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Abstract. Various observational data streams have been
shown to provide valuable constraints on the state and evo-
lution of the global carbon cycle. These observations have
the potential to reduce uncertainties in past, current, and pre-
dicted natural and anthropogenic surface fluxes. In particular
such observations provide independent information for veri-
fication of actions as requested by the Paris Agreement. It is,
however, difficult to decide which variables to sample, and
how, where, and when to sample them, in order to achieve
an optimal use of the observational capabilities. Quantitative
network design (QND) assesses the impact of a given set of
existing or hypothetical observations in a modelling frame-
work. QND has been used to optimise in situ networks and
assess the benefit to be expected from planned space mis-
sions. This paper describes recent progress and highlights as-
pects that are not yet sufficiently addressed. It demonstrates
the advantage of an integrated QND system that can simul-
taneously evaluate a multitude of observational data streams
and assess their complementarity and redundancy.

1 Introduction

There is an increasing number of observational data streams
that can constrain the global carbon cycle (Scholze et al.,
2017). A theoretical framework for integrating such obser-
vations into models of the carbon cycle is available (Rayner
et al., 2016). Implementations of this framework, carbon cy-
cle data assimilation systems (CCDASs; Rayner et al., 2005),
are in operation (see e.g. Kaminski et al., 2013) and attempt
to derive a consistent picture of the global carbon cycle.

In this context, an obvious challenge is the selection of ob-
servational sampling strategies that allow us to extract a max-
imum of information on a selected aspect of the carbon cycle.
Typical questions are as follows: there is funding for n addi-
tional flux towers and m additional continuous atmospheric
sampling sites available. Where to place them in order to
maximise complementarity with the existing observational
capabilities? Another question concerns the layout of space
missions to sample, for example, the column-integrated at-
mospheric carbon dioxide concentration (XCO2) or the frac-
tion of absorbed photosynthetically active radiation (FAPAR)
by the land surface. In both examples, the in situ sampling
and the space mission, the optimal sampling strategy will
typically depend on the objective, i.e. on the question to be
answered. The verification of anthropogenic CO2 emissions
at the scale of a megacity or country over some period in
the past may require a sampling strategy that is very differ-
ent from a sampling strategy devised to constrain the carbon-
cycle climate feedback in 2100. The optimal sampling strat-
egy will also depend on the “background” of other obser-
vations to which we add the new observations. And it will
depend on the level of redundancy we wish to ensure in the
observational information, in order to hedge us against inci-
dents such as instrumental failure or loss of a satellite.

The above two examples already illustrate the complexity
of the task and the need for a systematic, quantitative ap-
proach; purely relying on ad hoc choices guided by intuition
is too dangerous. This contribution describes a formalism,
called quantitative network design (QND), that addresses the
evaluation (or even optimisation) of sampling strategies in
a modelling framework. QND evaluates a network, which
is defined as a set of observations of specified variables at
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specified times and locations (or their integrals) that can be
simulated by a modelling system. The approach uses formal
uncertainty propagation of the observational information to
selected target quantities that are also simulated by the mod-
elling system. The definition of a set of target quantities for-
malises the purpose of the network, i.e. the questions the net-
work is supposed to answer, and the uncertainty in the target
quantity is the specific metric used to assess the performance
of the network. In the above example the target quantities
would be regional and temporal integrals of the net carbon
flux or its fossil emissions or land-use change components.
Typically, a network is compared with a simpler reference
network. This reference network can be a network without
any observations or a network with standard background ob-
servations. The reduction in uncertainty with respect to the
reference network quantifies the added value or impact of
the additional observations. Section 2 formalises these def-
initions and explains how QND differs from observing sys-
tem simulation experiments (OSSEs) and observing system
experiments (OSEs).

Almost a decade ago Kaminski and Rayner (2008) sum-
marised the state of QND in the context of the global carbon
cycle and concluded that “there are hardly any CCDAS ap-
plications to network design”. Meanwhile this has changed,
and Sect. 3 summarises the progress and shows a series of
successful applications.

Modelling systems that simultaneously simulate the com-
ponents of the carbon cycle as a coupled system are com-
putationally heavy, and embedding them into a QND frame-
work even amplifies the computational burden. Hence, it ap-
pears to be appealing to apply QND to component models
for the separate evaluation of sub-networks that provide ob-
servations of the respective components. Section 4 illustrates
the consequences of such a simplified approach in a highly
simplified and in a more complex example. Finally, Sect. 5
recommends aspects of QND that need to be addressed by
future work.

2 Methodology

The presentation of the methodology follows Kaminski and
Rayner (2008) and Kaminski et al. (2012b) using the nota-
tion introduced to this special issue by Rayner et al. (2016).
The underlying algebra is provided by Tarantola (2005) and
Rayner et al. (2016). As mentioned, the QND formalism per-
forms a formal uncertainty propagation from the observa-
tions to a target quantity of interest through a dedicated mod-
elling chain. Hence, it is worth recalling the four influence
factors which produce uncertainty in a model simulation:

1. uncertainty caused by the formulation of individual pro-
cess representations and their numerical implementa-
tion (structural uncertainty);

2. uncertain constants (process parameters) in the formu-
lation of these processes (parametric uncertainty);

3. uncertainty in external forcing/boundary values (such as
solar insulation or temperature) driving the relevant pro-
cesses;

4. uncertainty about the state of the system at the begin-
ning of the simulation (initial state).

The first factor reflects the implementation of the model
(code) while the others can be understood as input quanti-
ties controlling the behaviour of a simulation using the given
model implementation. The QND procedure formalises these
input quantities through the definition of a control vector, x.
The choice of the control vector is a subjective element in the
QND procedure. A good choice covers all input factors with
high uncertainty and high impact on simulated observations
ymod or target quantities f (Kaminski et al., 2012b; Rayner
et al., 2016).

The target quantity may be any quantity that can be ex-
tracted from a simulation with the underlying model, i.e. any
potential model output, for example terrestrial net primary
production (NPP) integrated over an area and time interval,
but also any component of the control vector (for example
a process parameter such as Q10 expressing the temperature
dependency of the decomposition of organic material). In the
general case, where the target quantity is not part of the con-
trol vector, the QND procedure operates in two steps (Fig. 1).
The first step (inversion step) uses the observational informa-
tion to reduce the uncertainty in the control vector, i.e. from
a prior to a posterior state of information, and the second
step (prognostic step) propagates the posterior uncertainty
forward to the target quantity.

In this procedure we take uncertainty into account by rep-
resenting all variables, i.e. the prior and posterior control vec-
tors as well as the observations, their equivalents simulated
by the model, and the simulated target quantity by probabil-
ity density functions (PDFs). We typically assume a Gaus-
sian form for the prior control vector and the observations,
if necessary after a suitable transformation. For example, in-
stead of the aboveQ10 we could use the transformed variable
ln(Q10−1) in our Gaussian control vector, which changes the
PDF of Q10 such that values below 1 have zero probability.
The Gaussian PDFs’ covariance matrices express the uncer-
tainty in the respective quantities, i.e. U(x0) and U(yobs) for
the prior control vector and the observations.

For the first QND step we use the model M as a map-
ping from control variables onto equivalents of the observa-
tions. In our notation the observation operators that map the
model state onto the individual data streams (see Kaminski
and Mathieu, 2017) are absorbed in M . Let us first consider
the case of a linear model, for which we denote the Jaco-
bian matrix by M′. In this case the posterior control vector is
described by a Gaussian PDF with covariance U(x), i.e. the
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Figure 1. Two-step procedure of QND formalism. Ovals denote data, rectangles denote processing.

uncertainty is given by

U(x)−1
=M′TU(y)−1M′+U(x0)

−1, (1)

where the data uncertainty U(y) combines U(yobs) with the
uncertainty U(ymod) in the simulated equivalents of the ob-
servations M(x):

U(y)2 = U(yobs)
2
+U(ymod)

2. (2)

The first term in Eq. (1) expresses the observational con-
straint and the second term the prior information content. In
the non-linear case we use Eq. (1) as an approximation of
U(x).

In the second step, the Jacobian matrix N′ of the model
(now used as a mapping from the control vector onto target
quantities and denoted by N ) is employed to propagate the
posterior uncertainty in the control vector U(x) forward to
the uncertainty in a target quantity σ(f ):

σ(f )2 = N′U(x)N′T+ σ(fmod)
2. (3)

If the model was perfect, σ(fmod) would be zero. In contrast,
if the control variables were perfectly known, the first term
on the right-hand side would be zero. The terms U(ymod) in
Eq. (2) and σ(fmod) in Eq. (3) capture the structural uncer-
tainty as well as the uncertainty in those process parameters,
boundary and initial values that are not included in the con-
trol vector.

To conduct a correct QND assessment, the requirement of
the model is not that it simulates the target quantities and ob-
servations under investigation correctly, but the requirement
is that it provides a realistic sensitivity of the target quantities
and observations under investigation with respect to a change
in the control vector. If these sensitivities, i.e. the Jacobians,
are realistic, but the simulation of target quantities and ob-
servations is incorrect, we can always make a correct QND
assessment with appropriately large model uncertainty. The
result of the assessment may then be that a particular data
stream is not useful in constraining a particular target quan-
tity given current modelling capabilities. In this situation we
could operate the QND system with reduced model uncer-
tainty to explore which accuracy of the model is required for
a data stream to be a useful constraint on a given target quan-
tity. As an example for incorrect simulation but correct sen-
sitivity we can think of a regional transport model that sim-
ulates the small-scale variability very well but cannot match

the absolute concentration because it runs with an incorrect
large-scale background. In particular, when it comes to new
data streams and target quantities, the accuracy of both the
simulation and the sensitivities are hard to assess. In the case
of a model that misses relevant processes we may expect er-
rors in both the simulation and the sensitivities, and conse-
quently also in the QND assessment.

Our performance metric is the (relative) reduction in pos-
terior target uncertainty σ(f )2, with respect to a reference.
To compare against the case without any observations we
use, as the reference, the prior target uncertainty

σ(f0)
2
= N′U(x0)N′

T
+ σ(fmod)

2 . (4)

The uncertainty reduction with respect to the prior,

σ(f0)− σ(f )

σ (f0)
= 1−

σ(f )

σ (f0)
, (5)

quantifies the impact of the entire network. If we seek an
extension of a background network by additional observa-
tions, we may want to use the posterior uncertainty for the
background network as reference. The uncertainty reduction
against this reference then quantifies the impact or added
value of the additional observations.

We note that (through Eqs. 1 and 3) the posterior target
uncertainty solely depends on the prior and data uncertain-
ties, the contribution of the model error to the uncertainty in
the simulated flux, σ(fmod), as well as the linearised model
responses of the simulated observation equivalent and of the
target quantities. The QND formalism does not require real
observations and can thus be employed to evaluate hypothet-
ical candidate networks. Candidate networks are defined by a
set of observations characterised by observational data type,
location, time, and data uncertainty. Here, we define a net-
work as the complete set of observations, y, used to constrain
the model. The term network is not meant to imply that the
observations are of the same type or that their sampling is
coordinated. For example, a network can combine in situ and
satellite observations.

In practice, for pre-defined target quantities and obser-
vations, model responses can be pre-computed and stored.
A network composed of these pre-defined observations can
then be evaluated in terms of the pre-defined target quanti-
ties without any further model runs. Only matrix algebra is
required to combine the pre-computed sensitivities with the
data uncertainties. This allows the setup of QND systems that
interactively respond to user specifications of networks.
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For the interpretation of QND results it is useful to develop
a qualitative understanding of the sensitivity of the result to
the inputs of the QND system. For example, the impact of
an observation on the target quantity, i.e. the uncertainty re-
duction compared to the prior increases when the Jacobian
M′ increases: through Eq. (1) an increase in M′ will translate
into an increase in U(x)−1, i.e. a reduced posterior uncer-
tainty. In contrast, if M′ was 0, the observation would have
no effect, i.e. it would be irrelevant. In the same way, the im-
pact of an observation increases when the data uncertainty
U(y) is reduced. By contrast, an observation with very high
data uncertainty would have only a small effect. Possible rea-
sons for high data uncertainty are high uncertainty in the ob-
servation or little confidence in our capability to simulate the
observation, as expressed by Eq. (2). An increase in the prior
uncertainty U(x0) reduces the second term in Eq. (1). This,
in turn, increases the prior and posterior control uncertainties
and, thus, also the prior and posterior target uncertainties.
But for any relevant observation the increase of the posterior
uncertainty is lower than that of the prior uncertainty, be-
cause in Eq. (1) the increase in the prior uncertainty increases
the weight of the constraint by the data, which is expressed
by the first term. As a consequence the increase in the prior
uncertainty yields a higher uncertainty reduction. We note
that from Eq. (3) a given target quantity is linked by N′ to
a one-dimensional sub-space of the control space. The ob-
servation must achieve an uncertainty reduction in that sub-
space to yield an uncertainty reduction in the target quantity.
The contribution of the model error, σ(fmod), has the effect
of decreasing the uncertainty reduction; σ(fmod) will always
remain the lower bound on the posterior target uncertainty,
no matter how relevant the observations are. When compar-
ing the performance of two networks, we can pronounce their
difference in uncertainty reduction by neglecting σ(fmod).

We will see in the following sections that for many QND
applications, it is sufficient to evaluate the performance of a
small number of candidate networks and compare their per-
formance for a range of reasonable target quantities. For ap-
plications with many candidate networks it is often impracti-
cal to test every candidate network, and a formal minimisa-
tion algorithm is used to identify the network with the lowest
posterior uncertainty in the target quantity. In the case of mul-
tiple target quantities, we can minimise a suitable scalar func-
tion of their posterior uncertainties, e.g. their sum of squares.
An example for the mathematically rigorous analysis of the
complexity of a network optimisation problem is provided by
Krause et al. (2008). Often the posterior uncertainty calcula-
tion for a single candidate network is so computationally de-
manding that applications are only tractable with more prag-
matic and efficient minimisation approaches that may yield
sub-optimal results (see Sect. 3).

The QND approach relies on the capability to propagate
data uncertainty to target uncertainty. This requirement is
met by CCDASs and transport inversion systems that use
an explicit representation of M′ (or alternatively the entire

right-hand side of Eq. 1) and of N′. The combination of
high-dimensional control and data spaces yields a large M′,
which may render its computation and the solution of Eq. (1)
difficult or even impossible. As a consequence, the control
space is often reduced from the full space–time grid of the
model to, e.g., scalar coefficients of large flux patterns (big
region approach). To reduce the dimension of the data space,
Eq. (1) can also be solved in a sequential procedure, where
each step uses only sub-sets of the observations and the pos-
terior control uncertainty from the previous step as prior (see
e.g. Kaminski and Rayner, 2008). In contrast to a fixed lag
(ensemble) Kalman filter approach, it is then essential not
to change the control space from one step to the next (Feng
et al., 2009).

There are other approaches than QND that employ data as-
similation/inverse modelling systems for the design of obser-
vational networks but do not rely on the availability of pos-
terior uncertainty. As such techniques have not been applied
in a CCDAS context, we only give brief summaries of the
approaches that are most popular in the numerical weather
prediction (Masutani et al., 2010) and chemical data assim-
ilation (Timmermans et al., 2015) communities. OSSEs are
conducted as follows: first, a “true” control vector is selected.
Second, a model (with suitable observation operators) is used
to generate pseudo-observations (in a so-called nature run).
Third, prior (see e.g. Chevallier et al., 2007) and data are per-
turbed according to their respective uncertainties. Fourth, the
inverse modelling system is used to retrieve a control vec-
tor. As an indication of the combined performance of the
network and the inverse modelling system, one can use the
difference between true and retrieved control vectors or be-
tween simulations of some target quantity from the true and
retrieved control vectors. For linear Gaussian problems the
difference between retrieved and true control vectors is a re-
alisation of the posterior covariance. The above procedure
is termed identical twin experiment, if the nature run and
the inverse modelling system employ the same model, which
means the experiment is conducted under the assumption of
a model that perfectly represents the real world. OSEs use a
network of real observations. They assesses the added value
of a data stream by excluding it from the network. Unlike
QND, which requires only the data uncertainty, OSSEs and
OSEs require, in addition, pseudo (OSSEs) or real (OSEs)
observations. Further, they typically use metrics other than
uncertainty reduction. OSSEs and identical twin experiments
can be employed to assess the impact of biases in the obser-
vations, the prior, or the model (see e.g. Engelen et al., 2002).
Further approaches to network design rely on the analysis of
the patterns of variability in real (see e.g. Mahecha et al.,
2017) or pseudo-observations (see e.g. Shiga et al., 2013).
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3 Evolution of the field

The QND approach is based on work by Hardt and
Scherbaum (1994) who optimised the station locations for
a seismographic network. QND was introduced to biogeo-
sciences by Rayner et al. (1996), who optimised the spatial
distribution of the atmospheric network for sampling CO2
and the δ13C isotope in terms of their capability to constrain,
in an atmospheric transport inversion, the global ocean up-
take. Surprisingly, the optimal location for an additional site
was over the Amazon rainforest, the region with the highest
prior flux uncertainty. In their QND system a site at this loca-
tion would minimise the uncertainty in the global terrestrial
flux, which through the atmospheric budget would indirectly
provide the best possible constraint on the total ocean flux.
This mechanism did not work anymore when they changed
their target quantity from the globally integrated ocean flux
to a set of regionally integrated ocean fluxes.

This groundbreaking study established the QND approach
in the carbon cycle community and already illustrated the
need for a careful formulation of the target quantity. It paved
the way for three lines of QND applications: the first contin-
ues the optimisation of the atmospheric in situ sampling net-
work for use in atmospheric transport inversions. The second
optimises the design of missions sensing XCO2 from space
for use in transport inversions. The third line employs the
QND approach to terrestrial biosphere models. As our focus
is on QND applications in a CCDAS, we only briefly point to
the most relevant QND applications with atmospheric trans-
port inversions; more detail on this topic can be found in
Kaminski and Rayner (2008).

Pure atmospheric applications of QND include the stud-
ies by Patra and Maksyutov (2002), Patra et al. (2003a), Law
et al. (2004), and Rayner (2004), which explored the depen-
dency of the optimised networks on several aspects of the
problem formulation as well as the optimisation approach.
While Rayner et al. (1996) used the simulated annealing
approach to determine optimal station locations, Patra and
Maksyutov (2002) demonstrated that their incremental op-
timisation approach of iteratively finding one optimal sta-
tion location at a time combined comparable performance
with higher computational efficiency. Rayner (2004) intro-
duced the use of genetic algorithms to tackle the optimisa-
tion problem. The study addressed the specification of the
model uncertainty contribution U(ymod) to the data uncer-
tainty U(y) (which he derived from the spread of a multi-
model ensemble) and demonstrated its impact on the opti-
mal network. The study by Law et al. (2004) explored sev-
eral aspects of the QND problem, including higher temporal
resolution of the data space and higher space–time resolu-
tion of the flux space. They employed a global model but
their target region was Australia. The study optimised loca-
tions for high-frequency sampling (4 hourly) in addition to
a global background network that mainly consisted of flask
sampling sites. In order to avoid so-called aggregation errors

(Kaminski et al., 2001) induced by prescribed flux patterns
over coarse regions (typically of the size of a continent) they
divided their target region into 12 sub-regions. For the same
reason, rather than solving for a monthly flux field per re-
gion they split the flux into a constant and a daytime com-
ponent. To assess the magnitude of their aggregation error,
they performed, in parallel to the QND assessments, identi-
cal twin experiments. The study also assessed the impact of
data uncertainty or prior uncertainty on the optimal networks.
In contrast to the above studies, Lauvaux et al. (2012) used
real atmospheric observations and a regional model: high-
frequency samples were provided by a network of up to eight
sites, and the study tested the effect of removing sites from
the network. Due to the limited domain, fluxes on the bound-
ary had to be included in the control vector. Recent examples
for QND studies addressing rather practical design questions
with a regional model are provided by Ziehn et al. (2014) for
Australia and Nickless et al. (2015) for South Africa.

The XCO2 can be observed from space and simulated
by transport models. A series of pioneering QND studies
(Rayner and O’Brien, 2001; O’Brien and Rayner, 2002;
Rayner et al., 2002) demonstrated the feasibility of the ap-
proach in transport inversions and delineated the require-
ments for the implementation of the first satellite mission
with a primary objective to observe XCO2 from space, the
Orbiting Carbon Observatory (OCO, Crisp et al., 2004).
Since, the technique has been routinely applied in the eval-
uation of new space mission concepts, e.g. by Patra et al.
(2003b) for the Solar Occultation FTS for Inclined-orbit
Satellite (SOFIS), by Houweling et al. (2004), Miller et al.
(2007), and Feng et al. (2009) for OCO, by Kadygrov
et al. (2009) for the Greenhouse Gas Observing Satellite
(GOSAT), or by Bovensmann et al. (2015) for CarbonSat.
The approach was also applied to assess the active concepts
of the Advanced Space Carbon and Climate Observation
of Planet Earth (A-SCOPE) mission (Hungershoefer et al.,
2010) and the Active Sensing of CO2 Emissions over Nights,
Days, and Seasons (ASCENDS) mission (Wang et al., 2014)
as well as the geostationary concept of geoCARB (Rayner
et al., 2014; O’Brien et al., 2016).

These mission assessment studies typically explore a low
number of prescribed design options, i.e. an optimisation al-
gorithm is not used, and their target quantity is typically
the net CO2 flux on scales ranging from continental to that
of the model grid, in some cases also the CH4 flux. Mis-
sion performance was often compared to that of the ground-
based network (flask or continuous) or space-borne instru-
ments such as the Scanning Imaging Absorption Spectrom-
eter for Atmospheric CHartographY (SCIAMACHY) or the
Atmospheric Infrared Sounder (AIRS) that were not specif-
ically designed to observe XCO2. For geoCARB, which is
designed to resolve anthropogenic emissions, observations of
column-integrated CO are used as additional constraints, and
the uncertainty in the emission factor was taken into account
through its inclusion into the control vector (Rayner et al.,
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2014). Most of the QND assessments with transport inver-
sion systems addressed, however, only a single data stream.

We note that techniques other than QND were also applied
for the assessment of space missions. Identical twin experi-
ments performed with variational transport inversion systems
to assess the performance of OCO include studies by Cheval-
lier et al. (2007), Chevallier (2007), and Baker et al. (2010).
Chevallier et al. (2007) used an ensemble generated by five
inversions to approximate the uncertainty reduction in con-
trol space. Baker et al. (2010) studied the effect of transport
error, incorrect uncertainty specifications, and systematic er-
rors in the observations. Chevallier (2007) demonstrated the
effect correlated data uncertainty.

Before addressing QND applications with CCDASs, we
recall the impact of prior information. Within a given QND
system, it is manifested in the sensitivity of the posterior tar-
get uncertainty with respect to the prior control uncertainty.
We need to keep in mind, however, that prior information has
already entered the construction of the QND system. This is
through the selection of the suite of models and observation
operators (including their implementation) used in the QND
system, and then through the definition of the control vector.
This includes the above-mentioned selection of the uncer-
tain process parameters and initial and boundary conditions
as well as their spatial differentiation. For example, we can
specify a process parameter globally or as specific to a plant
functional type (PFT) or a region. In a transport inversion,
the control vector may consist of fluxes on the space–time
grid of the model, or multipliers of prescribed patterns. In a
CCDAS the model achieves a coupling between the fluxes in
space and time, which reduces the dimension of the control
space.

An initial QND application with a CCDAS was performed
in the system based on the simple diagnostic biosphere model
(SDBM; Knorr and Heimann, 1995). The study (Kaminski
et al., 2002) assessed the effect of adding a hypothetical di-
rect flux observation over the model’s broadleaf evergreen
biome to the atmospheric flask sampling network as refer-
ence network. The study did not calculate the corresponding
uncertainty reduction in flux space, i.e. the target quantities
were the model’s control variables, a vector of two process
parameters per biome. Compared to the reference network,
the additional observation achieved substantial uncertainty
reduction for the biome’s temperature dependency of the het-
erotrophic respiration. This was the first quantification of the
complementary nature of atmospheric and ecosystem (i.e. di-
rect flux) measurements as constraints in a CCDAS.

A more systematic assessment of the complementarity of
atmospheric and ecosystem measurements was performed by
Kaminski et al. (2012b). The study employed the prognos-
tic Biosphere Energy-Transfer Hydrology (BETHY; Knorr,
2000) model, which composes the global vegetation out of
13 PFTs. The control vector consisted of the initial atmo-
spheric condition and the model’s process parameters, some
of which were differentiated by PFT and some of which were

globally uniform. Target quantities were 20-year averages of
net ecosystem production (NEP) and NPP integrated over a
number of regions and over each of the model’s 2◦ by 2◦

grid cells. They used pre-computed Jacobians for direct flux
measurements over any land point on the globe, for 15 se-
lected sites for continuous sampling of atmospheric CO2, for
41 selected sites for flask sampling of atmospheric CO2, and
for all target quantities. Thanks to these pre-computed Jaco-
bians they could construct an interactive tool for assessments
of user-specified networks. The study showed that a network
with one flux site over each of the model’s PFTs populating
Europe is sufficient to infer the terrestrial carbon budget of
that continent. With only one of these PFTs unsampled (in-
complete flux network), the posterior flux uncertainty drasti-
cally increases. In the model study we can, of course, avoid
such incomplete networks, as we know the number and dis-
tribution of the PFTs. Since this is not the case for the real
world, such incompleteness is likely. The study also showed
that the addition of an atmospheric network (in this case the
flask network) provides a protection against the risk of miss-
ing a PFT or failure of a flux site. Through a set of exper-
iments with an increased number of PFTs (up to 325) the
robustness of the above findings against the dimension of the
PFT space was shown. The study demonstrated the above-
mentioned difference between QND with atmospheric trans-
port inversions and a CCDAS: through the model equations
the constraint of an observation taken at a particular point in
time and space can act as a constraint to fluxes at another
point in time and space.

The complementarity of flux and atmospheric networks
was confirmed by Koffi et al. (2013). They employed the
same model (BETHY) with two different atmospheric trans-
port models, with combinations of two flux networks, two
flask sampling networks (with 62 and 77 sites, respec-
tively), and one network of continuous atmospheric sampling
(27 sites). Atmospheric sampling frequencies varied between
monthly and 3-hourly. Their target quantities were the pro-
cess parameters in the control vector. They found that their
atmospheric networks perform well in constraining param-
eters that impact NEP but are not well suited to constrain
parameters that impact gross primary production (GPP).

The study of Szolgayová et al. (2016) builds on the flux
and flask network definitions of Kaminski et al. (2012b). It
employed the CCDAS QND system to assess the uncertainty
reduction in CO2 fluxes through the combined network. The
study then used a real options model to quantify the eco-
nomic value of this uncertainty reduction and contrasted it
with the cost of the network. They found a positive net value
of the network that, in sensitivity tests, proved robust for a
range of assumptions entering the model.

The first QND assessment of a space mission with a
CCDAS evaluated several design options for the above-
mentioned A-SCOPE mission (Kaminski et al., 2010). These
design options were the wave band and the observational un-
certainty, and the target quantities were 20-year averages of
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NEP and NPP. Owing to the active instrument’s high sam-
pling frequency, despite higher data uncertainty the con-
straint from A-SCOPE observations outperformed the con-
straint from the flask samples. The atmospheric transport was
represented by a pre-computed Jacobian mapping fluxes on
concentration changes. To reduce the dimension of that Jaco-
bian and the associated computational burden, the sensitivity
of XCO2 samples with respect to fluxes within the same lat-
itude band and more than 2 months prior to the observations
was assumed to be uniform. Switching to monthly-mean ob-
servations had little impact on the posterior uncertainty.

A further CCDAS study (Kaminski et al., 2012a) assessed
the constraint provided by an optical mission. Target quan-
tities were regional NEP and NPP as well as two hydrolog-
ical quantities, namely the plant available soil moisture and
the evapotranspiration. The optical mission was represented
by a product of the FAPAR similar to that derived from the
Medium Resolution Imaging Spectrometer (MERIS) by Go-
bron et al. (1997). Details on this data stream are provided
by the contribution of Scholze et al. (2017). The observation
operator for FAPAR is a newly developed phenology scheme
(Knorr et al., 2010) that shows smooth dependence of simu-
lated FAPAR in response to changes in process parameters.
The inclusion of this observation operator added further un-
certain process parameters and, thus, extended the control
vector. Atmospheric flask samples were included as a further
data stream. Again, the required observational and target Ja-
cobians we pre-computed and exploited to set up an interac-
tive QND system. The system can evaluate both data streams,
flask samples of CO2 and FAPAR, individually and in combi-
nation. For the FAPAR data stream it allowed changes to as-
pects of the mission such as the accuracy of the product and
the length of the mission. The study demonstrated a moder-
ate added value of FAPAR in constraining carbon fluxes and
a high added value in constraining hydrological quantities as
well as the complementarity of FAPAR to atmospheric CO2.

Solar-induced fluorescence (SIF) is a further observational
constraint from space and also presented in the contribu-
tion of Scholze et al. (2017). Its assessment in a CCDAS re-
quires a dedicated observation operator such as the SCOPE
model by van der Tol et al. (2009). Koffi et al. (2015) cou-
pled SCOPE with BETHY and provided a set of sensitivity
tests. Norton et al. (2017) present a QND assessment for the
SIF product retrieved from GOSAT. The target quantity is the
GPP at grid scale. The study adds to the control vector, as an
extra component, a scalar multiplier of the incoming solar
radiation, an external forcing term of BETHY.

Rayner et al. (2010) focused on the anthropogenic com-
ponent of the carbon cycle and constructed a Fossil Fuel
Data Assimilation System (FFDAS) that assimilates statis-
tics of national emissions, modelled population density, and
remote sensing observations (nightlights) into a model of
the fossil fuel emissions. Posterior uncertainty is approxi-
mated by a 25-member ensemble of inversions for perturbed
prior and observations. The system was employed to quantify

(through the uncertainty reduction in fossil fuel emissions)
the impact of hypothetical measurements of the annual mean
14CO2 concentration collected by a network of 194 atmo-
spheric sites.

We note that all of the above CCDAS-based QND studies
explored a set of candidate networks or mission concepts.
None of them applied a formal optimisation algorithm.

4 Separate and integrated QND

Modelling systems that simultaneously simulate the compo-
nents of the carbon cycle as a coupled system are computa-
tionally heavy, and a QND framework amplifies the compu-
tational burden. For example, the QND systems by Kamin-
ski et al. (2012b) used a terrestrial biosphere model coupled
to two atmospheric transport models to evaluate the combi-
nation of one terrestrial and two atmospheric networks with
surface flux integrals as target quantities. To reduce the com-
putational demands one may think of a strategy that treats the
QND problem separately per model and network component
and then integrates the results (in the following termed “sep-
arate QND”). In the example of Kaminski et al. (2012b) this
would mean computing three posterior uncertainty estimates
for the surface flux, one by evaluating the terrestrial network
in a QND system around the terrestrial model, and each of
the two others by using a QND system for each of the at-
mospheric networks with the corresponding transport model.
As the three component networks are independent, one could
argue that the respective posterior uncertainties are uncorre-
lated, and hence the square root of the sum of the squares of
the three posterior flux uncertainties would yield the poste-
rior uncertainty that could be achieved by the combination
of the three component networks. In the following we con-
trast this separate QND approach with the integrated QND
for the coupled model. We do this first in a highly simplified
example and then in the system of Kaminski et al. (2012b).

4.1 Simplified model

Let us first consider a highly simplified model, in which our
target quantity, the net flux f , directly depends on two pa-
rameters p1 and p2, each representing a component model:

f = p1+p2. (6)

For simplicity, assuming both parameters have the same
uncorrelated prior uncertainty σ(p0), the prior uncertainty
σ(f0) of the flux is

σ(f0)
2
= 2σ(p0)

2. (7)

Now, assuming we have two component networks, one can
only constrain p1 and reduce the uncertainty by a factor k,
and the other network can only constrain p2, for simplicity
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Figure 2. Schematic illustration of PDFs in parameter space (upper
section) and flux space (lower section). Prior parameter PDF in blue.
Posterior PDFs for separate (integrated) QND in black (red). Pro-
jections onto posterior flux uncertainty with QND for either com-
ponent network (black) or integrated QND (red).

it reduces the uncertainty by the same factor of k. If we con-
struct a QND system around both component models that
can evaluate both networks simultaneously we would have
(red PDF in Fig. 2)

σ(f )2 = (k · σ(p0))
2
+ (k · σ(p0))

2
= 2k2

· σ(p0)
2

= k2
· σ(f0)

2. (8)

If we use only either of the two sub-networks we reduce
the uncertainty only for one of the parameters we have (black
PDF in Fig. 2):

σ(f )2 = (k · σ(p0))
2
+ (σ (p0))

2
= (1+ k2)σ (p0)

2. (9)

To combine the flux estimates provided by the two sub-
networks we could use their (evenly weighted for simplicity)
average:

f =
1
2
(f1+ f2). (10)

If we ignore for a moment that they are based on the same
parameter prior, f1 and f2 are independent and we get the
following for the uncertainty in f :

σ(f )2 =
1
4
(σ (f1)

2
+ σ(f2)

2). (11)

Applying Eq. (9) to both estimates we have the following:

σ(f )2 =
1
4
(2(1+ k2)σ (p0)

2)=
1
2
(1+ k2)σ (p0)

2. (12)

The double use of the prior produces correlated uncer-
tainty and increases σ(f ). For a small k, i.e. efficient net-
works or large prior uncertainty, this effect is small. The

lower limit (for k approaching 0) in the separate QND case
is

σ(f )2 =
1
2
σ(p0)

2, (13)

while in the integrated QND case (Eq. 8) it is zero. This
means that the separate QND approach drastically underesti-
mates the network performance.

4.2 Complex example

The above example is very much simplified, and before gen-
eralising the finding we need to consider the consequences
of the simplifications. The assumption of only two parame-
ters is not a serious limitation: for the case of two larger sets
of parameters, with each set only “seen” by one of the com-
ponent networks the example would work similarly. The as-
sumption of full complementarity of the two sub-networks is
more important. If there were parameters that neither system
could observe, not even the integrated QND could bring the
posterior flux uncertainty to zero. Typically, however, a given
data stream tends to be good on one subset of the parameter
space and weaker on another one. If there is at least some
complementarity, the integrated model can take advantage of
this complementarity, while in the separate QND approach
the badly observed parts of the parameter space have the po-
tential to spoil the performance.

To adapt the above algebra to such a case is a bit cumber-
some, because constraining two or more parameters simulta-
neously would involve matrix inversion. It is easier to run an
example (with two sub-networks) in the system of Kaminski
et al. (2012b): we define a simple flask observing network
composed of the two sites (MLO and SPO) and a simple flux
network by a site in Europe (0◦ longitude and 50◦ N latitude)
with the tool’s default PFT fractions at that site. For both
networks we use the tool’s default uncertainty, i.e. 1 ppm for
flask and 10 gC m−2 day−1 for flux observations. We first set
the model error to zero, which yields very low posterior un-
certainty but makes the contrast between the networks more
drastic. The resulting posterior NEP uncertainties for Europe
are 0.29 GtC yr−1 for the flux network and 0.21 GtC yr−1 for
the flask network. Using Eq. (11) this yields a posterior un-
certainty of the combined estimate of

σ(f )=
1
2

√
(0.212

+ 0.292) GtCyr−1

= 0.18 GtCyr−1. (14)

By contrast the integrated QND yields a posterior uncer-
tainty for Europe of 0.06 GtC yr−1, a factor of three lower.

The uncertainty component reflecting model error clearly
depends on the quality of the model used. For example, a
model that achieves a 20 % uncertainty in the NEP simulated
over Europe would (based on the 20-year posterior NEP av-
erage of 0.39 GtC yr−1 inferred by Scholze et al., 2007) have
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a σ(fmod) of 0.08 GtC yr−1. Using this value in the eval-
uation of Eq. (3) would increase the posterior NEP uncer-
tainties for Europe in the separate QND to 0.30 GtC yr−1 for
the flux network and to 0.22 GtC yr−1 for the flask network,
i.e. according to Eq. (11) a combined posterior estimate of
0.19 GtC yr−1, while the integrated QND would yield a pos-
terior uncertainty of 0.10 GtC yr−1, i.e. a factor of 2 less.

5 Suggested next steps

The study by Szolgayová et al. (2016) indicated the role of
QND in assessments of the economic value of a carbon ob-
serving system. Such assessments are an important and ob-
vious next step as they can provide an objective quantitative
basis to decision makers.

We demonstrated the need for an integrated QND ap-
proach, i.e. a joint assessment of all relevant data streams
in an integrated model that includes all components required
to simulate these data streams. In the last decade there were
several demonstrations of the QND approach in a CCDAS,
for atmospheric data streams (CO2 and XCO2) and for land
data streams (direct flux measurements, FAPAR, SIF). The
list of (potential) further direct (e.g. biomass) or indirect (e.g.
soil moisture) observational constraints on the carbon cycle
is much longer (see e.g. Raupach et al., 2005; Ciais et al.,
2014; Dolman et al., 2016; Scholze et al., 2017). Our exam-
ples also demonstrate that QND can assess the complemen-
tarity of in situ and satellite observations as well as real and
hypothetical data streams for a range of suitable target quan-
tities. This is exactly what is needed to guide the evolution
of an observing system that can reduce uncertainties in esti-
mated natural and anthropogenic fluxes, as requested by the
Paris Agreement.

To cover a particular data stream or target quantity, the
model in the core of the QND system needs to be capa-
ble of simulating in a realistic manner the sensitivity of the
data stream (observational Jacobian) and target quantity (tar-
get Jacobian) with respect to changes in the control vector.
With regard to natural fluxes, a suitable QND system should
also include an ocean component, to allow the evaluation of
oceanic data streams and target quantities, e.g. acidification.
The same holds for the inclusion of a methane emissions
component (see e.g. Houweling et al., 2017). With regard
to anthropogenic fluxes, fossil emissions and land manage-
ment modules are needed. The above-mentioned FFDAS is
an obvious candidate for coupling into a CCDAS. The first
demonstration of the inclusion of a fossil emissions module
into a CCDAS was provided by Hooker-Stroud (2008).

We explained that the setup of a QND system also relies
on subjective choices. Hence, it is advisable to have multiple
QND systems in operation; relying on a single one appears
risky. It may be useful to also operate a “light” variant of
such a system, which relies on pre-computed Jacobians and
can rapidly test design questions. A “heavier” system could

then be used for a subsequent in-depth analysis of the most
promising configurations. It is also necessary to better under-
stand the effect of such subjective choices, in order to min-
imise their impact on the assessment. This includes the selec-
tion of component models and the specification of the con-
trol vector, including its resolution or discretisation in space,
time, and other dimensions of the model, for example the
spaces of plant functional types or of fossil emission sectors.
This also concerns approximations we make to reduce the
size of the Jacobians, e.g. pre-aggregation of observations.

At the technical level, formal optimisation algorithms have
so far only been used in QND with transport inversions, not
in a CCDAS. Progress at this level would be useful, espe-
cially for the design of the in situ network.

Data availability. No data sets were used in this article.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue
“Data assimilation in carbon/biogeochemical cycles: consistent as-
similation of multiple data streams (BG/ACP/GMD inter-journal
SI)”. It is not associated with a conference.

Acknowledgements. We acknowledge the support from the In-
ternational Space Science Institute (ISSI). This publication is
an outcome of the ISSI’s Working Group on “Carbon Cycle
Data Assimilation: How to consistently assimilate multiple data
streams”. Peter Julian Rayner’s participation was supported by an
Australian Professorial Fellowship (DP1096309).

Edited by: Marko Scholze
Reviewed by: Albertus J. Dolman and one anonymous referee

References

Baker, D. F., Bösch, H., Doney, S. C., O’Brien, D., and Schimel,
D. S.: Carbon source/sink information provided by column CO2
measurements from the Orbiting Carbon Observatory, Atmos.
Chem. Phys., 10, 4145–4165, https://doi.org/10.5194/acp-10-
4145-2010, 2010.

Bovensmann, H., Bösch, H., Brunner, D., Ciais, P., Crisp, D., Dol-
man, H., Hayman, G., Houweling, S., and Lichtenberg, L.: Re-
port for mission selection: CarbonSat – An earth explorer to ob-
serve greenhouse gases, Tech. rep., Noordwijk, the Netherlands,
available at: http://esamultimedia.esa.int/docs/EarthObservation/
SP1330-1_CarbonSat.pdf (last access: 23 October 2017), 2015.

Chevallier, F.: Impact of correlated observation errors on inverted
CO2 surface fluxes from OCO measurements, Geophys. Res.
Lett., 34, l24804, https://doi.org/10.1029/2007GL030463, 2007.

www.biogeosciences.net/14/4755/2017/ Biogeosciences, 14, 4755–4766, 2017

https://doi.org/10.5194/acp-10-4145-2010
https://doi.org/10.5194/acp-10-4145-2010
http://esamultimedia.esa.int/docs/EarthObservation/SP1330-1_CarbonSat.pdf
http://esamultimedia.esa.int/docs/EarthObservation/SP1330-1_CarbonSat.pdf
https://doi.org/10.1029/2007GL030463


4764 T. Kaminski and P. J. Rayner: QND

Chevallier, F., Bréon, F.-M., and Rayner, P. J.: Contribution of
the Orbiting Carbon Observatory to the estimation of CO2
sources and sinks: Theoretical study in a variational data as-
similation framework, J. Geophys. Res.-Atmos., 112, d09307,
https://doi.org/10.1029/2006JD007375, 2007.

Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A.,
Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Mar-
land, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo,
G., Bopp, L., Bréon, F.-M., Broquet, G., Dargaville, R., Bat-
tin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler,
J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gur-
ney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law,
B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., My-
neni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y.,
Paris, J.-D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S.,
Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel,
D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G.,
Wickland, D., Williams, M., and Zehner, C.: Current system-
atic carbon-cycle observations and the need for implementing
a policy-relevant carbon observing system, Biogeosciences, 11,
3547–3602, https://doi.org/10.5194/bg-11-3547-2014, 2014.

Crisp, D., Atlas, R., Breon, F.-M., Brown, L., Burrows, J., Ciais, P.,
Connor, B., Doney, S., Fung, I., Jacob, D., Miller, C., O’Brien,
D., Pawson, S., Randerson, J., Rayner, P., Salawitch, R., Sander,
S., Sen, B., Stephens, G., Tans, P., Toon, G., Wennberg, P., Wofsy,
S., Yung, Y., Kuang, Z., Chudasama, B., Sprague, G., Weiss, B.,
Pollock, R., Kenyon, D., and Schroll, S.: The Orbiting Carbon
Observatory (OCO) mission. Trace Constituents in the Tropo-
sphere and Lower Stratosphere, Adv. Space Res., 34, 700–709,
https://doi.org/10.1016/j.asr.2003.08.062, 2004.

Dolman, A. J., Belward, A., Briggs, S., Dowell, M., Eggleston, S.,
Hill, K., Richter, C., and Simmons, A.: A post-Paris look at cli-
mate observations, Nat. Geosci., 9, 646–646, 2016.

Engelen, R. J., Denning, A. S., and Gurney, K. R.:
On error estimation in atmospheric CO2 inversions,
J. Geophys. Res.-Atmos., 107, ACL10-1–ACL10-13,
https://doi.org/10.1029/2002JD002195, 2002.

Feng, L., Palmer, P. I., Bösch, H., and Dance, S.: Estimating surface
CO2 fluxes from space-borne CO2 dry air mole fraction obser-
vations using an ensemble Kalman Filter, Atmos. Chem. Phys.,
9, 2619–2633, https://doi.org/10.5194/acp-9-2619-2009, 2009.

Gobron, N., Pinty, B., Verstraete, M. M., and Govaerts,
Y.: A semidiscrete model for the scattering of light by
vegetation, J. Geophys. Res.-Atmos., 102, 9431–9446,
https://doi.org/10.1029/96JD04013, 1997.

Hardt, M. and Scherbaum, F.: The Design of Optimum Networks for
Aftershock Recordings, Geophys. J. Int., 117, 716–726, 1994.

Hooker-Stroud, A.: Anthropogenic CO2: Seasonal Fossil Fuel
Emissions in CCDAS, Master’s thesis, University of Bristol, UK,
2008.

Houweling, S., Breon, F.-M., Aben, I., Rödenbeck, C., Gloor, M.,
Heimann, M., and Ciais, P.: Inverse modeling of CO2 sources
and sinks using satellite data: a synthetic inter-comparison
of measurement techniques and their performance as a func-
tion of space and time, Atmos. Chem. Phys., 4, 523–538,
https://doi.org/10.5194/acp-4-523-2004, 2004.

Houweling, S., Bergamaschi, P., Chevallier, F., Heimann, M.,
Kaminski, T., Krol, M., Michalak, A. M., and Patra, P.:
Global inverse modeling of CH4 sources and sinks: an

overview of methods, Atmos. Chem. Phys., 17, 235–256,
https://doi.org/10.5194/acp-17-235-2017, 2017.

Hungershoefer, K., Breon, F.-M., Peylin, P., Chevallier, F., Rayner,
P., Klonecki, A., Houweling, S., and Marshall, J.: Evalua-
tion of various observing systems for the global monitoring of
CO2 surface fluxes, Atmos. Chem. Phys., 10, 10503–10520,
https://doi.org/10.5194/acp-10-10503-2010, 2010.

Kadygrov, N., Maksyutov, S., Eguchi, N., Aoki, T., Nakazawa,
T., Yokota, T., and Inoue, G.: Role of simulated GOSAT
total column CO2 observations in surface CO2 flux un-
certainty reduction, J. Geophys. Res.-Atmos., 114, D21208,
https://doi.org/10.1029/2008JD011597, 2009.

Kaminski, T. and Mathieu, P.-P.: Reviews and syntheses: Flying the
satellite into your model: on the role of observation operators in
constraining models of the Earth system and the carbon cycle,
Biogeosciences, 14, 2343–2357, https://doi.org/10.5194/bg-14-
2343-2017, 2017.

Kaminski, T. and Rayner, P. J.: Assimilation and Network Design,
in: Observing the continental scale Greenhouse Gas Balance of
Europe, edited by: Dolman, H., Freibauer, A., and Valentini, R.,
Ecological Studies, chap. 3, 33–52, Springer-Verlag, New York,
https://doi.org/10.1007/978-0-387-76570-9_3, 2008.

Kaminski, T., Rayner, P., Heimann, M., and Enting, I.: On aggrega-
tion errors in atmospheric transport inversions, J. Geophys. Res.,
106, 4703, https://doi.org/10.1029/2000JD900581, 2001.

Kaminski, T., Knorr, W., Rayner, P., and Heimann, M.: Assimilat-
ing Atmospheric data into a Terrestrial Biosphere Model: A case
study of the seasonal cycle, Global Biogeochem. Cy., 16, 14-1–
14-16, https://doi.org/10.1029/2001GB001463, 2002.

Kaminski, T., Scholze, M., and Houweling, S.: Quantifying the
Benefit of A-SCOPE Data for Reducing Uncertainties in Ter-
restrial Carbon Fluxes in CCDAS, Tellus B, 62, 784–796,
https://doi.org/10.1111/j.1600-0889.2010.00483.x, 2010.

Kaminski, T., Knorr, W., Scholze, M., Gobron, N., Pinty, B., Gier-
ing, R., and Mathieu, P.-P.: Consistent assimilation of MERIS
FAPAR and atmospheric CO2 into a terrestrial vegetation model
and interactive mission benefit analysis, Biogeosciences, 9,
3173–3184, https://doi.org/10.5194/bg-9-3173-2012, 2012a.

Kaminski, T., Rayner, P. J., Voßbeck, M., Scholze, M., and Koffi,
E.: Observing the continental-scale carbon balance: assessment
of sampling complementarity and redundancy in a terrestrial as-
similation system by means of quantitative network design, At-
mos. Chem. Phys., 12, 7867–7879, https://doi.org/10.5194/acp-
12-7867-2012, 2012b.

Kaminski, T., Knorr, W., Schürmann, G., Scholze, M., Rayner,
P. J., Zaehle, S., Blessing, S., Dorigo, W., Gayler, V., Giering,
R., Gobron, N., Grant, J. P., Heimann, M., Hooker-Strout, A.,
Houweling, S., Kato, T., Kattge, J., Kelley, D., Kemp, S., Koffi,
E. N., Köstler, C., Mathieu, P., Pinty, B., Reick, C. H., Rö-
denbeck, C., Schnur, R., Scipal, K., Sebald, C., Stacke, T., van
Scheltinga, A. T., Vossbeck, M., Widmann, H., and Ziehn, T.:
The BETHY/JSBACH Carbon Cycle Data Assimilation System:
experiences and challenges, J. Geophys. Res., 118, 1414–1426,
https://doi.org/10.1002/jgrg.20118, 2013.

Knorr, W.: Annual And Interannual CO2 Exchanges Of The Terres-
trial Biosphere: Process-Based Simulations And Uncertainties,
Global Ecol. Biogeogr., 9, 225–252, 2000.

Knorr, W. and Heimann, M.: Impact of drought stress and other fac-
tors on seasonal land biosphere CO2 exchange studied through

Biogeosciences, 14, 4755–4766, 2017 www.biogeosciences.net/14/4755/2017/

https://doi.org/10.1029/2006JD007375
https://doi.org/10.5194/bg-11-3547-2014
https://doi.org/10.1016/j.asr.2003.08.062
https://doi.org/10.1029/2002JD002195
https://doi.org/10.5194/acp-9-2619-2009
https://doi.org/10.1029/96JD04013
https://doi.org/10.5194/acp-4-523-2004
https://doi.org/10.5194/acp-17-235-2017
https://doi.org/10.5194/acp-10-10503-2010
https://doi.org/10.1029/2008JD011597
https://doi.org/10.5194/bg-14-2343-2017
https://doi.org/10.5194/bg-14-2343-2017
https://doi.org/10.1007/978-0-387-76570-9_3
https://doi.org/10.1029/2000JD900581
https://doi.org/10.1029/2001GB001463
https://doi.org/10.1111/j.1600-0889.2010.00483.x
https://doi.org/10.5194/bg-9-3173-2012
https://doi.org/10.5194/acp-12-7867-2012
https://doi.org/10.5194/acp-12-7867-2012
https://doi.org/10.1002/jgrg.20118


T. Kaminski and P. J. Rayner: QND 4765

an atmospheric tracer transport model, Tellus B, 47, 471–489,
1995.

Knorr, W., Kaminski, T., Scholze, M., Gobron, N., Pinty, B., Gier-
ing, R., and Mathieu, P.-P.: Carbon Cycle Data Assimilation
with a Generic Phenology Model, J. Geophys. Res.-Biogeo., 115,
G04017, https://doi.org/10.1029/2009JG001119, 2010.

Koffi, E. N., Rayner, P. J., Scholze, M., Chevallier, F., and Kamin-
ski, T.: Quantifying the constraint of biospheric process pa-
rameters by CO2 concentration and flux measurement networks
through a carbon cycle data assimilation system, Atmos. Chem.
Phys., 13, 10555–10572, https://doi.org/10.5194/acp-13-10555-
2013, 2013.

Koffi, E. N., Rayner, P. J., Norton, A. J., Frankenberg, C., and
Scholze, M.: Investigating the usefulness of satellite-derived flu-
orescence data in inferring gross primary productivity within
the carbon cycle data assimilation system, Biogeosciences, 12,
4067–4084, https://doi.org/10.5194/bg-12-4067-2015, 2015.

Krause, A., Singh, A., and Guestrin, C.: Near-optimal sensor place-
ments in Gaussian processes: Theory, efficient algorithms and
empirical studies, J. Mach. Learn. Res., 9, 235–284, 2008.

Lauvaux, T., Schuh, A., Bocquet, M., Wu, L., Richardson, S.,
Miles, N., and Davis, K.: Network design for mesoscale in-
versions of CO2 sources and sinks, Tellus B, 64, 17980,
https://doi.org/10.3402/tellusb.v64i0.17980, 2012.

Law, R. M., Rayner, P. J., and Wang, Y. P.: Inversion of di-
urnally varying synthetic CO2: Network optimization for an
Australian test case, Global Biogeochem. Cy., 18, gB1044,
https://doi.org/10.1029/2003GB002136, 2004.

Mahecha, M. D., Gans, F., Sippel, S., Donges, J. F., Kaminski,
T., Metzger, S., Migliavacca, M., Papale, D., Rammig, A., and
Zscheischler, J.: Detecting impacts of extreme events with eco-
logical in situ monitoring networks, Biogeosciences, 14, 4255–
4277, https://doi.org/10.5194/bg-14-4255-2017, 2017.

Masutani, M., Woollen, J. S., Lord, S. J., Emmitt, G. D.,
Kleespies, T. J., Wood, S. A., Greco, S., Sun, H., Terry, J.,
Kapoor, V., Treadon, R., and Campana, K. A.: Observing sys-
tem simulation experiments at the National Centers for Envi-
ronmental Prediction, J. Geophys. Res.-Atmos., 115, d07101,
https://doi.org/10.1029/2009JD012528, 2010.

Miller, C. E., Crisp, D., DeCola, P. L., Olsen, S. C., Rander-
son, J. T., Michalak, A. M., Alkhaled, A., Rayner, P., Jacob,
D. J., Suntharalingam, P., Jones, D. B. A., Denning, A. S.,
Nicholls, M. E., Doney, S. C., Pawson, S., Boesch, H., Con-
nor, B. J., Fung, I. Y., O’Brien, D., Salawitch, R. J., Sander,
S. P., Sen, B., Tans, P., Toon, G. C., Wennberg, P. O., Wofsy,
S. C., Yung, Y. L., and Law, R. M.: Precision requirements
for space-based data, J. Geophys. Res.-Atmos., 112, d10314,
https://doi.org/10.1029/2006JD007659, 2007.

Nickless, A., Ziehn, T., Rayner, P. J., Scholes, R. J., and Engel-
brecht, F.: Greenhouse gas network design using backward La-
grangian particle dispersion modelling – Part 2: Sensitivity anal-
yses and South African test case, Atmos. Chem. Phys., 15, 2051–
2069, https://doi.org/10.5194/acp-15-2051-2015, 2015.

Norton, A. J., Rayner, P. J., Koffi, E. N., and Scholze, M.:
Assimilating solar-induced chlorophyll fluorescence into the
terrestrial biosphere model BETHY-SCOPE: Model descrip-
tion and information content, Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2017-34, in review, 2017.

O’Brien, D. M. and Rayner, P. J.: Global observations of
the carbon budget, 2, CO2 column from differential ab-
sorption of reflected sunlight in the 1.61 µm band of
CO2, J. Geophys. Res.-Atmos., 107, ACH6-1–ACH6-16,
https://doi.org/10.1029/2001JD000617, 2002.

O’Brien, D. M., Polonsky, I. N., Utembe, S. R., and Rayner, P. J.:
Potential of a geostationary geoCARB mission to estimate sur-
face emissions of CO2, CH4 and CO in a polluted urban environ-
ment: case study Shanghai, Atmos. Meas. Tech., 9, 4633–4654,
https://doi.org/10.5194/amt-9-4633-2016, 2016.

Patra, P. K. and Maksyutov, S.: Incremental approach to the optimal
network design for CO2 surface source inversion, Geophys. Res.
Lett., 29, 1459, https://doi.org/10.1029/2001GL013943, 2002.

Patra, P. K., Maksyutov, S., Baker, D., Bousquet, P., Bruhwiler, L.,
Chen, Y.-H., Ciais, P., Denning, A. S., Fan, S., Fung, I. Y., Gloor,
M., Gurney, K. R., Heimann, M., Higuchi, K., John, J., Law,
R. M., Maki, T., Peylin, P., Prather, M., Pak, B., Rayner, P. J.,
Sarmiento, J. L., Taguchi, S., Takahashi, T., and Yuen, C.-W.:
Sensitivity of optimal extension of CO2 observation networks to
model transport, Tellus B, 55, 498–511, 2003a.

Patra, P. K., Maksyutov, S., Sasano, Y., Nakajima, H., Inoue, G.,
and Nakazawa, T.: An evaluation of CO2 observations with
Solar Occultation FTS for Inclined-Orbit Satellite sensor for
surface source inversion, J. Geophys. Res.-Atmos., 108, 4759,
https://doi.org/10.1029/2003JD003661, 2003b.

Raupach, M. R., Rayner, P. J., Barrett, D. J., DeFries, R. S.,
Heimann, M., Ojima, D. S., Quegan, S., and Schmullius,
C. C.: Model-data synthesis in terrestrial carbon observation:
methods, data requirements and data uncertainty specifications,
Glob. Change Biol., 11, 378–397, https://doi.org/10.1111/j.1365-
2486.2005.00917.x, 2005.

Rayner, P., Scholze, M., Knorr, W., Kaminski, T., Gier-
ing, R., and Widmann, H.: Two decades of terrestrial
Carbon fluxes from a Carbon Cycle Data Assimilation
System (CCDAS), Global Biogeochem. Cy., 19, GB2026,
https://doi.org/10.1029/2004GB002254, 2005.

Rayner, P., Michalak, A. M., and Chevallier, F.: Fundamen-
tals of Data Assimilation, Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2016-148, 2016.

Rayner, R. J.: Optimizing CO2 observing networks in the presence
of model error: results from TransCom 3, Atmos. Chem. Phys.,
4, 413–421, https://doi.org/10.5194/acp-4-413-2004, 2004.

Rayner, P. J. and O’Brien, D. M.: The utility of remotely sensed
CO2 concentration data in surface source inversions, Geophys.
Res. Lett., 28, 175–178, 2001.

Rayner, P. J., Enting, I. G., and Trudinger, C. M.: Optimizing the
CO2 Observing Network for Constraining Sources and Sinks,
Tellus B, 48, 433–444, 1996.

Rayner, P. J., Law, R. M., O’Brien, D. M., Butler, T. M., and Dil-
ley, A. C.: Global observations of the carbon budget 3. Initial
assessment of the impact of satellite orbit, scan geometry, and
cloud on measuring CO2 from space, J. Geophys. Res.-Atmos.,
107, ACH2-1–ACH2-7, https://doi.org/10.1029/2001JD000618,
2002.

Rayner, P. J., Raupach, M. R., Paget, M., Peylin, P., and Koffi, E.:
A new global gridded data set of CO2 emissions from fossil
fuel combustion: Methodology and evaluation, J. Geophys. Res.-
Atmos., 115, d19306, https://doi.org/10.1029/2009JD013439,
2010.

www.biogeosciences.net/14/4755/2017/ Biogeosciences, 14, 4755–4766, 2017

https://doi.org/10.1029/2009JG001119
https://doi.org/10.5194/acp-13-10555-2013
https://doi.org/10.5194/acp-13-10555-2013
https://doi.org/10.5194/bg-12-4067-2015
https://doi.org/10.3402/tellusb.v64i0.17980
https://doi.org/10.1029/2003GB002136
https://doi.org/10.5194/bg-14-4255-2017
https://doi.org/10.1029/2009JD012528
https://doi.org/10.1029/2006JD007659
https://doi.org/10.5194/acp-15-2051-2015
https://doi.org/10.5194/gmd-2017-34
https://doi.org/10.1029/2001JD000617
https://doi.org/10.5194/amt-9-4633-2016
https://doi.org/10.1029/2001GL013943
https://doi.org/10.1029/2003JD003661
https://doi.org/10.1111/j.1365-2486.2005.00917.x
https://doi.org/10.1111/j.1365-2486.2005.00917.x
https://doi.org/10.1029/2004GB002254
https://doi.org/10.5194/gmd-2016-148
https://doi.org/10.5194/acp-4-413-2004
https://doi.org/10.1029/2001JD000618
https://doi.org/10.1029/2009JD013439


4766 T. Kaminski and P. J. Rayner: QND

Rayner, P. J., Utembe, S. R., and Crowell, S.: Constraining re-
gional greenhouse gas emissions using geostationary concentra-
tion measurements: a theoretical study, Atmos. Meas. Tech., 7,
3285–3293, https://doi.org/10.5194/amt-7-3285-2014, 2014.

Scholze, M., Kaminski, T., Rayner, P., Knorr, W., and
Giering, R.: Propagating uncertainty through prognos-
tic CCDAS simulations, J. Geophys. Res., 112, D17305,
https://doi.org/10.1029/2007JD008642, 2007.

Scholze, M., Buchwitz, M., Dorigo, W., Guanter, L., and Que-
gan, S.: Reviews and syntheses: Systematic Earth observations
for use in terrestrial carbon cycle data assimilation systems,
Biogeosciences, 14, 3401–3429, https://doi.org/10.5194/bg-14-
3401-2017, 2017.

Shiga, Y. P., Michalak, A. M., Randolph Kawa, S., and Engelen,
R. J.: In-situ CO2 monitoring network evaluation and design: A
criterion based on atmospheric CO2 variability, J. Geophys. Res.-
Atmos., 118, 2007–2018, https://doi.org/10.1002/jgrd.50168,
2013.

Szolgayová, J., Fuss, S., Kaminski, T., Scholze, M., Gusti, M.,
Heimann, M., and Tavoni, M.: The benefits of investing into im-
proved carbon flux monitoring, Cogent Economics & Finance,
4, 1239672, https://doi.org/10.1080/23322039.2016.1239672,
2016.

Tarantola, A.: Inverse Problem Theory and methods for model pa-
rameter estimation, SIAM, Philadelphia, 2005.

Timmermans, R., Lahoz, W., Attié, J.-L., Peuch, V.-H., Curier, R.,
Edwards, D., Eskes, H., and Builtjes, P.: Observing System Sim-
ulation Experiments for air quality, Atmos. Environ., 115, 199–
213, https://doi.org/10.1016/j.atmosenv.2015.05.032, 2015.

van der Tol, C., Verhoef, W., and Rosema, A.: A
model for chlorophyll fluorescence and photosynthe-
sis at leaf scale, Agr. Forest Meteorol., 149, 96–105,
https://doi.org/10.1016/j.agrformet.2008.07.007, 2009.

Wang, J. S., Kawa, S. R., Eluszkiewicz, J., Baker, D. F., Moun-
tain, M., Henderson, J., Nehrkorn, T., and Zaccheo, T. S.: A
regional CO2 observing system simulation experiment for the
ASCENDS satellite mission, Atmos. Chem. Phys., 14, 12897–
12914, https://doi.org/10.5194/acp-14-12897-2014, 2014.

Ziehn, T., Nickless, A., Rayner, P. J., Law, R. M., Roff, G., and
Fraser, P.: Greenhouse gas network design using backward La-
grangian particle dispersion modelling – Part 1: Methodology
and Australian test case, Atmos. Chem. Phys., 14, 9363–9378,
https://doi.org/10.5194/acp-14-9363-2014, 2014.

Biogeosciences, 14, 4755–4766, 2017 www.biogeosciences.net/14/4755/2017/

https://doi.org/10.5194/amt-7-3285-2014
https://doi.org/10.1029/2007JD008642
https://doi.org/10.5194/bg-14-3401-2017
https://doi.org/10.5194/bg-14-3401-2017
https://doi.org/10.1002/jgrd.50168
https://doi.org/10.1080/23322039.2016.1239672
https://doi.org/10.1016/j.atmosenv.2015.05.032
https://doi.org/10.1016/j.agrformet.2008.07.007
https://doi.org/10.5194/acp-14-12897-2014
https://doi.org/10.5194/acp-14-9363-2014

	Abstract
	Introduction
	Methodology
	Evolution of the field
	Separate and integrated QND
	Simplified model
	Complex example

	Suggested next steps
	Data availability
	Competing interests
	Special issue statement
	Acknowledgements
	References

