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Abstract. Serial oxidation coupled with stable carbon and ra-
diocarbon analysis of sequentially evolved CO2 is a promis-
ing method to characterize the relationship between organic
carbon (OC) chemical composition, source, and residence
time in the environment. However, observed decay profiles
depend on experimental conditions and oxidation pathway.
It is therefore necessary to properly assess serial oxidation
kinetics before utilizing decay profiles as a measure of OC
reactivity. We present a regularized inverse method to esti-
mate the distribution of OC activation energy (E), a proxy
for bond strength, using serial oxidation. Here, we apply this
method to ramped temperature pyrolysis or oxidation (RPO)
analysis but note that this approach is broadly applicable to
any serial oxidation technique. RPO analysis directly com-
pares thermal reactivity to isotope composition by determin-
ing the E range for OC decaying within each temperature
interval over which CO2 is collected. By analyzing a decar-
bonated test sample at multiple masses and oven ramp rates,
we show that OC decay during RPO analysis follows a su-
perposition of parallel first-order kinetics and that resulting
E distributions are independent of experimental conditions.
We therefore propose the E distribution as a novel proxy to
describe OC thermal reactivity and suggest thatE vs. isotope
relationships can provide new insight into the compositional
controls on OC source and residence time.

1 Introduction

Natural organic matter present in aquatic environments, sed-
iments, soils, and vegetation contains roughly 3-fold more
carbon than the preindustrial atmosphere (Bianchi, 2011).
As such, the balance between organic carbon (OC) synthe-
sis and remineralization exerts a major control on the global
carbon cycle and on atmospheric CO2 levels (Lasaga et al.,
1985). However, OC remineralization rates are spatiotempo-
rally heterogeneous, leading to decay timescales that range
from minutes to millions of years (Boudreau and Ruddick,
1991; Forney and Rothman, 2012a; Middelburg, 1989). To
explain this variability, it has been hypothesized that reminer-
alization depends on multiple chemical and environmental
factors such as OC molecular structure (Burdige, 2007; Tege-
laar et al., 1989), microbial community composition (Pedler
et al., 2014; Schmidt et al., 2011), secondary chemical in-
teractions (Schmidt et al., 2011), and physical protection by
particles (Mikutta et al., 2006; Keil and Mayer, 2014). The
relative importance of these governing mechanisms remains
actively debated and is thought to vary depending on envi-
ronmental setting (Hedges et al., 2001; Rothman and Forney,
2007; Schmidt et al., 2011), thus limiting our mechanistic un-
derstanding of OC decay.
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This limitation is partially methodological in nature; tradi-
tional geochemical analyses often target either “bulk” OC or
trace “biomarker” molecules such as plant-wax fatty acids
(Galy et al., 2011; Galy and Eglinton, 2011; Hemingway
et al., 2016). While bulk measurements include all OC con-
tained within a sample, they offer no information on the dis-
tribution of chemical structure or reactivity within a complex
mixture. In contrast, biomarker analysis is highly specific but
individual compounds nonetheless still represent the average
of multiple sources. Furthermore, biomarkers typically con-
stitute ≤ 1 % of total OC and can be subject to production,
transport, and preservation biases (Hemingway et al., 2016).

To bridge the information gained by these methods, a
novel class of analytical techniques, termed “serial oxida-
tion”, has emerged. Such analyses separate carbon within
a bulk sample based on its susceptibility to decomposition
by chemical hydrolysis (Helfrich et al., 2007), UV light
(Beaupré et al., 2007; Follett et al., 2014), heat (Rosenheim
et al., 2008), or microbial respiration (Beaupré et al., 2016)
and measure the stable carbon (13C / 12C, expressed as δ13C)
and radiocarbon (14C / 12C, here expressed as fraction mod-
ern or Fm) content of evolved CO2. By separating CO2 into
multiple lability intervals, isotope ratios are obtained for car-
bon atoms exhibiting similar physical and/or chemical prop-
erties. Because δ13C provides information on the source of
organic matter while Fm reflects the amount of time that has
passed since organic compounds were initially synthesized,
serial oxidation is a promising method to directly probe the
compositional controls on OC source and residence time.

Still, a theoretical treatment of serial oxidation kinetics is
lacking, hindering our ability to correlate measured isotope
distributions with intrinsic chemical properties and reactivity.
In this study, we relate OC thermal recalcitrance to its corre-
sponding δ13C and Fm values using ramped-temperature py-
rolysis or oxidation (RPO). This method involves heating OC
at a controlled rate while continuously quantifying and col-
lecting evolved CO2, which is binned over user-defined time
intervals (termed “fractions”) and analyzed for δ13C and Fm
(Rosenheim et al., 2008; Hemingway et al., 2017). We de-
scribe non-isothermal OC decay rates as a function of E, the
Arrhenius activation energy, using a novel inverse solution
to the distributed activation energy model (Braun and Burn-
ham, 1987; Burnham and Braun, 1999; Cramer, 2004; White
et al., 2011). By conducting a set of kinetic experiments, we
show that the E distribution within a given OC mixture does
not depend on experimental conditions and is thus a reliable
proxy for bond strength and OC chemical composition.

We note that the modeling approach developed here is
broadly applicable to any serial oxidation technique, al-
though the resulting E distributions will differ depending
on oxidation pathway. For example, aromatic compounds
such as lignin have been shown to be highly photoreactive
(Spencer et al., 2009) despite their relatively high thermal
recalcitrance (Williams et al., 2014) and will likely be de-
scribed by lower E values when oxidized with UV light rel-
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Figure 1. RPO instrument schematic. User-defined inputs are
printed in blue, while observed measurements are printed in red (see
Table 1 for symbol definitions).

ative to RPO analysis. Here, we choose RPO because analy-
sis is rapid (≈ 3 h per sample), requires little material (150–
250 µg C), contains minimal preparation steps, and results in
small kinetic isotope fractionation (Hemingway et al., 2017).

We therefore treat E as a proxy for OC chemical struc-
ture and emphasize that thermal reactivity is not equivalent
to microbial reactivity in the environment (Leifeld and von
Lützow, 2014). Rather, by comparing E profiles and cor-
responding isotope compositions across environmental sam-
ples or experimental conditions (e.g., before and after mi-
crobial degradation), our method provides a framework to
probe how, if at all, OC source and turnover time (as mea-
sured by δ13C and Fm) are related to its chemical compo-
sition (as predicted by thermal E distributions). We begin
in Sect. 3 by deriving the governing equations to describe
a parallel superposition of first-order, non-isothermal decay.
Then, in Sect. 4, we describe a method to solve for the distri-
bution of E using a regularized inverse approach. Finally, in
Sect. 5, we determine the subset ofE that is contained within
each RPO fraction and directly relate OC reaction energet-
ics to corresponding isotope values. All calculations were
performed using the accompanying “rampedpyrox” Python
package (Hemingway, 2017).
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Table 1. List of mathematical symbols used throughout this study.

Symbol Parameter Units

A Dynamic disordered kinetic design matrix kJmol−1

α(t) Integral of G0-normalized thermogram at time t –
β Temperature ramp rate Ks−1

δ13Cf 13C / 12C ratio of RPO fraction f , expressed in per mill VPDB ‰
1E Activation energy step kJmol−1

1tj Time step for point j in t s
13−121E E difference between 13C- and 12C-containing compounds kJmol−1

Ei Activation energy for component i kJmol−1

E Continuous form of Ei kJmol−1

E Vector of discretized activation energy kJmol−1

Fmf 14C / 12C ratio for RPO fraction f , expressed as fraction modern –
G0 Total initial mass of carbon µg C
gi(0) Initial mass of carbon in component i µg C
gi(t) Mass of carbon in component i remaining at time t µg C
G(t) Mass of total carbon remaining at time t µg C
g(0,E) Continuous form of gi(0) µg C
g(t,E) Continuous form of gi(t) µg C
g Vector of G(t)/G0 at each time point –
ki(t) First-order rate coefficient for component i at time t s−1

k(t,E) Continuous first-order rate coefficient for energy value E at time t s−1

κi(t) Discrete, time-integrated first-order decay coefficient for component i at time t –
κ(t,E) Continuous, time-integrated first-order decay coefficient for energy value E at time t –
λ Regularization weighting factor –
mf Mass of carbon (as CO2) contained in RPO fraction f µg C
m(t) G0-normalized decay rate at time t s−1

nE Number of nodes in E –
nt Number of nodes in t –
pi(0) Fraction of G0 initially in component i –
pi(t) Fraction of G0 remaining in component i at time t –
p(0,E) Continuous form of pi(0) –
p(t,E) Continuous form of pi(t) –
p Vector of p(0,E)/1E at each energy point (kJmol−1)−1

5f (E) Subset of p(0,E) contained in RPO fraction f –
13/12r(t) Ratio of 13C / 12C decay at time t –
R Ideal gas constant kJmol−1 K−1

R First derivative operator matrix –
T (t) Temperature at time t K
t Vector of discretized time s
ω Arrhenius pre-exponential (“frequency”) factor s−1

2 Materials and methods

2.1 Sample selection and preparation

As a representative sample, we analyzed particulate organic
carbon (POC) contained in suspended sediments from the
surface of the Narayani River. This sample (PB-60) was col-
lected at the base of the Himalayas (27.70◦ N, 84.43◦ E) and
has been analyzed for bulk OC and plant-wax carbon iso-
topes (Galy et al., 2008, 2011; Galy and Eglinton, 2011).
Aliquots were taken for RPO analysis from freeze-dried,
archived material and acidified under HCl fumes at 60 ◦C for

72 h to remove carbonates (Whiteside et al., 2011). Because
residual chloride has been shown to interact with the RPO
catalyst wire (Hemingway et al., 2017), acidified aliquots
were rinsed 3× in 18.2 M� Milli-Q water and freeze-dried
overnight at −40 ◦C prior to analysis. For consistency and
to properly calculate RPO isotope mass balance, bulk %OC,
δ13C, and Fm values were remeasured using fumigated and
rinsed material (McNichol et al., 1994a, b). Resulting Fm for
rinsed material is 0.04 lower than that for unrinsed aliquots
(Galy et al., 2008), reflecting a minor loss of acid-soluble OC
for this sample during the rinsing step.
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5102 J. D. Hemingway et al.: Organic carbon activation energy and isotope composition

200 400 600 800 1000

Temperature (°C)

-20

-32

-30

-28

-26

-24

-22

1.0

0.0

0.2

0.4

0.6

0.8

 δ
13

C
 (‰

 V
PD

B)

Fm

200 400 600 800 1000

Temperature (°C)

0

-20

-15

-10

-5

 δ
13

C
 (‰

 V
PD

B)

(a) (b)

Figure 2. RPO results. Measured thermograms (gray shaded region, ppm CO2 axes not shown), δ13C values (white circles, left axes), and
Fm values (transparent bars, right axes) for (a) Narayani POC and (b) JGOFS sediment (Fm not measured). Fm bar widths correspond to
the temperature range of collection for each RPO fraction. Fm and δ13C analytical uncertainty is always smaller than point marker and is
therefore not shown (see Tables 2–3 for values).

To test if the presence of inorganic carbon (IC; e.g.,
CaCO3) affects decay kinetics, we additionally analyzed a
pure CaCO3 laboratory working standard (Icelandic spar;
Hemingway et al., 2017) as well as carbonate-rich sedi-
ment from the Southern Ocean (60.24◦ S, 170.19◦W) col-
lected for the Joint Global Ocean Flux Study (JGOFS; Sayles
et al., 2001). JGOFS aliquots were taken from archived
core-top material (0–0.5 cm, stored at −80 ◦C), freeze-dried
overnight at −40 ◦C, and homogenized prior to RPO analy-
sis. IC content, OC content, and bulk 13C composition were
re-quantified at the NOSAMS facility at the Woods Hole
Oceanographic Institution (McNichol et al., 1994a).

2.2 Instrumental setup

RPO analysis has been described in detail previously (Rosen-
heim et al., 2008; Hemingway et al., 2017). In summary, a
solid sample containing≈ 150–250 µg C is loaded into a pre-
combusted (850 ◦C, 5 h) quartz reactor and placed into a two-
stage oven, as shown in Fig. 1. The reactor is then sealed and
the sample is exposed to an atmosphere of 92 : 8 He : O2 with
a total flow rate of 35 mL min−1 (oxidation mode). During
analysis, the oven surrounding the sample is programmed
to heat at a user-defined ramp rate, termed β (see Table 1
for symbol descriptions). Instantaneous temperature within
the oven is measured using two thermocouples separated by
≈ 1 cm to monitor temperature heterogeneity, which is typi-
cally < 5 ◦C. Following standard practice (Rosenheim et al.,
2008), a ramp rate of 5 ◦C min−1 was used for all experi-
ments in which CO2 gas was collected for isotope analysis.
In the second (downstream) oven, eluent gas is passed over a
Cu, Pt, and Ni catalyst wire held at 800 ◦C to facilitate oxi-
dation of reduced carbon-containing gases to CO2.

After exiting the second oven, eluent gas is distilled
through a water trap and passed into a flow-through infrared

gas analyzer (IRGA) to measure CO2 concentration (in parts
per million by volume; ppm CO2) with 1 s temporal resolu-
tion. Resulting ppm CO2 vs. temperature plots are referred to
as “thermograms” (Fig. 2). At each time point, the measured
thermogram (in units of ppm CO2) can be converted to an
instantaneous OC decay rate (in units of µg C s−1) using the
measured gas flow rate and the ideal gas constant. “Thermo-
gram” and “decay rate” are therefore used interchangeably
throughout this paper. IRGA measurements were calibrated
using a two-point calibration curve before each analysis to
account for instrument drift and are precise to ±5 ppm CO2
(Hemingway et al., 2017). Downstream of the IRGA, elu-
ent gas is passed into one of two switchable traps and CO2
is cryogenically frozen while He and O2 are vented to the
atmosphere. Traps are switched at user-defined time points
and CO2 is further distilled, quantified, transferred into glass
tubes packed with≈ 100 mg CuO and≈ 10 mg Ag, and flame
sealed. Finally, CO2 was re-combusted at 525 ◦C for 1 h to
remove trace contaminant gases.

2.3 Isotope measurement, blank correction,
and data analysis

Radiocarbon compositions of all bulk samples and RPO frac-
tions were measured at NOSAMS following standard graphi-
tization methods (McNichol et al., 1994b). All radiocarbon
results are expressed in fraction modern notation (Fm). We
note that Fm used here is corrected for 13C fractionation and
is thus identical to the F14C notation of Reimer et al. (2004).
Bulk and RPO fraction stable carbon isotope compositions
were measured on CO2 gas using a dual-inlet isotope ratio
mass spectrometer (IRMS) located at NOSAMS (McNichol
et al., 1994a), with resulting 13C content expressed in δ13C
per mill (‰) notation relative to Vienna Pee Dee Belemnite
(VPDB). RPO fraction masses, δ13C values, and Fm values
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were corrected for blank carbon contribution, and δ13C was
additionally corrected to ensure 13C mass balance as incom-
plete oxidation to CO2 has been shown to impart a small frac-
tionation effect (Hemingway et al., 2017). Analytical uncer-
tainty was propagated throughout all corrections. Thermo-
grams and isotope results for both Narayani POC and JGOFS
sediment are plotted in Fig. 2, while temperature ranges, car-
bon masses, and isotope values are additionally reported in
Tables 2–3.

3 Deriving a model of decay kinetics

We derive the distributed activation energy model by first
considering the case in which OC is separated into a set of
discrete components with unique E values. We then gener-
alize this description to allow for a continuous E distribu-
tion (Braun and Burnham, 1987; Burnham and Braun, 1999;
Cramer, 2004).

3.1 Discrete model

During OC remineralization, the decay rate of carbon con-
tained in a particular component i is often described as a
first-order process with respect to gi(t), the mass of carbon
remaining in component i at any time t (Westrich and Berner,
1984; Braun and Burnham, 1987), according to

dgi(t)
dt
=−kigi(t), (1)

where ki is the first-order rate coefficient associated with
component i. Total OC decay is then treated as the sum
over all components. Although it is possible that OC de-
cay in the natural environment additionally depends on ox-
idant concentration, we omit this dependency here since O2
is provided in excess in our experimental setup (Fig. 1). In
contrast to the “multi-G” and “reactive continuum” models
that are often used to describe environmental OC degradation
rates (Westrich and Berner, 1984; Boudreau and Ruddick,
1991; Forney and Rothman, 2012a, b), here we allow ki to
vary with time. Because rate coefficients are related to tem-
perature and activation energy, ki can be written as a time-
dependent function of E following the Arrhenius equation:

ki(t)= ωexp
[
−

Ei

RT (t)

]
, (2)

where ω is the empirically derived Arrhenius pre-exponential
(“frequency”) factor, R is the ideal gas constant, Ei is the
activation energy of carbon contained in component i, and
T (t) is the measured temperature of the system at time t .
For non-isothermal systems, time-dependent decay coeffi-
cients can therefore be described by the static property Ei
and the observed variable T (t). Although T (t) is related to
t by a constant ramp rate β during RPO analysis, we leave
this written as is to emphasize that our model is valid for any
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Figure 3. Testing the ramp-rate effect. Measured thermograms are
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measured time–temperature history. Substituting Eq. (2) into
Eq. (1), we write the first-order decay at time t during a non-
isothermal process as

dgi(t)
dt
=−ωexp

[
−

Ei

RT (t)

]
gi(t). (3)

The mass of carbon remaining in component i at time t can
be determined by integrating Eq. (3) from an initial time t =
0:

gi(t)= gi(0)e−κi (t), (4)

where

κi(t)= ω

t∫
0

exp
[
−

Ei

RT (t ′)

]
dt ′ (5)

is the time integrated decay coefficient at time t , and gi(0)
is the initial mass of carbon contained in component i.
Equation (5) states that gi(t) depends on the entire time–
temperature history of the experiment. That is, the evolution
of dgi(t)/dt reflects both a decrease in gi(t) as OC is rem-
ineralized and an increase in ki(t)with increasing T (t) as the
experiment progresses. This results in a predictable shift in
RPO thermograms toward higher elution temperatures with
increasing β (Miura and Maki, 1998), as shown in Fig. 3.

Following Boudreau (1997) and Westrich and Berner
(1984), an environmental sample containing a complex OC
mixture can be described as a superposition of a finite set
of n components, each decaying according to a unique ki(t)
and thus corresponding to a unique Ei value. G(t), the to-
tal carbon mass remaining at t , is then the sum of the mass
remaining in each component:

G(t)=

n∑
i=1

gi(t). (6)
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Table 2. Narayani POC RPO temperature ranges, carbon masses, δ13C, Fm, and E for each fraction, f . All masses and isotope values are
blank corrected following Hemingway et al. (2017). See Eqs. (41)–(42) for E calculations.

f T mf δ13Cf Fmf E

(◦C) (µg C) (‰ VPDB)a (kJmol−1)b

min. max. mean SD mean SD mean SD Ef σf

1 150 310 68.4 0.7 −29.5 0.2 0.891 0.004 134.4 8.1
2 310 367 105.6 1.1 −28.1 0.2 0.795 0.002 147.9 7.1
3 367 412 82.4 0.8 −26.7 0.2 0.676 0.003 159.0 7.5
4 412 475 92.6 0.9 −25.1 0.2 0.464 0.003 173.1 8.5
5 475 545 85.6 0.9 −25.3 0.2 0.342 0.003 190.6 10.9
6 545 610 98.4 1.0 −24.3 0.2 0.107 0.002 209.7 10.7
7 610 661 101.5 1.0 −22.9 0.2 0.022 0.002 223.4 8.0
8 664 725 125.6 1.3 −21.8 0.2 0.014 0.002 231.5 7.1
9 725 997 86.6 0.9 −23.5 0.2 0.042 0.002 260.5 17.7

a δ13Cf is additionally corrected following Hemingway et al. (2017) to ensure that the mass-weighted mean
matches the measured bulk value. b Assuming L-curve best-fit λ value and ω = 10× 1010 s−1.

Substituting Eq. (4) into Eq. (6), this can be written as

G(t)=

n∑
i=1

gi(0)e−κi (t). (7)

We then define G0, the initial OC mass present in the entire
sample, as the sum of initial mass contained in each compo-
nent:

G0 =

n∑
i=1

gi(0). (8)

Finally, we define pi(0), the fraction of total carbon initially
contained in component i, as

pi(0)=
gi(0)
G0

(9)

and note that
n∑
i=1

pi(0)= 1. (10)

Substituting Eq. (9) into Eq. (7) yields

G(t)

G0
=

n∑
i=1

pi(0)e−κi (t), (11)

which describes the evolution of the fraction of initial carbon
remaining at any time. The fraction of OC initially present
within each component, pi(0), can be determined by fitting
Eq. (11) to the observed G(t) profile measured by the RPO
instrument. While informative, this discrete description of
the model suffers from two major limitations: (i) n must be
set a priori or determined empirically (Boudreau and Rud-
dick, 1991) and (ii) any noise recorded in the data will result
in large uncertainty in best-fit pi(0) and Ei values (Forney

Table 3. JGOFS RPO temperature ranges, carbon masses, and δ13C
for each fraction, f . All masses and isotope values are blank cor-
rected following Hemingway et al. (2017).

f T mf δ13Cf
(◦C) (µg C) (‰ VPDB)∗

min. max. mean SD mean SD

1 163 363 38.5 0.4 −20.1 0.2
2 363 435 45.9 0.5 −10.3 0.2
3 435 543 217.6 2.2 −0.4 0.2
4 543 597 154.4 1.5 0.3 0.2
5 597 720 497.7 5.0 0.9 0.2

∗ δ13Cf is additionally corrected following Hemingway et al.
(2017) to ensure that the mass-weighted mean matches the
measured bulk value.

and Rothman, 2012b). To circumvent the first of these is-
sues, we derive a more general description of non-isothermal
first-order decay that does not assume a finite set of com-
ponents with unique Ei , but rather allows E to vary contin-
uously (Boudreau, 1997; Braun and Burnham, 1987; Burn-
ham and Braun, 1999; Cramer, 2004). Limitation (ii) is then
solved using Tikhonov regularization (Sect. 4.2; Forney and
Rothman, 2012b; Hansen, 1994).

3.2 Continuous model

In the continuous model, discrete components gi(t), κi(t),
and Ei are replaced by continuous variables g(t,E), κ(t,E),
and E, respectively (Table 1). Analogous to Eq. (3), we cal-
culate the decay of OC associated with an infinitesimal range
dE about any nonnegative value of E following first-order
Arrhenius kinetics as

Biogeosciences, 14, 5099–5114, 2017 www.biogeosciences.net/14/5099/2017/
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dg(t,E)
dt

=−ωexp
[
−

E

RT (t)

]
g(t,E). (12)

The mass of carbon associated with any value of E that re-
mains unreacted at time t is then calculated by integrating
Eq. (12) to obtain

g(t,E)= g(0,E)e−κ(t,E), (13)

where g(0,E) is the initial mass of carbon associated with
activation energy value E and

κ(t,E)= ω

t∫
0

exp
[
−

E

RT (t ′)

]
dt ′. (14)

The total carbon remaining at time t can now be written as
the integral of g(t,E) over all possible values of E as

G(t)=

∞∫
0

g(t,E)dE. (15)

Substituting Eq. (13) into Eq. (15), we obtain

G(t)=

∞∫
0

g(0,E)e−κ(t,E)dE. (16)

Analogous to Eq. (9), we then define the fraction of total car-
bon initially associated with any value of E as

p(0,E)=
g(0,E)
G0

, (17)

where

∞∫
0

p(0,E)dE = 1. (18)

Substituting Eq. (17) into Eq. (16) yields

G(t)

G0
=

∞∫
0

p(0,E)e−κ(t,E)dE. (19)

The distribution of p(0,E) over all values of E describes the
initial probability density function (pdf) of E that will lead
to the observed OC decay profile when a sample is analyzed
in the RPO instrument. As RPO analysis proceeds, this pdf
must evolve with time to reflect the fact that some carbon
has been remineralized to CO2. Like g(t,E), p(t,E) follows
first-order Arrhenius kinetics according to

dp(t,E)
dt

=−ωexp
[
−

E

RT (t)

]
p(t,E), (20)

where p(t,E) is the fraction of initial carbon mass that re-
mains associated with E at time t . This can be obtained by
integrating Eq. (20) from an initial time t = 0:

p(t,E)= p(0,E)e−κ(t,E). (21)

This implies that the carbon initially remineralized to CO2
must be associated with the lowest E values, as low E will
lead to a κ(t,E) term in Eq. (21) that approaches zero most
rapidly. Put differently, OC that is described by higher E val-
ues will resist remineralization until more time has passed
and therefore higher temperatures have been reached – i.e., it
is more thermally recalcitrant.

3.3 First-order verification

Because the distributed activation energy model is a specific
case of nth-order non-isothermal kinetic models (Braun and
Burnham, 1987; White et al., 2011), we must verify that
carbon degradation within the RPO instrument behaves ac-
cording to a superposition of parallel first-order reactions
rather than higher-order processes. By replacing g(t,E) with
G0p(t,E) on the right-hand side of Eq. (12), it can be seen
that

dg(t,E)
dt

=−G0ωexp
[
−

E

RT (t)

]
p(t,E). (22)

By integrating over all nonnegative values of E and utilizing
the definition of G(t) from Eq. (15), this can be written as

dG(t)
dt
=−G0

∞∫
0

ωexp
[
−

E

RT (t)

]
p(t,E)dE. (23)

The first-order model describes dG(t)/dt as a linear function
of G0 multiplied by an integral term that depends on p(t,E)
but is independent of G0. In contrast, if carbon decompo-
sition within the RPO instrument were to follow a higher-
order process, then the relationship between dG(t)/dt and
G0 would be nonlinear and would evolve as a function of
time (Follett et al., 2014). If we define

m(t)=

∞∫
0

ωexp
[
−

E

RT (t)

]
p(t,E)dE, (24)

then the carbon decay at time t as predicted by parallel first-
order kinetics simplifies to

dG(t)
dt
=−G0m(t). (25)

Therefore, similar to the isothermal case (Follett et al., 2014),
a superposition of parallel first-order decay reactions will re-
sult in a linear relationship between dG(t)/dt and G0 with a
zero intercept and a time-dependent slope. Thus,m(t) can be
interpreted as the G0-normalized OC decay rate at time t .
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We verify that OC remineralization within the RPO instru-
ment follows parallel first-order kinetics by assessing the lin-
earity between Narayani POC dG(t)/dt and G0 at any time
t across a range of G0 values. For four arbitrarily chosen
time points, this relationship is linear with an ordinary least
squares R2

≥ 0.999, resulting in identical G0-normalized
thermograms within analytical uncertainty (Fig. 4a–b). Thus,
the decay of complex OC mixtures contained in carbonate-
free samples during RPO analysis can indeed be accurately
described as a superposition of parallel first-order reactions.

3.4 A note of caution on carbonates

While most RPO studies to date have isolated OC by acid-
ifying to remove carbonates (e.g., Rosenheim et al., 2008,
2013; Rosenheim and Galy, 2012; Schreiner et al., 2014;
Bianchi et al., 2015), it has been argued that acid hydroly-
sis and/or dissolution of clay minerals during acid treatment
can alter the OC chemical bonding environment and there-
fore affect thermal stability (Plante et al., 2013). While ana-
lyzing samples without acid treatment can circumvent these
issues, the effect of carbonates on decay kinetics has not yet
been considered. To test if carbonate-rich samples follow
parallel first-order kinetics, we analyzed JGOFS sediment
for a range of G0 values (Fig. 4c–d). Prior to T ≈ 500 ◦C
(corresponding to t ≈ 4500 s), when δ13C values of eluted
CO2 indicate a predominantly OC source (Table 3; Fig. 2b),
dG(t)/dt can be accurately described as a linear function of
G0 (R2

≥ 0.999). However, as carbonate begins to decom-
pose above T ≈ 500 ◦C, the relationship between dG(t)/dt
and G0 becomes nonlinear and the carbonate peak shifts to-
ward higher t with increasing G0 (Fig. 4d).

To investigate if non-first-order decomposition is an in-
trinsic property of CaCO3 or if this is due to interactions
with other materials within the sample (so-called “matrix ef-
fects”), we analyzed a pure Icelandic spar CaCO3 laboratory
standard at multiple masses (G0 = 258, 492, 1014 µg C; β =
5 ◦C min−1; not shown). Results indicate that pure carbon-
ate, unlike JGOFS sediment, does follow first-order kinetics
with a maximum decomposition rate occurring at 700±6 ◦C
independent of G0. Interaction with reduced organic carbon,
corresponding hetero-atoms (e.g., N, P, S), or trace metals
contained within the sample matrix are therefore the likeli-
est cause of non-first-order CaCO3 decomposition when an-
alyzing environmental samples. Thus, while avoiding the is-
sues of acid treatment, the presence of carbonate will result
in thermograms that cannot be accurately described by the
model presented here, and we therefore argue in favor of acid
treatment when using the RPO instrument to determine reac-
tion energetics of carbonate-containing samples.

4 Finding the regularized inverse solution

Following Forney and Rothman (2012a, b), we present a
method to estimate p(0,E) by finding an inverse solution to
Eq. (19). In contrast to previous solutions (Braun and Burn-
ham, 1987; Burnham and Braun, 1999; Cramer, 2004), this
approach does not require an a priori assumption about the
form of p(0,E) (e.g., Gaussian). Because this problem is
sensitive to noise at the level of our analytical uncertainty
(Forney and Rothman, 2012b), we seek a smooth solution
using Tikhonov regularization (Sect. 4.2; Forney and Roth-
man, 2012b; Hansen, 1994).

To numerically calculate p(0,E), we discretize the con-
tinuous variable t over the time course of the experiment into
a vector t containing nt nodes such that

1tj =
1
2

(
tj+1− tj−1

)
, j = 2, . . .,nt − 1. (26)

For j = 1 and j = nt , tj−1 and tj+1 in Eq. (26) are, respec-
tively, replaced by tj since t is undefined outside of this
range. For generality, and because the distributed activation
energy model is frequently applied over geologic timescales
with nonuniformly distributed time measurements (Braun
and Burnham, 1987; Burnham and Braun, 1999; Cramer,
2004), Eq. (26) does not require a uniform time step (i.e., it is
possible that 1tj 6=1ti 6=j ). Similarly, we generate a vector
E containing nE nodes over the range values considered for
the model solution such that

1E =
Emax−Emin

nE
, (27)

noting that E is uniformly spaced since this vector is not
constrained by observations. We constrain E to be within
50–350 kJ mol−1 based on published biomass and petroleum
E ranges (Braun and Burnham, 1987; Burnham and Braun,
1999; Cramer, 2004; White et al., 2011).

It can be seen from Eq. (19) that the model can be sepa-
rated into two components: (i) p(0,E) and (ii) the exponenti-
ated, time-integrated decay coefficient, exp[κ(t,E)]. Analo-
gous to the Laplace transform for the isothermal reactive con-
tinuum model (Forney and Rothman, 2012b), exp[κ(t,E)]
determines the fraction of carbon initially associated with
an activation energy value E that has decayed by time t .
While this integral can be calculated analytically for a con-
stant ramp rate β, here we approximate the solution nu-
merically so that our model can be applied to any time–
temperature history. Thus, we populate a matrix A by cal-
culating exp[κ(t,E)] for each tj and El contained in t andE
as

Aj,l = exp

{
−

j∑
u=1

ωexp
[
−

El

RT (tu)

]
1tu

}
1E,

j = 1, . . .,nt ,
l = 1, . . .,nE . (28)
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Figure 4. First-order kinetic assessment. Panels (a) and (c) show decay rate, dG(t)/dt , vs. G0 relationships at four arbitrarily chosen time
points (including best-fit regression lines, dashed lines) and panels (b) and (d) show the mass-normalized decay rates (termedm(t) in Eqs. 24–
25) at all time points for (a)–(b) Narayani POC and (c–d) JGOFS sediment. Linear relationships and nearly identical normalized decay rates
in panels (a–b) confirm the first-order nature of OC decay, while nonlinear relationships and a shifting carbonate peak in panels (c–d) indicate
non-first-order CaCO3 decay kinetics. For each time point in panel (a), the regression slope is equivalent tom(t) for that time point as shown
in panel (b).

The A matrix is often termed the model “design matrix”. We
then calculate the fraction of initial carbon remaining at each
time point as

G(t)

G0
= 1−α(t), (29)

where α(t) is the G0-normalized, integrated RPO thermo-
gram at time t . We generate a discretized vector g by inter-
polatingG(t)/G0 onto each tj in t (j = 1, . . .,nt ). Our model
can then be written in matrix form as

g = A ·p, (30)

where p is an unknown, discretized vector of p(0,E) with
length nE such that

pl =
1
1E

El+
1
21E∫

El−
1
21E

p(0,E)dE, l = 1, . . .,nE . (31)

While Eq. (30) can be solved for p by multiplying g by the
computed inverse of A, if g contains noisy data this may re-
sult in negative values of pl that are mathematically possible

but physically unreasonable (Forney and Rothman, 2012b).
Here, we find the solution that satisfies

min
p
‖g−A ·p‖ ≡

 nt∑
j=1

(
gj −

nE∑
l=1

Aj,lpj

)2


1
2

, (32)

subject to the constraints

pl ≥ 0, l = 1, . . .,nE (33)

and

nE∑
l=1

pl = 1, l = 1, . . .,nE (34)

using the nonnegative least squares algorithm of Lawson and
Hanson (1995) as implemented by the SciPy package for
Python. Equations (32)–(34) describe the model solution that
minimizes the norm of the residual error (i.e., the RMSE)
while fulfilling the constraints that p is nonnegative and sums
to unity.

www.biogeosciences.net/14/5099/2017/ Biogeosciences, 14, 5099–5114, 2017



5108 J. D. Hemingway et al.: Organic carbon activation energy and isotope composition

4.1 Choice of frequency factor

In order to construct the A matrix and solve forp, our method
requires that the Arrhenius frequency factor ω is prescribed
a priori. There exists significant discussion in the literature
on the best choice of ω, as multiple values can describe
laboratory results equally well but will result in drastically
different predictions of OC degradation rates over geologic
timescales (Braun and Burnham, 1987; Dieckmann, 2005).
Furthermore, it has been argued that ω represents a vari-
able change in entropy associated with the decay of specific
organic compounds and should therefore be parameterized
as a function of E (the so-called “kinetic compensation ef-
fect” or KCE; Dieckmann, 2005; Lakshmanan et al., 1991;
Tang et al., 2000). For example, a linear ω increase with
E from ≈ 108 s−1 (E = 175 kJ mol−1) to ≈ 1026 s−1 (E =
400 kJ mol−1) has been utilized to better predict petroleum
formation rates (Dieckmann, 2005). To circumvent the issue
of multiplicity, and to account for the KCE, Miura and Maki
(1998) developed a method to estimate the best-fit ω for each
E value by comparing the shift in elution temperatures when
a sample is analyzed at multiple ramp rates. However, be-
cause this approach is based on large extrapolations in 1/T
vs. β/T 2 space, it is highly sensitive to noise in temperature
and β measurements (Burnham and Braun, 1989).

To select a best-fit ω, we construct the A matrix for a range
of ω values and determine the residual error norm between
measuredG(t)/G0 and that predicted by the resulting p vec-
tor determined by Eqs. (32)–(34). We consider the KCE by
calculating ω as a function of E according to

log10ω = (KCE slope)E+ (KCE intercept). (35)

Resulting residual errors for Narayani POC using a range
of KCE slopes and intercepts are shown in Fig. 5 (β =
5 ◦C min−1, E ranging from 50 to 350 kJ mol−1). By set-
ting an “acceptable” residual error norm cutoff of ≤ 10−4,
it can be seen that there exist multiple KCE slope and inter-
cept combinations that can equally fit the observed data. Ad-
ditionally, we estimate the best-fit ω using a range of ramp
rates (β = 2, 5, and 10 ◦C min−1) following the method of
Miura and Maki (1998) (Fig. 5, white circle). While this es-
timate falls outside of the cutoff range, likely due to noise in
temperature and β measurements, it results in a KCE slope
near zero and suggests that ω is constant during RPO ox-
idation of this sample. To accurately compare RPO results
between samples, we therefore select a constant ω value of
1010 s−1, well within the cutoff range, for samples analyzed
herein (Fig. 5, red star). While a different choice of ω will
shift p(0,E) to higher or lower absolute values of E, we em-
phasize that it will not affect the relative distribution of E
and that only relative changes in E between RPO fractions
should be interpreted.

For example, a shift in ω from a constant value of 107 to
1012 s−1 results in an increase in the mean of the pdf of E,

Residual error norm, ||g - A·p||
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Figure 5. Frequency factor assessment. Model residual error norm
using a range of KCE slopes and intercepts for Narayani POC
(β = 5 ◦C min−1). Each pixel represents the best-fit solution to
Eqs. (32)–(34) for a given ω as determined by Eq. (35). “Accept-
able” fits with a residual error norm ≤ 10−4 are contained within
the red dotted line. Estimated result using the method of Miura
and Maki (1998) for three ramp rates (β = 2, 5, and 10 ◦C min−1)
is plotted as a white circle, while the point corresponding to ω =
1010 s−1 (the value chosen for samples in this study) is plotted as a
red star.

termed E and calculated as

E =

nE∑
l=1

Elp(0,El)1E, (36)

from 150 to 224 kJ mol−1 for Narayani POC. However, the
relative standard deviation of the pdf ofE, calculated as σ/E,
where

σ 2
= E2−

(
E
)2
, (37)

remains constant at 20 %. A higher ω value therefore results
in a broader p(0,E) distribution that is centered at a higher
mean E value but has no effect on the relative shape of the
distribution.

4.2 Tikhonov regularization

In principle, after choosing ω and constructing the A ma-
trix, the pdf of E that best describes an RPO thermogram
can be determined by solving Eqs. (32)–(34). However, the
inverse solution is sensitive to noise at the level of RPO in-
strument precision (±5 ppm CO2, ±5 ◦C; Hemingway et al.,
2017), and is therefore ill-posed (Hansen, 1994; Lakshmanan
et al., 1991). We address this sensitivity to data uncertainty
using Tikhonov regularization (Hansen, 1994; Forney and
Rothman, 2012a, b).
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This approach finds an optimal solution that minimizes
p(0,E) complexity (as determined by the intensity of fluctu-
ations, or “roughness”) while maximizing solution accuracy.
Following Forney and Rothman (2012b), we calculate rough-
ness as the first derivative of the solution vector:

∥∥∥∥dp(0,E)
dE

∥∥∥∥=
[
nE−1∑
l=2

(
pl+1−pl

1E

)2
] 1

2

≡ ‖R ·p‖, (38)

where R is the bi-diagonal first derivative operator matrix
with dimensions [nE × nE]. To account for p being equal
to zero outside the range Emin <E < Emax, we set the first
and last rows of R to be equal to [1 0] and [0 − 1], re-
spectively, where 0 refers to a zero vector of length nE − 1.
Similar to Eq. (32), the regularized inverse problem can then
be solved for p by including this roughness term in the con-
strained least squares. That is, we solve

min
p
‖g−A ·p‖+ λ‖R ·p‖, (39)

for p subject to the constraints presented in Eqs. (33)–(34),
where λ is a scalar that determines how much to weight the
roughness ‖R·p‖ relative to the residual error ‖g−A·p‖. The
best choice of λ is considered to be the value that optimizes
this balance. As described in Hansen (1994), a common ap-
proach is to choose the value corresponding to the point of
maximum curvature in a log− log plot of residual error and
roughness while allowing λ to range over many orders of
magnitude (i.e., the so-called “L-curve”). From this point,
increasing λ strongly increases residual error but has little
effect on solution roughness, while decreasing λ greatly in-
creases roughness but has little effect on residual error. Thus,
here we choose the λ value corresponding to the corner of
the L-curve for each sample, as exemplified in Fig. 6.

4.3 p(0,E): a novel proxy for chemical bond strength

In order to interpret p(0,E) as an intrinsic property of OC
contained within a sample, we must show that results do not
depend on experimental conditions such as ramp rate β and
initial carbon mass G0. To test this, we analyzed Narayani
POC using a range of masses (G0 = 268, 533, and 828 µg C)
and ramp rates (β = 2, 5, and 10 ◦C min−1). Figure 7 shows
that the regularized pdf’s of E are nearly identical across all
experimental conditions. This supports the hypothesis that
the p(0,E) distribution is an intrinsic property of a given
sample when exposed to a particular oxidation pathway (e.g.,
thermal decay). Although there exist small differences be-
tween individual analyses due to measurement uncertainty
and variability in best-fit λ values (ranging from 0.044 to
0.448, n= 5), the main features of p(0,E) are robust across
all conditions. Note that the p(0,E) distribution (Fig. 7)
broadly resembles the initial thermogram shape (Fig. 2a), al-
beit with more defined features and a higher roughness. This
is a result of the fact that OC associated with each E value
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Figure 6. Tikhonov regularization L-curve for Narayani POC (β =
5 ◦C min−1). The black line represents the range of roughness and
residual error norms that are the result of solving Eq. (39) for p
using multiple λ values ranging from 0.001 to 100. The white circle
corresponds to the point of maximum curvature along this line, and
is thus deemed the best-fit λ value (see Hansen, 1994, and Forney
and Rothman, 2012b, for further details on generating the L-curve
and theory behind Tikhonov regularization).

will decay over a wide temperature range within the RPO in-
strument, thus resulting in a “smoothed” thermogram relative
to p(0,E) (Cramer, 2004).

While further study is required to assess the general ap-
plicability of this technique, we propose p(0,E) as a novel
proxy to describe the distribution of carbon bond strength
(Braun and Burnham, 1987; Burnham and Braun, 1999;
Cramer, 2004). For example, Narayani POC is known to inte-
grate recently fixed biomass, pre-aged soils, and eroded rock-
derived material (Galy et al., 2008, 2011; Galy and Eglinton,
2011; Rosenheim and Galy, 2012). Such integration should
lead to large chemical diversity and a broad, complex E dis-
tribution, as is observed (Fig. 7). Furthermore, slow envi-
ronmental turnover has been shown to enhance the diver-
sity of chemical bonds due to a combination of microbial
alterations (Schmidt et al., 2011), OC aggregation (Keil and
Mayer, 2014), and stabilization by mineral surfaces (Keil
and Mayer, 2014; Mikutta et al., 2006). Thus, OC reactivity
within the RPO instrument and the resulting E distribution
likely reflect both the strength of covalent bonds between
carbon atoms and interactions with mineral surfaces (Keil
and Mayer, 2014; Mikutta et al., 2006). We therefore pro-
pose combining p(0,E) with serial oxidation isotope mea-
surements to test the effects of mineral interactions and se-
lective preservation on OC turnover time.
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Figure 7. Regularized p(0,E) distribution for Narayani POC.
Mean (black line) and standard deviation (gray shaded region) of
p(0,E) analyzed using a range ofG0 and β values (n= 5). Narrow
standard deviation indicates that model results are independent of
experimental conditions.

5 Relating E and isotope composition

5.1 Determining the distribution of E within
each RPO fraction

To relate p(0,E) distributions to RPO isotope measure-
ments, we calculate the subset of the pdf of E that is con-
tained within each RPO fraction. Because we can predict the
evolution of p(t,E) at any time t following Eq. (21), this can
be calculated as

5f (E)= p(t1,E)−p(t2,E), f = 1, . . .,nf , (40)

where nf is the number of RPO fractions collected for a
given sample, 5f (E) is the subset of p(0,E) contained in
RPO fraction f , and t1 and t2 are the initial and final time
points, respectively, of CO2 collection for RPO fraction f .
Resulting 5f (E) distributions for Narayani POC are shown
in Fig. 8. Finally, in order to generate E vs. δ13C and E vs.
Fm scatter plots, we calculate the mean E value contained in
each RPO fraction as

Ef =

nE∑
l=1

El5f (El)1E, f = 1, . . .,nf (41)

and the standard deviation of E contained in each RPO frac-
tion as σf , where

σ 2
f = E

2
f −

(
Ef
)2
, f = 1, . . .,nf . (42)

Resulting Ef and σf values are reported in Table 2. It can
be seen in Fig. 8 that 5f (E) distributions do not follow any
particular form (e.g., Gaussian) and are highly overlapping,
reflecting the fact that the CO2 isotope composition for each
RPO fraction is itself a weighted average of multiple sources.
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Figure 8. 5f (E) distributions for Narayani POC (f = 1, . . .,9).
Each 5f (E) represents the range of E values contained within
RPO fraction f . The sum of all 5f (E) distributions shown here
thus yields the p(0,E) distribution shown in Fig. 7. Distributions
have been staggered along the y axis for visual clarity. 5f (E) dis-
tributions do not follow any predictable functional form and are
highly overlapping due to the fact that OC associated with a given
E value decays over a wide time interval (Cramer, 2004).

5.2 Kinetic isotope fractionation

While not necessary for Fm because it is fractionation-
corrected by definition (Reimer et al., 2004), it is important
to correct for any kinetic isotope effects occurring within the
RPO instrument before interpreting δ13C as a carbon source
tracer (Hemingway et al., 2017). If kinetic fractionation is
large, as has been observed both during thermogenic methane
formation (Tang et al., 2000; Cramer, 2004) and dissolved
OC oxidation by UV light (Oba and Naraoka, 2008), then
this effect could overprint carbon source δ13C signals. How-
ever, when directly measured using single-compound stan-
dards, Hemingway et al. (2017) concluded that 13C fraction-
ation within the RPO instrument must be ≤ 2 ‰. Still, we
correct the measured δ13C values of each RPO fraction using
the ratio of carbon-normalized 13C and 12C decomposition
rates at each time point according to

13/12r(t)=

(
d13G(t)

dt

)
(

d12G(t)
dt

) ( 12G0
13G0

)
, (43)

where we have added a preceding 12 or 13 superscript to
specify isotope-specific variables. Following the Arrhenius
equation, 13/12r(t) can be written as a function of the differ-
ence in E between 13C- and 12C-containing molecules:

13−121E = 13E− 12E. (44)

Although 13−121E is likely not identical for all compounds
due to differences in the entropy and enthalpy of isotope sub-
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stitution (Tang et al., 2000), the estimated range of values
for RPO analysis is small (0.3× 10−3–1.8× 10−3 kJ mol−1;
Hemingway et al., 2017). We therefore assume a 13−121E

value of 1.8× 10−3 kJ mol−1 for all RPO fractions, noting
that a choice of 0.3× 10−3 kJ mol−1 would result in δ13C
values that are identical to those calculated here within ana-
lytical uncertainty.

Values of 13/12r(t) can be determined using the ratio of
carbon-normalized, isotope-specific decay rates by substitut-
ing p(0,12E) and p(0,13E) for p(0,E) in Eq. (19). Because
carbon is present as ≈ 99 % 12C, we set p(0,12E) equal to
p(0,E) such that

d12G(t)

dt
=

dG(t)
dt

. (45)

Corresponding d13G(t)/dt can then be determined using

p(0,13E)= p(0,E+ 13−121E). (46)

13C-containing molecules decay at rates governed by a pdf
of E that is identical to p(0,E) but has been shifted by
1.8× 10−3 kJ mol−1. We then correct the measured δ13C val-
ues of each RPO fraction f according to

δ13Ccorrected
f =

1
13/12r(t)av

f

(
δ13Cf + 1000

[
13/12r(t)av

f − 1
])
,

f = 1, . . .,nf , (47)

where 13/12r(t)av
f is the average 13/12r(t)f value over the

time of collection for RPO fraction f . For the samples an-
alyzed here, 13/12r(t) is initially ≈ 0.999, indicating slightly
faster 12C decay at low temperatures, and gradually increases
to ≈ 1.002 when G(t)� 0.01G0, as has been described pre-
viously (Cramer, 2004; Hemingway et al., 2017). Resulting
kinetic fractionation corrections are near or within analytical
uncertainty, with absolute δ13C values for all RPO fractions
shifted by < 0.2 ‰.

5.3 Comparing E to δ13C and Fm

Finally, we describe a framework to directly relate OC reac-
tivity and isotope distributions by plotting Ef for each RPO
fraction vs. the corresponding measured δ13C and Fm val-
ues (Table 2). Resulting relationships, as well as plant-wax
fatty acid isotope values (Galy et al., 2011; Galy and Eglin-
ton, 2011), are shown in Fig. 9. Within this framework, it
can be seen that Narayani POC must contain at least two
end members with drastically different isotope compositions
and unique yet overlapping E distributions. Previous studies
have shown that ≈ 20± 5 % of OC contained in this sam-
ple is derived from the erosion of carbon-rich bedrock (Galy
et al., 2008; Rosenheim and Galy, 2012). Rock-derived OC
is the likeliest source of high-E, low-Fm material, as this end
member is 14C-free by definition. Plant-wax FA δ13C and Fm
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Figure 9. E vs. isotope relationships. (a) E vs. δ13C and (b) E vs.
Fm for Narayani POC. All isotope values have been corrected for
blank carbon contribution following Hemingway et al. (2017), and
δ13C values have additionally been corrected for kinetic fractiona-
tion. Gray lines and shading are the plant-wax fatty acid biomarker
isotope values (mean ±1 SD analytical uncertainty; Galy et al.,
2011; Galy and Eglinton, 2011). Note that plant-wax fatty acids are
known to contain less 13C (lower δ13C values) than corresponding
bulk biospheric OC. Each point is plotted at E = Ef . Error bars
in E are equal to σf , while δ13C and Fm analytical uncertainty is
always smaller than point marker and is therefore not shown.

values are similar to those for low-E RPO fractions (Fig. 9),
suggesting that vascular plant OC is the source of low-E ma-
terial. Narayani POC isotope trends are thus consistent with
predominantly biospheric carbon below ≈ 150 kJ mol−1, a
mixed region from ≈ 150 to 200 kJ mol−1, and exclusively
rock-derived OC above ≈ 200 kJ mol−1. This result provides
initial evidence for the utility of RPO E vs. isotope relation-
ships to directly relate the distribution of OC sources, en-
vironmental turnover times, and chemical bonding environ-
ments.
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6 Conclusions

In this study, we present a regularized, inverse method to de-
termine the distribution of E, a measure of OC reactivity,
when natural organic matter is exposed to serial oxidation.
We show that OC decay follows parallel, first-order kinetics.
In contrast, the kinetics of carbonate oxidation cannot be con-
strained due to matrix effects and we therefore recommend
acidification to remove carbonates prior to RPO analysis. We
propose that p(0,E), the distribution of E contained within
a sample, is a useful proxy to describe the range of OC bond-
ing environments. Importantly, our method does not require
a priori assumptions about the distributional form of p(0,E).
Finally, we determine the subset of E contained within each
RPO fraction in order to directly relate reaction energetics
with the distribution of carbon isotope compositions within
a complex OC mixture. We suggest that E vs. isotope re-
lationships can provide new insight into understanding the
compositional controls on OC source and residence time, al-
though we note that further study is required in order to test
the general applicability of this result.

Code and data availability. All thermogram data are available
in the Supplement. The open-source “rampedpyrox” package
is accessible using the Python Package Index (Hemingway,
2017, https://doi.org/10.5281/zenodo.839815, http://pypi.python.
org/pypi/rampedpyrox).

The Supplement related to this article is available online
at https://doi.org/10.5194/bg-14-5099-2017-supplement.
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