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Abstract. The assessment of the ocean biota’s role in cli-
mate change is often carried out with global biogeochemi-
cal ocean models that contain many components and involve
a high level of parametric uncertainty. Because many data
that relate to tracers included in a model are only sparsely
observed, assessment of model skill is often restricted to trac-
ers that can be easily measured and assembled. Examination
of the models’ fit to climatologies of inorganic tracers, after
the models have been spun up to steady state, is a common
but computationally expensive procedure to assess model
performance and reliability. Using new tools that have be-
come available for global model assessment and calibration
in steady state, this paper examines two different model types
– a complex seven-component model (MOPS) and a very
simple four-component model (RetroMOPS) – for their fit
to dissolved quantities. Before comparing the models, a sub-
set of their biogeochemical parameters has been optimised
against annual-mean nutrients and oxygen. Both model types
fit the observations almost equally well. The simple model
contains only two nutrients: oxygen and dissolved organic
phosphorus (DOP). Its misfit and large-scale tracer distribu-
tions are sensitive to the parameterisation of DOP produc-
tion and decay. The spatio-temporal decoupling of nitrogen
and oxygen, and processes involved in their uptake and re-
lease, renders oxygen and nitrate valuable tracers for model
calibration. In addition, the non-conservative nature of these
tracers (with respect to their upper boundary condition) in-
troduces the global bias (fixed nitrogen and oxygen inven-
tory) as a useful additional constraint on model parameters.
Dissolved organic phosphorus at the surface behaves antago-
nistically to phosphate, and suggests that observations of this
tracer – although difficult to measure – may be an important
asset for model calibration.

1 Introduction

Global biogeochemical ocean models are now routinely used
to assess the ocean biota’s role in climate change. Although
these models have become ever more complex with respect to
the number of biogeochemical tracers they contain, they are
often calibrated only against a subset of their components,
mostly nutrients, oxygen and components of the carbon cycle
(e.g. Bacastow and Maier-Reimer, 1991; Ilyina et al., 2013;
Cocco et al., 2013; Cabre et al., 2015).

There has been an intensive discussion about the neces-
sary level of marine ecosystem model complexity, mostly
on a theoretical basis, or in a local or regional context (e.g.
Anderson, 2005, 2006; Le Quere, 2006; Flynn, 2006; Leles
et al., 2016; Shimoda and Arhonditsis, 2016). It remains an
open question as to whether additional complexity is of ad-
vantage for representing biogeochemical processes and trac-
ers on a global scale (i.e. for processes acting on rather long
timescales and large space scales). For example, Kriest et al.
(2010, 2012) found no large differences when comparing
model skill with respect to oxygen and phosphate across
a range of models of different complexity, but quite large ef-
fects of parameter settings when applying a coarse examina-
tion of the parameter space.

However, a thorough and dense scan of the parameter
space would be required for a fair assessment of the virtues of
models of different complexity. Such a scan usually requires
many model evaluations, which, given the long equilibration
timescales of coupled global models (Khatiwala, 2008; Wun-
sch and Heimbach, 2008; Primeau and Deleersnijder, 2009;
Siberlin and Wunsch, 2011), is difficult to carry out. For as-
sessment of only surface properties and processes, a short
model spin-up may be sufficient; however, on a global scale,
many centuries to millennia of coupled model simulations

Published by Copernicus Publications on behalf of the European Geosciences Union.



4966 I. Kriest: Calibration of a simple and a complex global marine biogeochemical model

are necessary in order to remove the drift in biogeochemical
tracer fields and fit to observed properties (Kriest and Os-
chlies, 2015; Séférian et al., 2016).

Only recently tools have become available that allow for
a reduction in simulation times, such as the Transport Matrix
Method (TMM, Khatiwala et al., 2005), which replaces the
ocean circulation model with an efficient “offline” circula-
tion, or methods that solve for steady-state tracer fields using
Newton’s method. The latter require either the inversion of
the Jacobian (e.g. Kwon and Primeau, 2006), or the appli-
cation of matrix-free Newton–Krylov (MFNK, Khatiwala,
2008; Li and Primeau, 2008) to compute the steady-state
solution. Surrogate-based optimisation replaces the original
and computationally expensive model by a so-called surro-
gate, which is created from a less accurate but computation-
ally cheaper model. The latter is corrected to reduce the mis-
alignment between the two solutions. Priess et al. (2013) ap-
plied this method, together with the TMM, to recover param-
eters of a simple global biogeochemical model; the surrogate
in their case consisted of shorter (decades) spin-ups.

The gain in computational efficiency resulting from these
methods can then be used for a systematic calibration of
global biogeochemical models. For example, Kwon and
Primeau (2006, 2008) used global climatological data sets of
phosphate, inorganic carbon and alkalinity to calibrate a sim-
ple global biogeochemical model. The misfit between ob-
served and simulated phosphate was used by DeVries et al.
(2014) to calibrate parameters related to particle properties in
a simple two-component, nutrient-restoring model. In a sim-
ilar approach Holzer et al. (2014) optimised parameters for
opal production and dissolution against observed silicate.
Letscher et al. (2015) switched between a complex and a sim-
ple model of ocean biogeochemistry to estimate production
and decay rates of dissolved organic phosphorus on a global
scale.

All these biogeochemical models employed in global pa-
rameter estimates were of a low level of biogeochemical
complexity. One reason for this restriction might be asso-
ciated with the variety of timescales associated with more
complex models. Piwonski and Slawig (2016) used MFNK to
evaluate the steady state of simple and complex biogeochem-
ical models. They noted that “[. . . ] for more complex mod-
els the Newton method requires more attention to solver pa-
rameter settings [. . . ]” (Piwonski and Slawig, 2016), which
may be related to the highly nonlinear structure of these
models. The nonlinearity, and the large number of parame-
ters, also complicates their simultaneous optimisation (Ward
et al., 2010). On a global scale, these problems are ampli-
fied by the sparsity of observations of organism groups, par-
ticularly of higher trophic levels. Observations of dissolved
inorganic constituents, on the other hand, are much more fre-
quent and therefore provide more information on the spatio-
temporal variability of these tracers.

Recently, Kriest et al. (2017) combined the TMM with
an estimation of a distribution algorithm (covariance ma-

trix adaption evolution strategy, CMA-ES), to optimise six
biogeochemical parameters of a seven-component model
against global climatologies of annual mean phosphate, ni-
trate and oxygen. They showed that annual mean tracer con-
centrations did not provide much information on parame-
ters related to the dynamic biological processes taking place
in the euphotic zone, but that parameters related to long
timescales and large space scales (e.g. the remineralisation
length scale or so-called “Martin b”; see also Kriest et al.,
2012) could be estimated from these observations. The large
uncertainty associated with surface parameter estimates can
be attributed to the relatively small volume of the surface
ocean, leading to a misfit that is dominated by deep-ocean
observations.

Replacing the misfit function by a metric that targets the
surface ocean, and/or contains additional observations that
provide information on plankton, could be one way to re-
solve this indeterminacy. Alternatively, one could omit these
parameters from the optimisation and focus on parameters
more tightly connected to the meso- and bathypelagic ocean.
A more drastic measure lies in downscaling the biogeochem-
ical model to a simpler system, that only contains compo-
nents with a counterpart in global, quasi-synoptic data sets.
The latter procedure may help to elucidate which level of
complexity is required to represent and investigate global dis-
tribution and patterns of biogeochemical tracers.

This paper examines the latter two potential solu-
tions: firstly, I investigate if parameters related to oxidant-
dependent decay in the mesopelagic zone are better con-
strained by this type of misfit function. This is done by re-
placing four parameters of the optimisation carried out by
Kriest et al. (2017) by parameters related to oxidant affin-
ity of remineralisation, and – to account for the possible al-
terations in fixed nitrogen turnover – by the maximum ni-
trogen fixation rate. Secondly, given the successful param-
eter optimisation of simpler models noted above, and also
to acknowledge the fact that these models have been pop-
ular and quite successful in global simulations of ocean
biogeochemistry (e.g. Bacastow and Maier-Reimer, 1990,
1991; Matear and Hirst, 2003; Kwon and Primeau, 2006;
Dutkiewicz et al., 2006), this paper presents an optimised
model, which has been derived from downscaling the seven-
component model MOPS (Kriest and Oschlies, 2015; Kriest
et al., 2017) to a model that retains only three abiotic dis-
solved tracers (phosphate, nitrate and oxygen) and one bi-
otic tracer (dissolved organic phosphorus, DOP). This new
model, which I refer to as “RetroMOPS”, includes the oxi-
dant dependency of MOPS, but is otherwise very similar to
models applied earlier in global models. In contrast to some
of these models (Marchal et al., 1998; Najjar et al., 2007) it
assumes no relaxation to observed tracer fields, but simulates
fully prognostic changes in surface production, as in Bacas-
tow and Maier-Reimer (1991), Maier-Reimer (1993), Matear
and Hirst (2003) and Parekh et al. (2005).
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After a brief presentation of model MOPS (Kriest and Os-
chlies, 2015), the downscaled model RetroMOPS is intro-
duced, followed by an outline on circulation, optimisation
and experimental design (Sect. 2). In Sect. 3 results from op-
timisation of both MOPS and RetroMOPS are presented and
discussed. The paper closes with conclusions drawn from
these experiments.

2 Models, experiments and optimisations

2.1 The MOPS model

The MOPS model (Kriest and Oschlies, 2015) is based on
phosphorus and simulates seven compartments. Phosphate,
phytoplankton, zooplankton, DOP and detritus are calcu-
lated in units of millimoles of phosphorus per cubic me-
tre (mmolPm−3). Oxygen is coupled to the P cycle with
a constant stoichiometry given by R−O2 :P. Aerobic rem-
ineralisation of organic matter follows a saturation curve,
with half-saturation constant KO2 . Aerobic remineralisation
ceases when oxygen declines; at the same time, denitrifica-
tion takes over, as long as nitrate is available above a defined
threshold, DINmin. Like the oxic process, suboxic reminer-
alisation follows a saturation curve for oxidant nitrate, with
half-saturation constant KDIN. MOPS does not explicitly re-
solve the different oxidation states of inorganic nitrogen (ni-
trite, N2O, ammonium), but assumes immediate coupling of
the different processes involved in nitrate reduction, the end
product being dinitrogen (see also Paulmier et al., 2009; Kri-
est and Oschlies, 2015). All organic components are charac-
terised by a constant N :P stoichiometry of d = 16. Loss of
fixed nitrogen is balanced by a simple parameterisation of
nitrogen fixation by cyanobacteria, which relaxes the nitrate-
to-phosphate ratio to d with a time constant, µ∗NFix. In the
long term, nitrogen fixation balances the simulated loss of
fixed nitrogen via denitrification, although they may occur
in distant areas (see Kriest and Oschlies, 2015, for more de-
tails).

Detritus sinks with a vertically increasing sinking speed:
w = a z. Assuming a constant degradation rate r , in equi-
librium this would result in a particle flux curve given by
F(z)∝ z−b, with b = r/a. For better comparison with values
of b derived from observations (e.g. Martin et al., 1987; Van
Mooy et al., 2002; Buesseler et al., 2007), and with the sim-
pler model RetroMOPS (see below), a is expressed in terms
of b (assuming constant, nominal r = 0.05 d−1). A fraction
of detritus deposited at the sea floor (at the bottom of the
deepest vertical box) is buried instantaneously in some hy-
pothetical sediment. The fraction buried depends on the de-
position rate onto the sediment. Non-buried detritus is resus-
pended into the last box of the water column, where it is
treated as regular detritus. The phosphorus budget is closed
on an annual timescale through resupply via river runoff.
More details about the biogeochemical model and parame-

ters and their effects on model behaviour can be found in
Kriest and Oschlies (2013) and Kriest and Oschlies (2015).

2.2 Model RetroMOPS

MOPS’ structure has been simplified by skipping the ex-
plicit simulation of phytoplankton, zooplankton and detritus
(see Fig. S1 in the Supplement). The remaining equations
of, and functional relationships between, phosphate, nitrate,
oxygen and DOP have been parameterised similar to MOPS.
Because the downscaled model resembles so many features
of earlier biogeochemical models simulated in a global con-
text (e.g. Bacastow and Maier-Reimer, 1991; Maier-Reimer,
1993; Matear and Hirst, 2003), but keeps the oxidant depen-
dency of MOPS, the model is named “RetroMOPS”.

2.2.1 Primary production

Like MOPS, RetroMOPS calculates primary production only
in the euphotic zone, which, in the current configuration, is
confined to the upper two numerical layers (kEZ = 2, z=
0–120 m). As in Kriest et al. (2010, 2012) phytoplankton
is parameterised with a constant concentration of PHY=
0.02 mmolP m−3, which is the mean phytoplankton concen-
tration in the upper 120 m of two optimised model set-ups
MOPS

◦S and MOPS
◦D (see below). Using this constant phy-

toplankton concentration, RetroMOPS calculates light- and
nutrient-dependent primary production P in each layer k as
follows:

P(k)

=

{
µPHY PHYmin

(
f (I (k)),

L(k)
KPHY+L(k)

)
: k ≤ kEZ

0 : k > kEZ
, (1)

where f (I (k)) defines light-limitation, µPHY is the
temperature-dependent maximum growth rate of phyto-
plankton, and L determines the limiting nutrient: L(k)=
min(PO4(k),DIN(k)/d) (see Kriest and Oschlies, 2015, for
more details). Note that, with the given parameters for nu-
trient and light affinity, the resulting specific growth rates
(P(k)/PHY) of optimised MOPS and RetroMOPS are quite
similar (0.127 d−1 for MOPS and 0.102 d−1 for Retro-
MOPS).

2.2.2 The fate of primary production: export, DOP
production and remineralisation

Instead of resolving heterotrophic processes (zooplankton
grazing, excretion and egestion) at the sea surface explic-
itly, in RetroMOPS a fraction σ of organic matter fixed pho-
tosynthetically is immediately released as dissolved organic
phosphorus. DOP then decays to phosphate and nitrate with
a constant rate λ. To allow for a potential fast recycling loop
at the surface, RetroMOPS parameterises an additional de-
cay rate, λs, that affects DOP only in the first two layers. By
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doing so, the model mimics multiple DOP fractions with dif-
ferent decay rates, as observed by Hopkinson et al. (2002).
The remaining fraction of production, 1− σ , of each layer
in the euphotic zone is exported to the layers below, where
it immediately remineralises to nutrients, following a power-
law of depth. The discretised form for flux F into box j from
all (surface) source layers k, with 1≤ k ≤ kEZ is then given
by the following:

F(j)=

k=kEZ∑
k=1

P(k) (1− σ)1z(k)
(

z(j)

z(k+ 1)

)−b
for j > k, (2)

where 1z(k) denotes the thickness of a numerical (source)
layer, and z(j) is the depth of the upper boundary of layer j .
The flux divergence,D = dF/dz, for any box j in discretised
form is defined by

D(j)=
F(j − 1)−F(j)

1z(j)
. (3)

Neglecting oxidant dependency of decay, the entire flux di-
vergence D(j) would be released as phosphate and nitrate,
with equivalent oxidant consumption. It is, however, possi-
ble that oxidants become depleted at some location. Earlier
models in this case continued the degradation of organic mat-
ter, thereby implicitly assuming unspecified oxidants (e.g.
Marchal et al., 1998; Matear and Hirst, 2003; Najjar et al.,
2007; Kriest et al., 2010, 2012). In contrast, RetroMOPS, like
MOPS, accounts for suppression of remineralisation (oxic or
suboxic) in the absence of sufficient oxidants, by assuming
saturation curves for the limitation by either oxygen or ni-
trate. The amount of organic matter available for oxidation is
given by the decay of dissolved organic matter, λDOP, and
by the flux divergence, D(j) (Eq. 3). The discretised flux di-
vergence, that can actually be remineralised with available
oxidants (oxygen and/or nitrate), Deff(j), is then determined
by

Deff(j)=D(j)
(
sO2(j)+ sDIN(j)

)
, (4)

where sO2(j) and sDIN(j) represent the oxidant limitation
terms, expressed as saturation curves lO2 and lNO3 for ei-
ther oxygen (oxic remineralisation) or nitrate (denitrifica-
tion), with half-saturation constantsKO2 andKDIN. Denitrifi-
cation is further inhibited by oxygen via (1−lO2), resulting in
sO2(j)+ sDIN(j)= 1 (see also Eqs. 15–27 of Kriest and Os-
chlies, 2015). In all models oxic remineralisation only takes
place down to a a lower threshold of O2 = 4mmolm−3. The
lower threshold for denitrification is determined by parame-
ter DINmin, and subject to optimisation.

The flux divergence that cannot be remineralised under the
given concentrations of oxidants is added as additional flux
divergence to the layer below:

D(j + 1)=D(j + 1)+
(
D(j)−Deff(j)

) 1z(j)

1z(j + 1)
, (5)

where again Deff(j +1) is evaluated. In the bottom layer the
remaining flux that has not been remineralised in the water
column eventually enters the sediment.

2.2.3 Benthic exchanges

Models that implicitly assume unspecified oxidants often
prescribe a zero boundary flux, i.e. all organic matter in the
last bottom box is degraded instantaneously (e.g. Marchal
et al., 1998; Matear and Hirst, 2003; Najjar et al., 2007;
Yool et al., 2011). Both MOPS and RetroMOPS have to take
“leftover” organic matter flux into account, that arrives unde-
graded at the sea floor because of incomplete remineralisa-
tion in the water column. The explicit detritus compartment
in MOPS allows for only partial burial at the sea floor, which
may result in detritus accumulation in the deepest model box
(see Kriest and Oschlies, 2013). Because there is no such
detritus compartment in RetroMOPS, all flux arriving at the
sea floor is buried immediately. Therefore, MOPS and Retro-
MOPS differ with respect to their lower boundary condition.

2.2.4 Nitrogen fixation

Both RetroMOPS and MOPS do not explicitly simulate
cyanobacteria, but assume zero net growth of these organ-
isms, parameterised as an immediate release of fixed nitrogen
as nitrate:

S(k)

=

{
µ∗NFix f1(T(k))f2(DIN(k),PO4(k)) : k ≤ kEZ

0 : k > kEZ
, (6)

where f1 parameterises the temperature dependence of ni-
trogen fixation with a second-order polynomial approxima-
tion of the function by Breitbarth et al. (2007) and f2 reg-
ulates the relaxation of the nitrate : phosphate ratio towards
the global observed stoichiometric ratio of d = 16. The max-
imum nitrogen fixation µ∗NFix (mmol N m−3 d−1) parame-
terises an implicit cyanobacteria population. As in MOPS, on
long timescales nitrogen fixation balances the simulated loss
of fixed nitrogen via denitrification, although the regions of
nitrogen loss and gain can be spatially segregated (Kriest and
Oschlies, 2015).

2.2.5 Source minus sinks

Combining the above-mentioned processes and interactions,
the time rate of change in each layer k for phosphate, nitrate,
oxygen and DOP due to biogeochemical processes are

SPO4 = −P︸︷︷︸
production

+ λs DOP︸ ︷︷ ︸
surface decay

+ [D+ λDOP]
[
sO2 + sDIN

]︸ ︷︷ ︸
decay and flux divergence

(7)
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SDOP
= σDOPP︸ ︷︷ ︸

release

− λs DOP︸ ︷︷ ︸
surface decay

− λDOP
[
sO2 + sDIN

]︸ ︷︷ ︸
decay

(8)

SO2 = R−O2 :PP︸ ︷︷ ︸
production

− R−O2 :P λs DOP︸ ︷︷ ︸
surface decay

−R−O2 :P
[
D+ λDOP∗

]
sO2︸ ︷︷ ︸

decay and flux divergence

(9)

SDIN
= −d P︸ ︷︷ ︸

production

+ S︸︷︷︸
N-fixation

+ d λs DOP︸ ︷︷ ︸
surface decay

+ [D+ λDOP]
[
sO2 d − sDINR−NO3 :P

]︸ ︷︷ ︸
decay and flux divergence

. (10)

To summarise, RetroMOPS is similar to model “N-DOP” of
Kriest et al. (2010, 2012), to the phosphorus component of
the model presented by Parekh et al. (2005) or to the mod-
els presented by Bacastow and Maier-Reimer (1991) and
Maier-Reimer (1993), the exception being details of primary
production at the sea surface, and the explicit parameteri-
sation of oxidant-dependent remineralisation. By assuming
constant cyanobacteria biomass, and a relaxation of the ni-
trate : phosphate ratio via immediate release of fixed nitro-
gen, its parameterisation of nitrogen fixation is similar to the
one described by Maier-Reimer et al. (2005) and Ilyina et al.
(2013). Because RetroMOPS lacks explicit phytoplankton,
zooplankton and detritus, it has eight fewer tunable parame-
ters than MOPS.

2.3 Circulation and physical transport

All model simulations apply the Transport Matrix Method
(Khatiwala, 2007, github.com/samarkhatiwala/tmm) for
tracer transport, with monthly mean transport matrices
(TMs), wind, temperature and salinity (for air–sea gas ex-
change) derived from a 2.8◦ global configuration of the MIT
ocean model, with 15 levels in the vertical, as described in
Marshall et al. (1997) and Dutkiewicz et al. (2005). The cir-
culation model was forced with climatological annual cycles
of wind, heat and freshwater fluxes, and subject to a weak
restoring of surface temperature and salinity to observa-
tions. Its configuration is similar to that applied in the Ocean
Carbon-cycle Model Intercomparison Project (OCMIP) (Orr
et al., 2000), which has been assessed against observations
of temperature, salinity and mixed-layer depth (Doney et al.,
2004), CFCs (Dutay et al., 2002; Matsumoto et al., 2004),
and radiocarbon (Matsumoto et al., 2004; Graven et al.,
2012). Overall, its performance is comparable to other global
models.

Using this efficient offline approach, with a time step
length of 1/2 day for tracer transport and 1/16 day for bio-
geochemical interactions, a simulation of 3000 years requires
about 0.5–1.5 h on 4 nodes (24-core Intel Xeon Ivybridge)
at a high-performance computing centre (www.hlrn.de). Af-
ter 3000 years most tracers have approached steady state (see

also Kriest and Oschlies, 2015, for long time trends of MOPS
simulated in a different circulation), and the transient of the
misfit function becomes very small (see Fig. S2). The last
year is used for model analysis and evaluation of the misfit
function.

2.4 Optimisation algorithm

Optimisation of parameters is carried out using an estima-
tion of distribution algorithm, namely the covariance ma-
trix adaption evolution strategy (Hansen and Ostermeier,
2001; Hansen, 2006). The application of this algorithm to the
coupled biogeochemistry–TMM framework has shown good
performance with respect to quality and efficiency (in terms
of function evaluations) and is described only briefly below.
More details about the algorithm, its set-up and coupling to
the global biogeochemical model can be found in Kriest et al.
(2017).

Let n be the number of biogeochemical parameters to be
estimated. In each iteration (“generation”) the algorithm de-
fines a population of λ individuals (biogeochemical parame-
ter vectors of length n), with λ= 10 (derived from the default
parameter λ= 4+ 3 ln(n), Hansen and Ostermeier, 2001).
The candidate vectors are sampled from a multi-variate nor-
mal distribution, which generalises the usual normal distri-
bution, also known as Gaussian distribution, from R to the
vector space Rn.

Following the simulation of these λ individual model set-
ups to steady state (3000 years), the misfit function is evalu-
ated, and information of the current as well as previous gen-
erations is used to update the probability distribution in Rn
such that the likelihood to sample good solutions increases.
Usually, the realisation of the probability distribution update
ensures that information of former solutions fades out slowly,
resisting for several iterations. Therefore, the population (the
number of model simulations per generation) in CMA-ES is
smaller, and of less computational demand, than in classical
evolutionary algorithms. Nevertheless, CMA-ES can still, to
a certain degree, perform well with misfit functions charac-
terised by a rough topography (Kriest et al., 2017).

2.5 Misfit function

As in Kriest et al. (2017) the misfit to observations J is de-
fined as the root mean square error (RMSE) between simu-
lated and observed annual mean phosphate, nitrate and oxy-
gen concentrations (Garcia et al., 2006a, b), mapped onto the
three-dimensional model geometry. Although regridding the
observations onto the coarser model geometry removes some
of the variability, this method is computationally more effi-
cient in an optimisation framework. Also, a sensitivity study
with a similar coupled model showed that accounting for the
variance inherent in the observational data and arising from
regridding did not have a large influence on the misfit (Kriest
et al., 2010).
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Table 1. Experimental set-up of optimisation. Parameters that stay fixed are highlighted. For parameters subject to optimisation we indicate
the assigned a priori lower and upper parameter boundary (parameter range, RA

2) for optimisation in square brackets; n/a: not applicable for
this model.

Experiment MOPSr MOPS
◦S MOPS

◦D RetroMOPSr RetroMOPS◦ Unit

σ n/a n/a n/a 0.67 [0.4–0.8]
λs n/a n/a n/a 0 [0.0–3.6] yr−1

λ 0.17 0.17 0.17 0.36 [0.036–3.6] yr−1

Ic 24 [4–48] 9.65 9.65 9.65 Wm−2

KPHY 0.03125 [0.001–0.5] 0.5 0.5 0.5 mmolPm−3

µZOO 2 [1–3] 1.89 n/a n/a d−1

κZOO 3.2 [1.6–4.8] 4.55 n/a n/a (dmmolPm−3)−1

b∗ 0.858 [0.4–1.8] [0.4–1.8] 1.0725 [0.4–1.8]
R−O2 :P 170 [150–200] [150–200] 171.7 171.7 mmol O2 : mmol P

µNFix 2 2 [1–3] 1.19 1.19 nmolNd−1

DINmin 4 4 [1–16] 15.80 15.80 mmolNm−3

KO2 2 2 [1–16] 1.0 1.0 mmolO2 m−3

KDIN 8 8 [2–32] 31.97 31.97 mmolNm−3

∗ Note that from b (the optimised parameter) in MOPS we calculate the rate of vertical increase in sinking speed a of w = a z, via a = r/b. For
r we assume nominal detrital remineralisation of r = 0.05 d−1. The resulting values for a are 0.058275 (b = 0.858), 0.0278 (lower boundary)
and 0.125 (upper boundary).

Deviations between model and observations are weighted
by the volume of each individual grid box, Vi, expressed
as fraction of total ocean volume, VT. The resulting sum of
weighted deviations is then normalised by the global mean
concentration of the respective observed tracer:

J =

3∑
j=1

J (j)=

3∑
j=1

1
oj

√√√√ N∑
i=1
(mi,j − oi,j )2

Vi

VT
, (11)

where j = 1,2,3 indicates the tracer type and i = 1, . . .,N
are the model locations for N = 52749 model grid boxes; oj
is the global average observed concentration of the respective
tracer. The terms mi,j and oi,j are model and observations,
respectively. By weighting each individual misfit with vol-
ume, J serves more as a long-timescale geochemical estima-
tor, in contrast to a misfit function that, for example, focuses
on (rather fast) turnover in the surface layer, or resolves the
seasonal cycle.

2.6 Optimisation of MOPS

Based on a “hand-tuned”, a priori set-up of MOPS (Kri-
est and Oschlies, 2015), which hereafter is referred to as
MOPSr, Kriest et al. (2017) presented an optimisation of
mostly surface-related parameters (hereafter referred to as
MOPS

◦S). They chose a very wide range of parameter types,
across all trophic levels and acting on different time and
space scales. In that optimisation many of the surface param-
eters were difficult to constrain, because of a misfit function
that consists mostly of observations in the deep ocean. Op-
timisation MOPS

◦D presented here applies the same metric,

but focuses on parameters in subsurface waters. The selection
of parameters to be optimised is motivated by the large uncer-
tainty regarding extent and expansion of oxygen minimum
zones in models (Cocco et al., 2013; Cabre et al., 2015), and
because little knowledge exists about their values, or even
parameterisations.

Parameter KO2 determines the affinity of the aerobic rem-
ineralisation to oxygen, and the gradual transition from this
process to denitrification (see Eqs. 15 and 20 of Kriest and
Oschlies, 2015). KDIN determines the affinity of denitrifica-
tion to nitrate. Parameter DINmin defines the lower thresh-
old for the onset of denitrification. MOPS

◦D also optimises
the maximum rate of nitrogen fixation, µ∗NFix, which bal-
ances fixed nitrogen loss through denitrification. The fifth
and sixth parameter to be estimated are the oxygen require-
ment per mole of phosphorus remineralised, R−O2 :P, and
the flux (or remineralisation) length scale, b. Upper and
lower boundaries of parameters to be optimised have been
set to a rather wide range (Table 1), to allow optimisation
to explore a wide range of potential parameters. The op-
timal parameters of MOPS

◦S for light and nutrient affin-
ity of phytoplankton, zooplankton grazing and its mortality
are retained in MOPS

◦D (Table 1). Therefore optimisation
MOPS

◦D builds upon a previous tuning of surface processes.
Most of the processes affected by the parameters to be

optimised take place in suboxic waters, e.g. of the eastern
equatorial Pacific (EEP). Given the coarse model geometry,
it is possible that circulation dynamics are not represented
well in the model. To investigate the influence of observa-
tions within this region on misfit function and parameter es-
timates, MOPS

◦D is repeated with a reduced data set, that
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excludes the EEP (here: east of 140◦W, between 10◦ S and
10◦ N) from the misfit function. This optimisation is named
MOPS

◦D
∗ .

2.7 Optimisation of RetroMOPS

In the RetroMOPS model, processes such as grazing of phy-
toplankton, and its subsequent release of organic or inorganic
phosphorus are parameterised via a single component, DOP.
Because DOP production and decay regulate the partitioning
between sinking and dissolved organic matter, optimisation
RetroMOPS◦ targets these parameters, namely σ , λs and λ.
While σ , as the parameter that regulates the export ratio, may
be more or less well constrained, λs and λ both include a va-
riety of processes, which may act on timescales of days to
years. Hopkinson et al. (2002) applied a multi-G model to
incubations of DOP sampled in surface waters of the mid-
dle Atlantic Bight, and measured decay constants for the
very labile fraction (32 % of total DOP) of ≈ 80 yr−1, with
a range of 3–254 yr−1. Half of total DOP was in the labile
fraction and characterised by a decay constant of ≈ 7 yr−1,
ranging from 0.8 to 43 yr−1. However, these observations
may not be directly transferable to globally simulated DOP,
because most of the simulated ocean is far off the productive
shelf areas; further, DOP in RetroMOPS is assumed to mimic
a variety of biogeochemical components and processes. In
a three-step optimisation study Letscher et al. (2015), who
optimised a global model of semi-labile and refractory DOM
against observations estimated rates of 0.016 yr−1 for semi-
labile DOP at the surface, and 0.22 yr−1 for semi-labile DOP
in the mesopelagic zone, i.e. much lower than suggested by
Hopkinson et al. (2002). Summarising, the potential decay
rate of the very labile to semi-labile fraction varies over sev-
eral orders of magnitude, from O(0.01) to O(100) yr−1.

Optimisation of RetroMOPS focuses on the dominant la-
bile to semi-labile fraction, but allows for some potential fast
turnover rates of DOP at the sea surface (towards the values
observed by Hopkinson et al., 2002). To obtain a first im-
pression on model sensitivity towards these parameters, a set
of nine a priori experiments, that vary λ between 0.18 and
0.72 yr−1 and λs between 0 and 0.36 yr−1, has been carried
out (Table 2), which provides a guidance for upper and lower
boundaries for optimisation of RetroMOPS. To nevertheless
explore the full range of potential decay rates, the maximum
possible rate (λ+ λs) for optimisation is set to 7.2 yr−1, to-
wards the average decay rate of the labile DOP observed
by Hopkinson et al. (2002). Optimised RetroMOPS◦ will be
compared to the sensitivity experiment with the lowest misfit
(λs = 0, λ= 0.36), which is denoted as RetroMOPSr.

The explicit representation of detritus in MOPS may result
in considerable numerical diffusion (particularly on coarse
vertical grids as used here; see also Kriest and Oschlies,
2011) and thus in a different estimate of optimal b than when
applying a direct flux curve, such as in RetroMOPS. There-
fore, b is included as the fourth parameter to be optimised.

Table 2. Results (misfit J ) of sensitivity experiments with model
RetroMOPS, regarding parameters λs and λ for DOP decay rate.
The misfit of the reference scenario RetroMOPSr is indicated in
bold.

λs = 0 λs = 0.18 λs = 0.36

λ= 0.18 0.502 0.480 0.480
λ= 0.36 0.466 0.476 0.493
λ= 0.72 0.503 0.522 0.539

The effect of explicit vs. implicit flux description on param-
eter estimate will be discussed in more detail below.

All other parameters (primary production, oxidant-
dependent remineralisation, stoichiometry) have been fixed
to those obtained in optimisations MOPS

◦S and MOPS
◦D

(Table 1). By doing so, optimisation RetroMOPS◦ builds
upon previous optimisations of the more complex MOPS,
and overlooks the faint possibility that a parameter that is
insensitive in one model, might not be so in another. While it
might be desirable to optimise all parameters of RetroMOPS
at once, this study rather aims at investigating to what extent
a simpler model can serve as a shortcut to the more complex
one, given the applied misfit function and observations.

3 Results and discussion

3.1 Optimal remineralisation parameters of MOPS

Both R−O2 :P and b are constrained very well by the observa-
tions, as indicated by a well-defined minimum of the misfit
function (Fig. S3) and a narrow, almost Gaussian distribution
of the best 10–1 % of parameters (Fig. 1). On the other hand,
parameters related to the oxidant affinity of remineralisation
or nitrogen fixation are determined with lower accuracy. This
is also reflected in the rather wide range of candidate solu-
tions within 1 ‰ of the best misfit, which vary between 10
and 20 % of their assigned a priori range (Table 3). Thus, in
the presence of noise inherent in the observations, some pa-
rameters could only be estimated within a quite wide range
of uncertainty, a feature that has already been addressed in
a one-dimensional model by Löptien and Dietze (2015). So
far, the potential consequences of this parametric uncertainty
for other metrics (such as extent of oxygen minimum zones,
OMZs) and possibly transient scenarios (e.g. their impact on
simulated future evolution of OMZ volume) are not known.

The good determination of b by dissolved inorganic trac-
ers is in agreement with earlier studies that applied the same
model (Kriest et al., 2017; Schartau et al., 2017). Its optimal
value is very close to that obtained in MOPS

◦S, i.e. higher
than the value estimated by Kwon and Primeau (2006). Opti-
misation of maximum nitrogen fixation rate shows a slightly
skewed distribution, but suggests an overall good estimate
of this parameter. Optimal parameters for oxidant-dependent

www.biogeosciences.net/14/4965/2017/ Biogeosciences, 14, 4965–4984, 2017



4972 I. Kriest: Calibration of a simple and a complex global marine biogeochemical model

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

Figure 1. Parameter distribution of model simulations obtained during the optimisation of MOPS
◦D, whose misfit do not exceed a threshold

limit of 1J = 1.1J ∗ (10 %, red bars) or 1J = 1.01J ∗ (1 %, open bars) of the minimum misfit J ∗. For the projection parameters of all
model simulations in the optimisation trajectory were grouped into 50 classes.

remineralisation also show wide, skewed distributions, with
their mode near the lower (KO2 ) or upper (KDIN, DINmin)
boundary.

The high thresholds for the limitation of denitrification
protect nitrate from becoming depleted in the upwelling re-
gions, particularly the eastern equatorial Pacific, and resem-
ble results obtained by Moore and Doney (2007): To pre-
vent their model from reproducing unrealistically low ni-
trate values in this region, they had to impose a threshold of
32 mmol NO3 m−3 for the occurrence of denitrification. An
explanation for this requirement of a high nitrate threshold
might be found in the representation of the equatorial inter-
mediate current system in coarse-resolution models, which
can result in spurious zonal oxygen gradients (Dietze and
Loeptien, 2013; Getzlaff and Dietze, 2013). It is possible that
the optimisation of biogeochemical parameters attempts to
ameliorate these effects, which are in fact caused by the pa-
rameterisation of physics.

To further investigate the impact of this region on the pa-
rameter estimate, an additional optimisation was carried out,
that targets the same set of parameters, but omits the eastern
equatorial Pacific from the calculation of the misfit function.
This optimisation MOPS

◦D
∗ generates a lower threshold of ni-

trate for the onset of denitrification, and a higher maximum
nitrogen fixation rate (Table 3), resulting in slightly enhanced
fixed nitrogen turnover, particularly in the eastern equatorial

Pacific (Fig. 2). Compared to MOPS
◦D the estimates ofKDIN

and DINmin become more uncertain with respect to the best
10 % to 1 ‰ individuals, and even show a bimodal distribu-
tion (Fig. S4, Table 3). The uncertainty in parameter esti-
mates can be related to the missing data in regions of sim-
ulated denitrification. Because the misfit function excludes
the EEP it is lower then when considering the entire ocean
(Table 3). A posteriori evaluation of misfit to the entire data
set results in a misfit of 0.439, the same as for MOPS

◦D. The
only moderate effect of the eastern equatorial Pacific on op-
timisation is likely related to the small volume occupied by
this region, compared to total ocean volume.

Global fixed nitrogen turnover depends on parameters for
oxidant dependency of remineralisation: in MOPS

◦S, both
denitrification and nitrogen fixation are very high (Fig. 2),
and outside the observed range (Table 4). Because of the re-
duced affinity to nitrate, in MOPS

◦D pelagic fixed nitrogen
loss is almost halved and now agrees with observed global
estimates (Table 4). Further, as a result of lower denitrifi-
cation, the nitrate deficit in the eastern equatorial Pacific is
smaller, but at the cost of a small underestimate of observed
oxygen in this region (Fig. 3). The latter is a consequence
of the now very low half-saturation constant for oxygen up-
take (Table 3). In MOPS

◦D
∗ the constraint on nitrate affinity is

again relaxed, resulting in an enhancement of fixed nitrogen
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Table 3. Optimisation results: minimum misfit J ∗, optimum parameters and their uncertainties. To determine parameter uncertainty, we
selected a group � of the 1 ‰ best individuals, i.e. individuals defined by a misfit Ji : Ji/J ∗− 1≤1J , with 1J = 0.001. The number of
these individuals N(�) is also denoted as fraction n(�) of all individuals of the optimisation λ×N , where N is the number of generations,
and λ= 10 the population size. For each parameter 2 the first column gives the optimal parameter 2∗ (i.e. the average parameter of the
last generation). The second and third column present the parameter range of all individuals of �, expressed as absolute value (R2(�)), and
normalised by the a priori range of parameters (RA

2; see Table 1): r2(�)= R2(�)/RA
2 value.

Experiment: MOPS
◦S MOPS

◦D MOPS
◦D
∗ RetroMOPS◦

Parameter 2∗ R2(�) r2(�) 2∗ R2(�) r2(�) 2∗ R2(�) r2(�) 2∗ R2(�) r2(�)

σ – – – – – – – – – 0.73 [0.7–0.7] 6
λs – – – – – – – – – 0.02 [−0.1 to 0.2] 8
λ – – – – – – – – – 0.47 [0.4–0.5] 4

Ic 9.66 [8.9–10.3] 3
KPHY 0.50 [0.4–0.5] 28
µZOO 1.89 [1.6–2.0] 22 – – –
κZOO 4.57 [3.0–4.7] 53 – – –

b§ 1.34 [1.3–1.4] 4 1.39 [1.4–1.4] 3 1.41 [1.4–1.4] 2 0.98 [1.0–1.0] 2
R−O2 :P 167.0 [165–170] 9 171.7 [170–173] 6 174.9 [174–176] 5

µNFix 1.19 [1.1–1.4] 13 1.47 [1.4–1.6] 10
DINmin 15.80 [13–16] 20 12.96 [12–16] 25
KO2 1.00 [0.3–1.8] 10 1.00 [0.5–1.4] 6
KDIN 31.97 [30–34] 12 31.97 [22–33] 35

J ∗ 0.450 0.439 0.427 0.458
λ×N 1820 1190 2000 660
N(�) 718 514 1285 262
n(�) 39 43 64 40

b§ Note that from b (the optimized parameter) in the model we calculate the rate of vertical increase in sinking speed a, always assuming a nominal detrital remineralization of r = 0.05 d−1.

Table 4. Global annual fluxes of primary production (P ), grazing (GRAZ), fixed nitrogen loss through pelagic denitrification (NLOSS),
export production (F120, flux through 120 m), flux through 2250 m (F2250) and benthic burial (BUR), in PgNyr−1, for the reference
experiment of MOPSr, MOPS

◦S, MOPS
◦D, MOPS

◦D
∗ and RetroMOPS, for which we show the fluxes of the (best) reference experiment,

RetroMOPSr, the range of all sensitivity experiments, and the optimised run, RetroMOPS◦. Also shown are some globally derived observed
estimates. Conversion between different elements was carried out via N : P = 16 and C : P = 122.

Experiment P GRAZ NLOSS F120 F2250 BUR

MOPSr 5.44 3.52 0.098 0.918 0.107 0.051
MOPS

◦S 7.52 4.74 0.117 1.102 0.056 0.018
MOPS

◦D 7.70 4.97 0.068 1.080 0.055 0.022
MOPS

◦D
∗ 7.80 5.06 0.083 1.081 0.053 0.021

RetroMOPSr 5.56 – 0.078 1.194 0.043 0.010
RetroMOPS (range) 4.88–6.21 – 0.076–0.084 1.076–1.286 0.039–0.047 0.008–0.014
RetroMOPS◦ 6.31 – 0.071 1.12 0.052 0.009

Observeda 7.68–8.09 4.79–5.71 0.05–0.08 0.29–1.53 0.03–0.07 0.02

a Observed fluxes are from Carr et al. (2006, primary production), Honjo et al. (2008, particle flux), Lutz et al. (2007, particle flux), Dunne et al.
(2007, particle flux), Schmoker et al. (2013, primary production, zooplankton grazing excluding or including mesozooplankton grazing), Wallmann
(2010, burial; without shelf and slope region), and Kriest and Oschlies (2015, fixed nitrogen loss).

turnover by about 20 %, towards the upper limit of observed
estimates (Table 4).

Overall, optimising parameters related to the oxidant affin-
ity of oxic and suboxic remineralisation leads to a slightly
improved fit to tracer concentrations, to J ∗ = 98 % of that
of MOPS

◦S (Table 3), and to a better agreement with ob-
served estimates of global biogeochemical fluxes (Table 4).
Although the eastern equatorial Pacific, and potential unre-

solved processes in simulated circulation, has no effect on
global misfit, its effect on some parameter estimates results
in an increase in global fixed nitrogen loss of about 20 %.

3.2 A shortcut for surface biology: RetroMOPS

Given that parameters related to surface biology were dif-
ficult to constrain in MOPS

◦S, and, within a certain range,
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Figure 2. Biogeochemical fluxes of MOPS
◦S, MOPS

◦D, MOPS
◦D
∗ and RetroMOPS◦. Top: export production (here: sedimentation at 120 m).

Second row from top: nitrogen fixation. Third row from top: fixed nitrogen loss through pelagic denitrification. Bottom: sedimentation at
2250 m. All fluxes in millimoles of nitrogen per squared metre per year (mmol N m−2 yr−1). Each sub-panel also gives the global flux in
teramoles of nitrate per year (Tmol N yr−1).

exert only a small influence on the fit to global tracer distri-
butions (Kriest et al., 2017), this section examines if Retro-
MOPS, as a model that parameterises surface biology in
a much simpler way, suffices to represent biogeochemical
tracer fields. Starting from growth and decay parameters op-
timised in MOPS, sensitivity experiments and optimisation
search for optimal parameters for DOP production and de-
cay, that mimic the surface nutrient turnover of MOPS.

3.2.1 Sensitivity to DOP production and decay

In RetroMOPS fast DOP recycling results in higher primary
production, export production and deep organic particle flux,
especially in the equatorial upwelling regions (Fig. 4). While
this has only a small effect on vertically or globally averaged
phosphate concentrations (Figs. 5 and 6), it causes a large
underestimate of nitrate in the ocean (Figs. S6 and 6). The

underestimate can be explained by the tight coupling be-
tween production, export and denitrification, which leads to
higher denitrification and global fixed N loss (Fig. 4), and
thus a larger nitrate deficit (Fig. S6) in the eastern equatorial
Pacific, in agreement with effects hypothesised and investi-
gated by Landolfi et al. (2013).

In contrast, nitrogen fixation is not much affected by DOP
turnover rates. The imbalance between nitrogen losses and
gains suggests that the models, even after 3000 years of sim-
ulation, are not yet in equilibrium, which might be explained
by the large spatial scales between regions of fixed nitrogen
loss and gain. The divergence increases with higher DOP re-
cycling rates (and thus larger denitrification), indicating that
there is no unique equilibration timescale for one and the
same model, but that it depends on biogeochemical param-
eters associated with sinking and remineralisation of organic
matter, as observed earlier (Kriest and Oschlies, 2015). The
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Figure 3. Vertically averaged tracers of MOPS
◦S, MOPS

◦D, MOPS
◦D
∗ and RetroMOPS◦. Top: phosphate. Second row from top: nitrate.

Third row from top: oxygen. Bottom: DOP. Phosphate (mmol P m−3), nitrate (mmol N m−3) and oxygen (mmol O2 m−3) are expressed as
deviation from observations (Garcia et al., 2006a, b), and DOP is given in absolute concentrations (mmol P m−3). Each sub-panel also gives
the global average tracer concentration (mmol m−3).

resulting requirement for long spin-up times for a complete
model adjustment, their dependence on biogeochemical pa-
rameters and the model’s nonlinearity during spin-up (Kri-
est and Oschlies, 2015) complicate model calibration and
assessment, in addition to those factors already investigated
by Séférian et al. (2016). It emphasises the need for a thor-
ough assessment of trade-offs between model complexity
and computational demand, and the possibility to examine
the parameter space in sufficient detail.

The effect of DOP recycling on oxygen concentrations dif-
fers from its effect on nitrate. With fast recycling DOP is
remineralised mostly at its place of production, and does not
contribute much to oxygen consumption in deep waters (see
also Fig. S5). As a consequence, deep oxygen concentrations
are high, particularly in the northern North Pacific (Fig. 5),
and global average oxygen is overestimated by more than
10 % (Fig. 6). Slow DOP recycling, in contrast, leads to less
organic matter remineralisation in well-ventilated waters, but
more remineralisation in deep waters. This in turn results in

an underestimate of global mean oxygen of almost 10 % (for
λ= 0.18 yr−1 and λs = 0 yr−1), which is somewhat surpris-
ing, given that production and export in this scenario are the
lowest of all simulations (Fig. 4). Overall, the best fit to ob-
served inorganic tracer concentrations is achieved with mod-
erate DOP recycling (Table 2, Fig. 5).

Most likely because of its fixed inventory, phosphate con-
tributes to less than one-third of the misfit function and is
quite insensitive to changes in DOP recycling rate (Fig. 6).
Nitrate and oxygen play a larger role for model fit, because
their inventory can adapt to changing biogeochemistry. The
misfit to nitrate and oxygen increases more or less in concert
with their bias (Fig. 6). Therefore, these tracers with their
flexible inventory provide some very useful constraints on
DOP recycling rates.

Slow DOP recycling increases DOP concentrations at
the surface, particularly in the ACC and in the northern
North Atlantic (Fig. 5) towards concentrations that exceed
the observations (Yoshimura et al., 2007; Raimbault et al.,
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Figure 4. As in Fig. 2, but for three sensitivity experiments with model RetroMOPS.

2008; Torres-Valdes et al., 2009; Letscher and Moore, 2015).
Only the simulation with quite fast DOP recycling of λ=
0.72 yr−1 and λs = 0.36 yr−1 results in reasonable concen-
trations of DOP – but at the cost of too-high phosphate con-
centrations along these sections, and a too-high global misfit
(Table 2), a too-low nitrate and too-high oxygen inventory
(Figs. 5 and 6). Therefore, it should be noted that despite
the relatively good fit of RetroMOPSr, it nevertheless suf-
fers from a potential mismatch to DOP, which so far is not
included in misfit evaluation.

3.2.2 Optimal parameters for DOP cycling in
RetroMOPS

All four parameters of RetroMOPS◦ are well constrained by
the observations, as indicated by the narrow, almost Gaus-
sian distribution around the optimal parameter (Figs. 7, S7,
and Table 3). Optimisation reduces the decay rate for surface
DOP, λs, to almost zero, i.e. in RetroMOPS there seems to be
no requirement for fast DOP turnover at the surface, similar

to the results obtained by Letscher et al. (2015). The optimal
total remineralisation rate of DOP (λ+λs) is about 0.5 yr−1,
more than twice as high as the recycling rate estimated by
Letscher et al. (2015), but lower than the rates observed by
Hopkinson et al. (2002). The optimal fraction of primary pro-
duction released as DOP, σ , is 73 % and agrees very well with
σ = 0.74 obtained by Kwon and Primeau (2006); however,
their optimal DOP decay rate was twice as high (1 yr−1).

When optimising a simple biogeochemical model simi-
lar to RetroMOPS against observed phosphate, Kwon and
Primeau (2006) noted a correlation between DOP produc-
tion fraction and decay rate, impeding the simultaneous esti-
mation of these parameters. On the contrary, in optimisation
RetroMOPS◦ both σ and the DOP decay rates seem to be
rather well constrained. An analysis of the different compo-
nents of the misfit function, similar to Fig. 4 of Kwon and
Primeau (2006), helps to resolve this apparent contradiction.
For this, in Fig. 8 the total misfit J and its components J (j)
of Eq. (11), as well as the bias of the best 5 % of all in-
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Figure 5. As in Fig. 3, but for three sensitivity experiments with model RetroMOPS.

dividuals are mapped against σ and DOP decay timescale
τ = 1/(λ+ λs).

Note that the analysis depicted in Fig. 8 differs from that
of Kwon and Primeau (2006) in several aspects: firstly, their
global biogeochemical model was fully equilibrated (due to
their direct evaluation of steady state via Newton’s method),
whereas simulations of RetroMOPS may still exhibit some
drift in nitrogen inventory (see Sect. 3.2.1 and Supplement).
Second, Kwon and Primeau (2006) evaluated model sensi-
tivity at b = 1, while Fig. 8 displays a region ±5 % around
optimal b = 0.98. Thirdly, Fig. 8 maps only the misfit of so-
lutions realised by the optimisation routine, while Kwon and
Primeau (2006) analysed the entire parameter space at b = 1.
Most important, the misfit function applied here is based on
three components, with very different properties and associ-
ated timescales (see above), which can be advantageous for
parameter estimation.

The misfit to phosphate (Fig. 8, lower left panel) indi-
cates an elongated valley in the two-dimensional projection
on DOP decay timescale τ (years) and DOP production frac-

tion σ and resembles Fig. 4 of Kwon and Primeau (2006). In-
deed, one of the lowest misfits to phosphate is achieved with
about the same set of parameters as in Kwon and Primeau
(2006), namely τ ≈ 1, σ ≈ 0.73. However, nitrate and oxy-
gen show a different and, partly, antagonistic pattern: the best
fit to observed nitrate is achieved with rather high values of
σ ≈ 0.8 and τ between about 1 and 2 years, while the best
fit to oxygen is obtained with σ ≈ 0.7 and τ ≈ 1.5 years.
The superposition of the different components of the misfit
function leads to a unique optimum at τ = 2 (λ= 0.47 and
λs = 0.02) and σ = 0.73 (Table 3). Thus, oxygen and nitrate
can provide some useful independent information on these
parameters.

This can partly be explained by their non-conservative na-
ture. As noted in Sect. 3.2.1 the inventory of these tracers
may change freely according to model parameterisation. The
resulting bias to observations thus adds two important com-
ponents to the misfit function, both of which are indepen-
dent: while high DOP turnover (as simulated by low τ ) bi-
ases nitrate low (Fig. 8, upper mid panel), the same value
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Figure 6. Components of the misfit function (J (j ) of Eq. 11; upper panels) and model bias (lower panels), projected onto λs and λ. Bias
is expressed as (mj /oj − 1)× 100, where mj is the global average model tracer, and oj the average observed tracer, for the three tracers
phosphate (j = 1; left panels), nitrate (j = 2; mid panels) and oxygen (j = 3; right panels). An open star indicates the respective lowest
misfit or bias.
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Figure 7. As in Fig. 1, but for optimisation RetroMOPS◦.

leads to an overestimate of oxygen (Fig. 8, upper right panel;
see also Fig. 6). This behaviour can be explained with the
different processes and boundary conditions for the two trac-

ers already noted in Sect. 3.2.1: a high DOP turnover leads to
higher fluxes and a tighter coupling of production and den-
itrification in upwelling waters, causing a nitrate deficit in
the model (see above, and Fig. S6). On the other hand, it re-
duces preformed DOP in subducted waters, e.g. the Southern
Ocean, thereby decreasing aerobic remineralisation and oxy-
gen consumption in these waters on their passage towards,
for example, the northern North Pacific. The latter process
increases oxygen particularly in deep waters (Fig. S5).

To summarise, including nitrate and oxygen as non-
conservative tracers in the misfit function helps to resolve
parameters related to DOP production and decay on long
timescales. This can be explained by the different pathways
of DOP originating from upwelling regions or subducted wa-
ter masses in the high latitudes, and is confirmed by the anal-
ysis of sensitivity experiments presented in Sect. 3.2.1. How-
ever, a better fit to observed phosphate seems to come at the
expense of a mismatch to observed DOP concentration. It re-
mains to be seen if a simultaneous fit to observed inorganic
and organic phosphorus is possible.

3.2.3 Comparison of MOPS and RetroMOPS

The optimal b = 0.98 of RetroMOPS◦ is lower than that
of MOPS

◦S and MOPS
◦D. This may be partially explained

by the absence of numerical diffusion of detritus in Retro-
MOPS. As shown by Kriest and Oschlies (2011), in mod-
els that explicitly simulate detritus sinking with an upstream
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misfit misfit misfit

Figure 8. Model misfit and relative bias bj of RetroMOPS◦, plotted for parameter combinations of σ and DOP decay timescale τ , where
τ = 1/(λ+ λs). Relative bias is evaluated by bj = (mj /oj − 1)× 100, where mj denotes the global mean model concentration of tracer j ,
and oj the observed mean. Model misfit is shown as total misfit (J of Eq. 11; upper left) and separated into its components, normalised
by oj (J (j ) of Eq. 11; lower panels). The analysis is restricted to all individuals i whose b differs less than 5 % from optimal b∗, i.e.
|bi/b

∗
− 1|< 0.05. For better visibility some model solutions (≈ 10) that are outside the range 0.65≤ σ ≤ 0.85 and 0.2≤ τ ≤ 3 have been

omitted from the plot. Open squares denote optimal estimates by Kwon and Primeau (2006, total phosphate constraint), open circles the
optimal parameter from this study.

scheme the assumption of homogenous detritus distribution
in each vertical grid box causes an additional, usually down-
ward transport of detritus. This results in an effective b which
is about 10–20 % smaller (corresponding to faster sinking)
than the nominally prescribed b. Optimisation of MOPS ac-
counts for this additional numerical transport by increasing
b (= reducing sinking velocity) by some amount. Therefore,
optimal b of MOPS without any influence from numerical
diffusion would likely be around 1.1–1.2, i.e. closer to the
b = 0.98 of RetroMOPS◦. Considering this effect, the op-
timal b of MOPS

◦D and, in particular, RetroMOPS◦ agrees
with the optimal value of b = 1 found by Kwon and Primeau
(2006).

Despite its generally lower fluxes, fixed nitrogen loss in the
eastern equatorial Pacific is higher in RetroMOPS◦ than in
MOPS

◦D (Fig. 2), resulting in a nitrate deficit in this region.
Likely, the instantaneous remineralisation of sinking material
inherent in the direct flux parameterisation of RetroMOPS
causes a tighter spatial coupling between production, sink-
ing, remineralisation and upwelling (see also Sect. 3.2.1).
It has been suggested earlier that the production of slowly

degradable organic matter above upwelling regions and/or
oxygen minimum zones may help to decouple these pro-
cesses and avoid a runaway effect of nitrate loss (Landolfi
et al., 2013; Dietze and Loeptien, 2013). The very low opti-
mal value for surface DOP turnover λs found in this study,
and also in the study by Letscher et al. (2015), supports this
finding.

Simulated biogeochemical fluxes of RetroMOPS◦ are gen-
erally lower than those of MOPS

◦D, and their horizon-
tal pattern is less pronounced (Fig. 2). This likely arises
from the prescribed, constant phytoplankton concentration
of RetroMOPS◦, which mutes biogeochemical dynamics in
productive regions of the high latitudes and upwelling ar-
eas. Because RetroMOPS◦ applies the same parameters as
MOPS

◦D for oxidant-dependent processes, its global fixed
nitrogen loss and gain is comparable to that of the more com-
plex model.

The total misfit to observed dissolved tracer concentra-
tions of RetroMOPS◦ is only about 4 % higher than that of
MOPS

◦D, suggesting that even the simple RetroMOPS can
perform almost as well as MOPS with respect to annual mean
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phosphate, nitrate and oxygen. As for MOPS, optimisation of
RetroMOPS against dissolved tracer concentrations results
in a good fit to global estimates of biogeochemical fluxes
(Table 4), and indicates that these tracers can provide means
to calibrate biogeochemical model fluxes on a global scale,
even – or especially – for a model as simple as RetroMOPS.

3.3 How much complexity is needed?

Current, state-of-the-art biogeochemical models address
questions such as the future evolution of oxygen minimum
zones, or uptake of anthropogenic carbon by the ocean
(e.g. Cocco et al., 2013; Cabre et al., 2015; Kwiatkowski
et al., 2014). Compared to these models, MOPS and Retro-
MOPS, presented here, are of a rather low structural com-
plexity. RetroMOPS is quite similar to early models ad-
dressing these tasks, among them the pioneering work of
Ernst Maier-Reimer (e.g. Bacastow and Maier-Reimer, 1990,
1991; Maier-Reimer, 1993), while MOPS resembles models
of intermediate complexity such as HAMOCC (e.g. Six and
Maier-Reimer, 1996; Maier-Reimer et al., 2005) or HadOCC
(Palmer and Totterdell, 2001). However, very simple mod-
els such as RetroMOPS are still being used, e.g. for in-
verse methods (e.g. Kwon and Primeau, 2006, 2008) or to
investigate specific processes, where their computational ef-
ficiency and structural simplicity facilitates model analysis
(e.g. Parekh et al., 2005; Kwon et al., 2009; Primeau et al.,
2013). In contrast to these very simple model are models that
simulate different plankton groups and size classes of de-
tritus, e.g. PISCES (Aumont et al., 2015), MEDUSA (Yool
et al., 2013) or PlankTOM (Le Quere et al., 2005).

Despite this large range of structural complexity, there
have been only few studies which evaluate these models
against a common data set, and with a common circulation.
One example is the study by Kwiatkowski et al. (2014), who
compared the output of six different global biogeochemical
models, coupled to a common circulation model, and simu-
lated over 118 years, against data sets of surface pCO2, DIC,
alkalinity, DIN, Chl a and primary production. The models
varied in complexity from 7 to 57 compartments, and thus
also in their computational demand by almost a factor of 5.
To assess model skill Kwiatkowski et al. (2014) ranked the
models with respect to spatial correlation between, and vari-
ance of, model and observations. In general, the more com-
plex models performed better with respect to simulated vari-
ance, but the simpler models performed better with respect to
spatial correlation. Although no model was superior across
all metrics, they concluded that “Results suggest little evi-
dence that higher biological complexity implies better model
performance in reproducing observed global-scale bulk prop-
erties of ocean biogeochemistry” (Kwiatkowski et al., 2014).

The lack of distinction between models and their ability
to represent biogeochemical tracers is corroborated by the
study by Galbraith et al. (2015), who evaluated three differ-
ent biogeochemical ocean models within a common frame-

work for the Earth system. The models varied in complex-
ity between 1 and 30 components. Following a spin-up over
100 years, Galbraith et al. (2015) analysed both a transient
and pre-industrial scenario with respect to the model’s rep-
resentation of macronutrients, oxygen, DIC and export. All
three models performed quite similarly with respect to the
observed tracer fields, as well as with the transient evolution
of carbon uptake and oxygen concentrations. Therefore, in
the presence of noise inherent in observations, and given the
sparsity of biological data sets, the question of whether more
complexity is indeed beneficial seems unresolved so far – at
least if the model is supposed to represent mostly biogeo-
chemical processes, instead of biological interactions, and is
compared against bulk biogeochemical properties.

4 Conclusions

Based on a global metric for biogeochemical tracers, this
study assessed the skill of two optimised global biogeochem-
ical ocean models, as well as the metric’s capability to con-
strain the often uncertain model parameters.

Similar to an earlier study (Kriest et al., 2017) that targeted
parameters relevant for biogeochemical processes at the sea
surface, parameters for oxidant-dependent processes in the
mesopelagic zone could only be determined with a wide
range of uncertainty. The reason for this lack of resolution
can be found in the small volume occupied by either sur-
face or oxygen minimum zones (where oxidant dependency
is of relevance). Omission of the eastern equatorial Pacific
from the misfit function increases uncertainty in parameter
estimates, but does not fundamentally alter the outcome of
optimisation, likely because of the small volume of this re-
gion.

In contrast, parameters relevant for large-scale, global dis-
tributions of oxygen, such as remineralisation length scale
or stoichiometry, could be determined well; these parame-
ters were very similar in all experiments, and point towards
a shorter remineralisation length scale of b = 1.3 to b = 1.4,
compared to the canonical b = 0.858 suggested by Martin
et al. (1987).

Despite the uncertainty in estimates of some parameters,
and very small differences between models in the residual
misfit, optimisation of parameters for oxidant-dependent pro-
cesses results in a much better fit to observed estimates of
global fixed nitrogen turnover. The remaining mismatch to
observations can partly be attributed to circulation. Model
optimisations with different parameterisations of circulation
and the equatorial intermediate current system (e.g. using
TMs extracted from the UVic model; Kvale et al., 2017) will
help to examine, if a different parameterisation alters the cur-
rent requirement for a very high nitrate threshold of denitrifi-
cation, that currently helps to prevent nitrate from depletion.

Oxygen and nitrate add important additional constraints
on the estimation of biogeochemical parameters. Of particu-
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lar importance is that, in addition to the spatial information
they provide, their flexible inventory introduces the bias as
additional information for model calibration. The different
timescales and space scales of processes relevant for their
inventory may help to constrain parameters that govern dis-
solved organic matter production and decay. The effect of
these tracers on parameter estimates is of particular impor-
tance for models such as RetroMOPS and MOPS, that aim
at conserving all oxidants. It may be weaker for models that
continue remineralisation even under suboxic and/or low ni-
trate conditions, thereby implicitly assuming some “hidden”
oxidants. In these models it could be useful to track and ex-
amine potential oxidant deficits for model evaluation.

DOP recycling rate affects surface DOP and phosphate
concentrations conversely. If the model performs well with
respect to DOP, it overestimates phosphate concentrations. If
the model performs well with respect to phosphate, it overes-
timates surface DOP. Observations of DOP as an additional
constraint on model parameters will help us to find out if
there is a model solution that fits all tracers equally well.

With respect to annual mean tracer concentrations the sim-
ple model RetroMOPS can perform almost as well as the
more complex model MOPS, the residual misfit being only
5 % larger. Spatial patterns of fluxes in RetroMOPS are less
pronounced, but global tracer concentrations, inventories and
fluxes are comparable to that of MOPS, and in agreement
with observed estimates.

Although it is obvious that low- to intermediate-
complexity models such as the models presented here can-
not represent the level of detail embedded in models with,
for example, several plankton size classes, so far evaluation
with respect to the bulk biogeochemical observations does
not seem to indicate any superiority of more complex mod-
els on a global scale. This of course may change if our sci-
entific interest and model purpose is directed towards shorter
timescales, or surface patterns, for which the misfit function
applied provides little information. In this case more com-
plex data sets, such as different plankton groups, or particle
size distribution, may provide further insight about the level
of model complexity required. If focusing on large scales,
however, a simple model such as RetroMOPS or similarly
simple models may suffice to represent and analyse much of
the biogeochemical dynamics in the ocean.
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