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Text S1: Development of the gap filling models using artificial neural networks 

Gap filling of the CH4 flux time series was performed separately on the lake and fen flux datasets, 

using artificial neural networks (ANN) (Dengel et al., 2013; Moffat et al., 2010; Papale and 

Valentini, 2003). Artificial neural networks (ANNs) are multivariate, non-linear regression models 

(Bishop 1995) that are fully empirical: the observational data are used to constrain the model’s 

numerical relationship between the inputs (independent variables) and output (dependent variable) 

(Papale and Valentini 2003, Moffat et al 2010). 

An artificial neural network is composed of nodes that are organized in layers and inter-connected. 

Each connection carries a weight that is analogous to a nonlinear regression parameter (Moffat et 

al., 2010). The development of the model consists of a training phase, followed by a testing 

(validation) phase. The weights are assigned and modified during the training phase, until reaching 

an optimal value. The network is trained by receiving sets of input data (independent variables i.e. 

environmental drivers) and associated output data (dependent variables i.e. flux time series). The 

training dataset was built by randomly selecting 40% of the available data pairs (environmental 

variables and associated flux data) and the testing set was selected as a randomly picked 40 % of the 

remaining available data pairs. The subsets were selected so that each season was represented. 

Environmental variables to be included as inputs were selected according to their physiological 

relevance to the production of CH4 and their transport from the surface to the atmosphere, as 

reported in the literature. These included peat temperature (for the wetland), surface sediment 

temperature and water temperature (for the lake), air temperature, wind speed, air pressure, net 

radiation at the surface and incoming solar radiation (for both). The relevance of the drivers was 

confirmed by correlation analysis. Before being used as input to the ANNs, the environmental 

variables have to be gap-free. On the period of interest, 10 to 25 % of the environmental input data 

was missing. These were filled using the online tool developed by Reichstein et al (2005) available 

at http://www.bgc-jena.mpg.de. Additional “fuzzy” datasets can be introduced as input variables to 

“force” a temporal parameter onto the modeled flux data, as described in Papale and Valentini 

(2003). Four fuzzy sets were used in this study, representing summer, autumn, winter and spring, 

respectively. The use of these fuzzy sets increased the performance of the ANNs to predict observed 

values, as seen by increasing r
2
. 

The networks comprised one input layer, one hidden layer where the neurons (nodes) receive the 

input values, each with an assigned weight, and one output layer. The addition of a hidden layer did 



not improve the performance of the network. The number of neurons to include in the hidden layer 

was chosen by running the ANNs with 5 to 12 neurons, and choosing the number of neurons low 

enough to keep the model simple yet high enough to minimize the error of the model and maximize 

the correlation coefficient. Eventually, 6 neurons for fen CH4 fluxes and 9 neurons for lake CH4 

fluxes were chosen. 

The networks were developed on the hourly scale to reduce uncertainty by reducing the proportion 

of missing values. All variables were scaled between 0 and 1 before training (Papale and Valentini 

2003) in order to remove potential bias due to the different numerical scale of the variables, and 

because a sigmoid function was used as transfer function between the neurons and the output 

values. At the end of the procedure the output variable is rescaled to their original units. The 

networks were optimized using the back-propagation algorithm (Dengel et al., 2013; Moffat et al., 

2007; Papale and Valentini, 2003). For each set (lake and fen), the runs were repeated; the best 

runs - with the highest r
2
 in the training phase between observed and modeled - were chosen and 

averaged as the main output. The gaps in the measured CH4 flux time series were replaced by 

predicted values, and the annual sum was computed by integrating the hourly flux values over time. 

The CO2 flux data from the fen were gap filled in the same way by developing an ANN on the fen 

flux dataset. Input variables were photosynthetic active radiation (PAR), air temperature, vapour 

pressure deficit (VPD) and net radiation at the fen surface. Net radiation showed to be relevant for 

night time data. Furthermore, previously mentioned fuzzy sets were incorporated too. The final 

selected network was built with 6 neurons. 
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Text S2: Pre-processing of raw CH4 data 

During the period of faulty electronic transmission of CH4 measurements to the data logger (August 

2013 to December 2014), CH4 raw data from the FGGA were synchronized with the high frequency 

data logged onto the CR3000. Raw data stored on the FGGA memory are not sampled at exactly 10 

Hz but at a variable frequency (11 to 12 Hz). Raw CH4 data were thus linearly interpolated on 10 

Hz timestamps to match the clock from the data logger. Additionally, to prevent mistakes due to a 

potentially uncalibrated clock on the FGGA, we did not use only the timestamp to synchronize the 

dataset. It was done in half-hour moving chunks of data by maximizing the correlation between 

logger data and FGGA data. The time showing the best correlation was chosen as a reference to 

adjust the clock, then CH4 data were linearly interpolated onto the correct timestamp. Thus, when 

computing fluxes over this period, the time lag for CH4 fluxes was set to be searched within a large 

window spanning that included 0s.  After flux calculation, half-hours for which the synchronization 

procedure could not yield any reliable flux (i.e. where the method failed) were identified (lack of 

significant peak in the cross-covariance function, as in (Nordbo et al., 2012; Rinne et al., 2007; 

Wienhold et al., 1994)) and filtered out. This screening step was considered as a quality check of 

the synchronization procedure. 
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Table S1: Total (fen + lake) flux data coverage after post-processing, for each season and year, in 

numbers of half-hourly values per period. Corresponding relative coverage in % is in parenthesis. 

 
Ice-

free 1 

Ice-

free 2 

Ice-

free 3 

Ice-

cover 1 

Ice-

cover 2 

Ice-out 

1 

Ice-out 

2 
Year 1 Year 2 

CH4 
2376 

(0.35) 

4009 

(0.58) 

1731 

(0.28) 

1955 

(0.22) 

687 

(0.08) 

1616 

(0.82) 

979 

(0.39) 

5947 

(0.34) 

5468 

(0.31) 

CO2 
2240 

(0.34) 

1257 

(0.18) 

2599 

(0.42) 

2157 

(0.25) 

1249 

(0.15) 

1080 

(0.55) 

950 

(0.38) 

5619 

(0.32) 

3282 

(0.19) 

 

 

  



 

 

Figure S1. Flux footprint of the flux tower in winter averaged over all years. The location of the 

flux tower is indicated as a red circle. 

  



 

Figure S2. Significance of the CH4 (left panel) and CO2 (right panel) degassing rates at the lake 

during lake overturn (Season 1), as compared to flux rates during the following ice-free season 

(Season 2), in 2013 (grey boxes) and 2014 (brown boxes). The central line of the boxplots shows 

the median, box edges show 25
th

 and 75
th

 percentiles, and whiskers show 5
th

 and 95
th

 percentiles. 

The black dots indicate the mean flux rate. Outliers are not displayed. Only the main degassing 

peak, rather than the entire thaw season, was used to draw the figure. Numbers in italic indicate the 

amount of data available for each period. 

  



 

 

Figure S3. At the lake: example of periods during the summer when breakdown of a small thermal 

gradient (0.8-1.0 ˚C) between top (10 cm) and bottom (1 m) of the water column during morning 

hours (b) was coincident with CH4 degassing and decreasing atmospheric pressure at the lake (a), 

which can indicate the effect of water-side convection; while most degassing events occurred at 

decreasing air pressure but nearly-isothermal water column (c-d).  



 

Figure S4. Measured CH4 (grey) and CO2 (black) half-hourly fluxes at the lake during the spring 

period of 2013 (top panel) and 2014 (bottom panel). The x-axis shows day of year. Note the 

difference in the scale of the y-axis between the two panels. 

  



 

 

Figure S5. Diel course of the net CO2 exchange at the lake surface, measured as 30 minutes 

averages (blue) and 5 minutes averages (red) in June-August 2012. Each dot represents a half-hour 

flux normalized by the daily median, i.e. the figure shows the deviation of each flux value from the 

daily median. 

  



 

Figure S6. Visualization over the study period of data gaps due to filtering procedures (QA/QC), in 

the CH4 (a) and CO2 (b) flux time series, as well as the final dataset used in the study, CH4 fluxes 

(c) and CO2 fluxes (d). Grey periods in the two upper plots indicate the absence of data. During 

winter, measurements from the sonic anemometer and FGGA analyzer were regularly subject to 

multiple drop-outs and out-of-range values (filtered out during QA/QC), most likely due to frost on 

the sonic and very cold air input to the analyzer, which does not perform well at low temperature. 


