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Text S1: Development of the gap filling models using artificial neural networks

Gap filling of the CH,4 flux time series was performed separately on the lake and fen flux datasets,
using artificial neural networks (ANN) (Dengel et al, 2013; Moffat et al, 2010; Papale and
Valentini, 2003). Artificial neural networks (ANNS) are multivariate, non-linear regression models
(Bishop 1995) that are fully empirical: the observational data are used to constrain the model’s
numerical relationship between the inputs (independent variables) and output (dependent variable)
(Papale and Valentini 2003, Moffat et al 2010).

An artificial neural network is composed of nodes that are organized in layers and inter-connected.
Each connection carries a weight that is analogous to a nonlinear regression parameter (Moffat et
al., 2010). The development of the model consists of a training phase, followed by a testing
(validation) phase. The weights are assigned and modified during the training phase, until reaching
an optimal value. The network is trained by receiving sets of input data (independent variables i.e.
environmental drivers) and associated output data (dependent variables i.e. flux time series). The
training dataset was built by randomly selecting 40% of the available data pairs (environmental
variables and associated flux data) and the testing set was selected as a randomly picked 40 % of the

remaining available data pairs. The subsets were selected so that each season was represented.

Environmental variables to be included as inputs were selected according to their physiological
relevance to the production of CH, and their transport from the surface to the atmosphere, as
reported in the literature. These included peat temperature (for the wetland), surface sediment
temperature and water temperature (for the lake), air temperature, wind speed, air pressure, net
radiation at the surface and incoming solar radiation (for both). The relevance of the drivers was
confirmed by correlation analysis. Before being used as input to the ANNs, the environmental
variables have to be gap-free. On the period of interest, 10 to 25 % of the environmental input data
was missing. These were filled using the online tool developed by Reichstein et al (2005) available
at http://www.bgc-jena.mpg.de. Additional “fuzzy” datasets can be introduced as input variables to
“force” a temporal parameter onto the modeled flux data, as described in Papale and Valentini
(2003). Four fuzzy sets were used in this study, representing summer, autumn, winter and spring,
respectively. The use of these fuzzy sets increased the performance of the ANNSs to predict observed

values, as seen by increasing r’.

The networks comprised one input layer, one hidden layer where the neurons (nodes) receive the

input values, each with an assigned weight, and one output layer. The addition of a hidden layer did



not improve the performance of the network. The number of neurons to include in the hidden layer
was chosen by running the ANNs with 5 to 12 neurons, and choosing the number of neurons low
enough to keep the model simple yet high enough to minimize the error of the model and maximize
the correlation coefficient. Eventually, 6 neurons for fen CH,4 fluxes and 9 neurons for lake CH,4

fluxes were chosen.

The networks were developed on the hourly scale to reduce uncertainty by reducing the proportion
of missing values. All variables were scaled between 0 and 1 before training (Papale and Valentini
2003) in order to remove potential bias due to the different numerical scale of the variables, and
because a sigmoid function was used as transfer function between the neurons and the output
values. At the end of the procedure the output variable is rescaled to their original units. The
networks were optimized using the back-propagation algorithm (Dengel et al., 2013; Moffat et al.,
2007; Papale and Valentini, 2003). For each set (lake and fen), the runs were repeated; the best
runs - with the highest r? in the training phase between observed and modeled - were chosen and
averaged as the main output. The gaps in the measured CH, flux time series were replaced by

predicted values, and the annual sum was computed by integrating the hourly flux values over time.

The CO; flux data from the fen were gap filled in the same way by developing an ANN on the fen
flux dataset. Input variables were photosynthetic active radiation (PAR), air temperature, vapour
pressure deficit (VPD) and net radiation at the fen surface. Net radiation showed to be relevant for
night time data. Furthermore, previously mentioned fuzzy sets were incorporated too. The final

selected network was built with 6 neurons.
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Text S2: Pre-processing of raw CH, data

During the period of faulty electronic transmission of CH, measurements to the data logger (August
2013 to December 2014), CH,4 raw data from the FGGA were synchronized with the high frequency
data logged onto the CR3000. Raw data stored on the FGGA memory are not sampled at exactly 10
Hz but at a variable frequency (11 to 12 Hz). Raw CH, data were thus linearly interpolated on 10
Hz timestamps to match the clock from the data logger. Additionally, to prevent mistakes due to a
potentially uncalibrated clock on the FGGA, we did not use only the timestamp to synchronize the
dataset. It was done in half-hour moving chunks of data by maximizing the correlation between
logger data and FGGA data. The time showing the best correlation was chosen as a reference to
adjust the clock, then CH,4 data were linearly interpolated onto the correct timestamp. Thus, when
computing fluxes over this period, the time lag for CH, fluxes was set to be searched within a large
window spanning that included Os. After flux calculation, half-hours for which the synchronization
procedure could not yield any reliable flux (i.e. where the method failed) were identified (lack of
significant peak in the cross-covariance function, as in (Nordbo et al., 2012; Rinne et al., 2007;
Wienhold et al., 1994)) and filtered out. This screening step was considered as a quality check of

the synchronization procedure.
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Table S1: Total (fen + lake) flux data coverage after post-processing, for each season and year, in

numbers of half-hourly values per period. Corresponding relative coverage in % is in parenthesis.

Ice- Ice- Ice- Ice- Ice- Ice-out Ice-out
Year 1 Year?2
free 1l free 2 free 3 coverl cover2 1 2
o 2376 4009 1731 1955 687 1616 979 5947 5468
4
(0.35) (0.58) (0.28) (0.22) (0.08) (0.82) (0.39) (0.34) (0.31)
co 2240 1257 2599 2157 1249 1080 950 5619 3282
? (0.34) (0.18) (0.42) (0.25) (0.15) (0.55) (0.38) (0.32) (0.19)
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Figure S1. Flux footprint of the flux tower in winter averaged over all years. The location of the

flux tower is indicated as a red circle.
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Figure S2. Significance of the CH,4 (left panel) and CO; (right panel) degassing rates at the lake
during lake overturn (Season 1), as compared to flux rates during the following ice-free season
(Season 2), in 2013 (grey boxes) and 2014 (brown boxes). The central line of the boxplots shows
the median, box edges show 25" and 75" percentiles, and whiskers show 5™ and 95" percentiles.
The black dots indicate the mean flux rate. Outliers are not displayed. Only the main degassing
peak, rather than the entire thaw season, was used to draw the figure. Numbers in italic indicate the

amount of data available for each period.
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Figure S3. At the lake: example of periods during the summer when breakdown of a small thermal
gradient (0.8-1.0 °C) between top (10 cm) and bottom (1 m) of the water column during morning
hours (b) was coincident with CH, degassing and decreasing atmospheric pressure at the lake (a),
which can indicate the effect of water-side convection; while most degassing events occurred at

decreasing air pressure but nearly-isothermal water column (c-d).
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Figure S4. Measured CH, (grey) and CO, (black) half-hourly fluxes at the lake during the spring
period of 2013 (top panel) and 2014 (bottom panel). The x-axis shows day of year. Note the

difference in the scale of the y-axis between the two panels.
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Figure S5. Diel course of the net CO, exchange at the lake surface, measured as 30 minutes
averages (blue) and 5 minutes averages (red) in June-August 2012. Each dot represents a half-hour
flux normalized by the daily median, i.e. the figure shows the deviation of each flux value from the

daily median.



Data avallability and gaps (30 mim basis)
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Figure S6. Visualization over the study period of data gaps due to filtering procedures (QA/QC), in
the CH4 (a) and CO; (b) flux time series, as well as the final dataset used in the study, CH, fluxes
(c) and CO;, fluxes (d). Grey periods in the two upper plots indicate the absence of data. During
winter, measurements from the sonic anemometer and FGGA analyzer were regularly subject to
multiple drop-outs and out-of-range values (filtered out during QA/QC), most likely due to frost on
the sonic and very cold air input to the analyzer, which does not perform well at low temperature.



