in which errors are introduced is through the mapping
of the remotely sensed land cover types to the CTEM PFTs
following Table 2 of WANG06 for the GLC2000 land cover
types, and following Table 2 in this paper for the MODIS
land cover types. This mapping is based on available infor-
mation in the literature but is also based on expert judge-
ment, which introduces subjectiveness. For instance, it is de-
batable what fraction of the “open shrublands” MODIS land
cover type, which exists over much of the arid southwest-
ern US, is in fact bare ground. In Table 2, we have allo-
cated a fraction of 0.4 of open shrublands to bare ground
following WANG06. Had WANG06 allocated a higher value
than this to bare ground, our simulated values would have
compared better with the observation-based values of bare
ground fraction over arid regions. Nevertheless, this would
not have changed the relationship, or rather the lack thereof,
between the observation-based estimates of LAI and the to-
tal vegetation cover in the western half of the US seen in
Fig. 12b and c.
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Both model and observation-based results are also affected
by a common limitation associated with peatlands which ex-
ists in the Hudson Bay lowlands region. Both the GLC2000
data set, upon which the modified WANG06 land cover prod-
uct is based, and the MODIS land cover data do not represent
peatland vegetation. In these data sets the peatland vegeta-
tion is classified either as grasses, shrubs or trees. The model
also does not represent peatlands, and as a result the model
grows trees and grasses in regions where peatlands exists.
Work is under way to incorporate a peatland model devel-
oped for CLASS–CTEM (Wu et al., 2016) into our modelling
framework.

The simulated areas covered by the primary two tree PFTs
(NDL-EVG and BDL-DCD-COLD) have their weaknesses,
but large differences also exist between the two observation-
based estimates especially for the NDL-EVG PFT. Mod-
elling competition between two tree PFTs is much more dif-
ficult than between trees and grasses. In the latter case trees
are always considered superior to grasses, but in the case of
competition between two tree PFTs the superiority is based
on parameterized colonization rates which depend on sim-
ulated NPP. Based on comparisons with observation-based
estimates, the main limitation in model results here is that
the model overestimates the coverage of NDL-EVG trees and
underestimates the coverage of BDL-DCD-COLD trees in
the eastern US, while the opposite is true in western Canada.
The model, of course, does not represent individual species,
while in the real world competition occurs at the species level
that is modulated by soils and nutrient availability. An exam-
ple that illustrates this limitation of the model is the jack pine
tree species which occupies the ecological niche of nutrient-
poor soils in boreal Canada (e.g. see Ste-Marie et al., 2007).
The coupling of carbon and nutrient cycles is currently not
represented in CLASS–CTEM, and optimizing model pa-
rameters for hundreds of species is currently extremely diffi-
cult given limited available data at the species level. Most
likely before the model is applied at the species level, as
a first step, the number of PFTs represented in the model
should be increased. An example of how additional PFTs in
the CLASS–CTEM framework can lead to improved model
performance is illustrated by Peng et al. (2014). This appli-
cation of the model shows how subdividing the NDL-EVG
PFT into coastal and interior types for the province of British
Columbia in Canada leads to improvement in simulated LAI
and GPP. A recent attempt to explicitly represent physio-
logical processes in a model to simulate competition be-
tween needleleaf and broadleaf cold deciduous trees at a re-
gional scale is illustrated in Fisher et al. (2015), who incor-
porated the concepts from the Ecosystem Demography (ED)
model into the community land model–dynamic global vege-
tation model (CLM–DGVM). Their results provide some in-
teresting insights; however, validation of this approach at the
global scale over a wide range of PFTs remains challenging.

Finally, one of the objectives of this study was to evalu-
ate whether resolving climate niches by performing CLASS–

CTEM simulation at a finer resolution of 1◦ in this study al-
lowed improved simulation of the geographical distribution
of PFTs than in the Melton and Arora (2016) study that eval-
uated the competition module of the CLASS–CTEM model
at 3.75◦ spatial resolution at the global scale. Figure 11 ad-
dresses this objective and shows that, while the spatial corre-
lations and RMSDs between the simulated and the modified
WANG06 land cover product for fractional coverage of tree,
grass and total vegetation are fairly similar for the model out-
puts at 1◦ and 3.75◦ resolutions, these metrics are somewhat
better for the model’s application at the coarser 3.75◦ resolu-
tion. One possible reason for the slightly worse model perfor-
mance at the finer resolution is that while climate niches are
resolved better at the finer resolution the model does not have
the additional differentiation in PFTs (the number of model
PFTs is still nine) that is required to gain benefit from the
resolved climate niches. In addition, comparing Melton and
Arora (2016) results over North America with ones obtained
here we note that the primary model limitations remain un-
changed in the application of the model at both spatial res-
olutions. These include lower simulated fractional vegeta-
tion coverage in the arid southwest North American region
and higher in the Arctic region (due to higher grass cover-
age). In addition, in both applications of the model the dif-
ferences in simulated geographical distribution of NDL-EVG
and BDL-DCD-CLD PFTs, compared to the WANG06 land
cover data, are also similar. Model differences, compared to
the WANG06 data, therefore remain more or less similar
in the application of the model at both spatial resolutions.
These results are, however, based on offline applications of
the CLASS–CTEM model where it is driven by reanalysis
data. In a fully coupled simulation where CLASS–CTEM is
coupled to an atmospheric model it is possible that model
performance at low spatial resolution is different from its per-
formance at high spatial resolution

The comparison between observation-based and simulated
fractional coverages is the most robust at the basic tree–
grass–bare ground level. The subjectiveness introduced in
the process of mapping remotely sensed land cover types
to the PFTs represented in a model, as mentioned above,
makes the comparison of simulated and observation-based
fractional coverages for individual PFTs less robust. Never-
theless, comparisons with observations allow useful insights
into model limitations as we have seen here.

5 Summary and conclusions

This study evaluates the CLASS–CTEM-simulated frac-
tional coverages of PFTs, when driven with observed me-
teorological forcing, against the observation-based estimates
from MODIS and the modified WANG06 data sets over the
North American region. In the past, performance of the com-
petition module of the CLASS–CTEM modelling framework
has been assessed at a global scale, at a coarse spatial resolu-
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tion of 3.75◦ (Melton and Arora, 2016), as well as at a point
scale, for a range of locations across the globe (Shrestha
et al., 2016). Our objective here was to assess the perfor-
mance of the CLASS–CTEM competition module at a higher
spatial resolution of 1◦ over North America. To achieve this
objective we compared simulated present-day geographical
distributions of fractional coverages of PFTs, but also LAI
and GPP, with their observation-based estimates.

The CLASS–CTEM modelling framework is generally
able to reproduce the dominant features of the geographic
distribution of PFT coverage and LAI and GPP over the
North American region. After 1960, the model simulates in-
creasing GPP and LAI in response to changing climate as
well as increased atmospheric CO2 concentrations, and the
resulting sink for the 1990s and 2000s is broadly consistent
with other estimates.

The simulated geographical distribution of PFTs, when
compared to observation-based estimates, shows two pri-
mary limitations, which are excessive grass cover in the Arc-
tic region and low vegetation cover in the arid western US,
although for the latter the observation-based estimates them-
selves may have their own weaknesses. There are three main
factors in the CLASS–CTEM modelling framework that may
have contributed to these differences: (1) the absence of
a shrub PFT, which we believe is the reason for low simulated
vegetation coverage in the arid to semi-arid western United
States; (2) the absence of moss and lichen PFTs that may in-
hibit the establishment of grasses; and (3) probably a lack of
sensitivity of C3 grasses to high-latitude climate and an inad-
equate representation of permafrost. Future model develop-
ments will focus on these aspects with a view to improving
model performance.

Data availability. The model code is available at https://gitlab.
com/jormelton/classctem but requires setting up an account
on gitlab.com. Once this is done please drop an email
to joe.melton@canada.ca with your gitlab.com username to
obtain access. The model results can be obtained from
vivek.arora@canada.ca.
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