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Abstract. The Southern Ocean accounts for 40 % of oceanic
CO2 uptake, but the estimates are bound by large uncertain-
ties due to a paucity in observations. Gap-filling empirical
methods have been used to good effect to approximate pCO2
from satellite observable variables in other parts of the ocean,
but many of these methods are not in agreement in the South-
ern Ocean. In this study we propose two additional meth-
ods that perform well in the Southern Ocean: support vec-
tor regression (SVR) and random forest regression (RFR).
The methods are used to estimate 1pCO2 in the South-
ern Ocean based on SOCAT v3, achieving similar trends to
the SOM-FFN method by Landschützer et al. (2014). Re-
sults show that the SOM-FFN and RFR approaches have
RMSEs of similar magnitude (14.84 and 16.45 µatm, where
1 atm= 101 325 Pa) where the SVR method has a larger
RMSE (24.40 µatm). However, the larger errors for SVR and
RFR are, in part, due to an increase in coastal observations
from SOCAT v2 to v3, where the SOM-FFN method used
v2 data. The success of both SOM-FFN and RFR depends
on the ability to adapt to different modes of variability. The
SOM-FFN achieves this by having independent regression
models for each cluster, while this flexibility is intrinsic to
the RFR method. Analyses of the estimates shows that the
SVR and RFR’s respective sensitivity and robustness to out-
liers define the outcome significantly. Further analyses on the
methods were performed by using a synthetic dataset to as-
sess the following: which method (RFR or SVR) has the best
performance? What is the effect of using time, latitude and
longitude as proxy variables on 1pCO2? What is the impact
of the sampling bias in the SOCAT v3 dataset on the esti-
mates? We find that while RFR is indeed better than SVR,

the ensemble of the two methods outperforms either one, due
to complementary strengths and weaknesses of the methods.
Results also show that for the RFR and SVR implementa-
tions, it is better to include coordinates as proxy variables as
RMSE scores are lowered and the phasing of the seasonal
cycle is more accurate. Lastly, we show that there is only
a weak bias due to undersampling. The synthetic data pro-
vide a useful framework to test methods in regions of sparse
data coverage and show potential as a useful tool to evaluate
methods in future studies.

1 Introduction

The global oceans have played an important role in mitigat-
ing the effects of climate change by taking up 25 % of an-
thropogenic CO2 emissions annually (Khatiwala et al., 2013;
Le Quéré et al., 2016). The Southern Ocean has played a dis-
proportionate role in this uptake, accounting for 40 % of the
oceanic anthropogenic CO2 uptake (Khatiwala et al., 2013;
Frölicher et al., 2015). Yet, despite the region’s importance,
first-order CO2 flux estimates are bound by large uncertain-
ties due to sparse observations in the Southern Ocean (Lenton
et al., 2006; Monteiro, 2010; Lenton et al., 2012; Takahashi
et al., 2012; Bakker et al., 2016). These uncertainties limit
our capacity to resolve variability and trends of CO2.

Viable alternative methods to estimate net CO2 flux are
atmospheric CO2 inversions, ocean biogeochemical process
models and empirical models (Rödenbeck et al., 2015). As
shown by Le Quéré et al. (2007), atmospheric CO2 inversions
are useful tools to estimate the net CO2 fluxes, but fail to
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offer further understanding with spatially integrated air–sea
flux estimates (Fay and McKinley, 2014). Conversely, ocean
biogeochemical process models are good tools for mechanis-
tic understanding, but fail to represent the seasonality of CO2
fluxes in the Southern Ocean (Lenton et al., 2013; Mongwe
et al., 2016). Empirical modelling offers an opportunity to
bridge the gap between sparse data in the Southern Ocean
and correct parameterization of future earth system models.

Empirical models maximize the utility of existing sur-
face ocean CO2 observations (pCO2) by interpolating these
with satellite proxy data. Access to in situ pCO2 data, via
platforms such as SOCAT (Surface Ocean CO2 Atlas), has
been crucial to the success of empirical methods (Röden-
beck et al., 2015; Bakker et al., 2016). This, in conjunc-
tion with the increasing use of machine learning, has seen
a proliferation in the number and diversity of methods in the
literature. Rödenbeck et al. (2015) compared a suite of 14
methods using a regional framework provided by Fay and
McKinley (2014). The majority of these methods are vari-
ants of multiple linear regression (MLR) or artificial neural
networks (ANNs), with regression being applied in regional
windows or clusters based on climatologies of satellite mea-
surable variables. The authors found that methods agreed
in regions where data coverage was adequate, but for data-
sparse regions, such as the Southern Ocean, the interannual
CO2 variability of various empirical methods was not coher-
ent.

Only two of the methods in Rödenbeck et al. (2015)
were able to adequately represent interannual variability of
1pCO2, namely: the SOM-FFN (self-organizing map–feed-
forward neural network) from Landschützer et al. (2014),
and the mixed layer scheme (MLS) from Rödenbeck et al.
(2014). These two methods were used by Landschützer et al.
(2015) to show that Southern Ocean CO2 uptake strength-
ened after 2000. However, these methods often showed large
interannual differences in flux estimates despite agreeing on
the overall decadal trend. This shows that there is lack of co-
herence even amongst the methods that perform well, mean-
ing that different methods may lead to different interpretation
of the drivers of 1pCO2. The primary reason for the varied
results is thought to be the way in which the algorithms deal
with sparse data in the Southern Ocean (Rödenbeck et al.,
2015). This alludes to the importance of testing multiple ap-
proaches, as different methods may be able to better repre-
sent the CO2 estimates in the data-sparse Southern Ocean.

In this study we introduce two methods new to this appli-
cation, namely: support vector regression (SVR) and random
forest regression (RFR). SVR is a method based on the the-
ory of statistical learning, making the method robust to over-
fitting by statistically determining the complexity of a prob-
lem rather than a heuristic approach as required in setting up
an ANNs hidden layer structure (Vapnik, 1999; Smola et al.,
2004). In a review on the use of support vector machines
(the broad category for regression and classification variants)
in remote sensing, Mountrakis et al. (2011) found that the

method had the “ability to generalize well even with limited
training samples”. This makes SVR an appealing considera-
tion for the sparsely sampled Southern Ocean. RFR uses an
ensemble of decision trees to create robust estimates, often
without requiring data pre-processing, making it an effective
“off the shelf” method (Louppe, 2014). As with SVM, ran-
dom forests (both classification and regression variants) have
also been used in remote sensing applications, though it does
not seem to be as widely used in earth system sciences de-
spite proving to be a powerful, yet easy to implement, learn-
ing algorithm (Caruana and Niculescu-Mizil, 2006; Hastie
et al., 2009). We use SVR and RFR to estimate CO2 fluxes in
the Southern Ocean to try to better resolve the seasonal cycle
from 1998 to 2014. These methods are trained with SOCAT
v3 data collocated with satellite proxies. We compare these
results with those of Landschützer et al. (2014). However,
the lack of data in the Southern Ocean, particularly in win-
ter, makes it difficult to understand the limitations of these
methods within the context of SOCAT data.

To gain a better understanding of these methods’ strengths
and weaknesses we implement SVR and RFR in a synthetic
data environment. A similar approach was taken by Friedrich
and Oschlies (2009) in the North Atlantic, which experi-
enced a similar data paucity to the Southern Ocean in the
early 2000s. This idealized environment was also used to
estimate the effect of including or excluding certain proxy
variables as well as the optimal coverage of cruise tracks to
constrain the North Atlantic 1pCO2 adequately. Similarly,
we assess the efficacy of including coordinate variables as
proxies of 1pCO2 in the empirical methods. In the inter-
comparison study by Rödenbeck et al. (2015) proxies typi-
cally include, but are not limited to, sea surface temperature
(SST), chlorophyll a (Chl a), mixed layer depth (MLD) and
sea surface salinity (SSS); however, several methods in the
study also include latitude and longitude. While coordinates
do not mechanistically impact 1pCO2, they do help to con-
strain estimates where the available remote sensing proxies
cannot adequately do so. The synthetic data are also used to
test the ability of the SVR and RFR to approximate 1pCO2
in the seasonally sparse Southern Ocean.

2 Data and methods

This study is presented in two parts. The first applies SVR
and RFR to the SOCAT v3 dataset and compares these out-
puts with those of the SOM-FFN by Landschützer et al.
(2014). These estimates will be referred to as the obser-
vational estimates. Here the domain is limited to the three
Southern Ocean domains of Fay and McKinley (2014) that
are shown in Fig. 1. These biomes are used to assess the per-
formance of each of the methods, as done in Rödenbeck et al.
(2015). Fay and McKinley (2014) use a different nomencla-
ture, which roughly corresponds to frontal zones. We rename
the sub-tropical seasonally stratified biome (STSS) as the
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Figure 1. The three Southern Ocean biomes as defined by Fay and
McKinley (2014). The common names for the biomes are shown
in the key, with the abbreviations shown in the round brackets. The
abbreviation in the square brackets show the abbreviations as given
by Fay and McKinley (2014).

Sub-Antarctic Zone (SAZ); the sub-polar seasonally strati-
fied biome (SPSS) becomes the Polar Frontal Zone (PFZ)
and the ice biome (ICE) is the Antarctic Zone (AZ) (Mongwe
et al., 2016).

The second part aims to better understand the limitations
of these methods with the given dataset by implementing the
methods with ocean biogeochemical model output. The do-
main of this synthetic data experiment is defined by the three
southern biomes of Fay and McKinley (2014). These are de-
fined by observed oceanographic and biological parameters,
but are used for the sake of consistency despite potential dif-
ferences between observations and the model.

2.1 Gridded data

The data sources are shown in Table 1. These gridded data
refer primarily to remotely sensed data, with the exception of
MLD and SSS. The latter variables are output from ECCO2,
an assimilative model. The temporal range of the data (1998
through 2014) is limited by the availability of GlobColour
(Chl a starting in 1998) and SOCAT v3 (fCO2 ending in
2014).

All data are gridded to 1 month× 1◦ using iris and xarray
packages in Python (Hoyer and Hamman, 2017; Met Office,
2017). Gridded pCO2 (SOCAT v3) is used to train the algo-

rithms (Bakker et al., 2016). Surface station measurements
(flask and tower) of atmospheric xCO2 are interpolated to a
regular grid using support vector regression (Masarie et al.,
2014). Mean sea level pressure (NCEP2) is used in the con-
version from xCO2 to pCO2 (Kanamitsu et al., 2002).

Cloud coverage and low light at high latitudes during win-
ter result in missing Chl a data. Cloud gaps are filled with
the climatology of Chl a (from 1998 to 2014) and missing
low-light data are filled with a value of 0.1± 0.03 mg m−3

(uniformly distributed random noise).

2.2 Model data

The output from a regional NEMO–PISCES configuration
(BIOPERIANT05-GAA95b) is used as the synthetic dataset.
The configuration is an updated version of PERIANT05 used
by Dufour et al. (2012), where BIOPERIANT05-GAA95b
includes biogeochemistry with PISCES-v2. The model has
a peri-Antarctic domain with an open northern boundary at
30◦ S. The horizontal resolution of the configuration is 0.5◦

cos(latitude) with 46 vertical levels. The northern boundary
is forced by a global 0.5◦ model, ORCA05 as presented in Bi-
astoch et al. (2008). Output is saved as 5-day averages. The
simulation was run from 1998 to 2009. The synthetic obser-
vations are sampled at the model resolution (5 days× 0.5◦)
to resemble the SOCAT dataset. Hereafter all data are resam-
pled to 1.0◦ spatial resolution and monthly temporal resolu-
tion data to match observations. Finally, for the simulation
experiment we define the Southern Ocean using the three
southernmost biomes defined in Fay and McKinley (2014),
as was done for the observational estimates.

2.3 Data transformation and derived variables

Both gridded data and synthetic input data are transformed in
preparation for the empirical algorithms. The log10 transfor-
mations of MLD and filled chlorophyll (Chl aclim) are taken
to return a distribution that closer represents a normal distri-
bution.

Several of the studies in Rödenbeck et al. (2015) included
latitude, longitude and/or time as proxies of 1pCO2. It is
important to note that coordinates do not drive mechanis-
tic changes in 1pCO2. Rather, the inclusion of coordinates
in the empirical methods account for unknown or region-
ally varying proxies that cannot be measured remotely. Many
methods in the intercomparison by Rödenbeck et al. (2015)
did not include coordinates, but account for unaccountable
spatial variability by clustering or subsetting data regionally.
In this study, we use a single large domain with no cluster-
ing or regional subsets. Two scenarios for each method in the
simulation experiment are run: no coordinate variables, and
including coordinate variables (time, latitude and longitude).

The coordinates are transformed to preserve the continuity
of the data, as is shown below. Seasonality of the data is pre-
served by transforming the day of the year (j ) and is included
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Table 1. Information on data products used in this study. The temporal and spatial resolutions are for the raw data (before gridding). Dashes
show that times are either not applicable or that the dataset is continually updated. Note that the start and end year show full years only. Links
to download the data are given in the additional materials. The asterisk (*) indicates that variables are the output of a data assimilative model.

Group or product Variables Date range Resolution Reference

Start End Time Space

SOCAT v3 fCOsea
2 1970 2014 1 month 1◦ Bakker et al. (2016)

CDIAC xCOatm
2 1970 2014 – – Masarie et al. (2014)

GlobColour Chlorophyll 1998 – 1 day 0.25◦ Maritorena and Siegel (2005)

GHRSST Sea surface temperature 1981 – 1 day 0.25◦ Reynolds et al. (2007)

ECCO2 (cube92)
Mixed layer depth* 1992 2015 1 day 0.25◦ Menemenlis et al. (2008)

Salinity*

in both SVR and RFR analyses:

t =

 cos(j ·
2π
365

)

sin(j ·
2π
365

)

 . (1)

Transformed coordinate vectors were passed to both SVR
and RFR using n-vector transformations of latitude (λ) and
longitude (µ) (Gade, 2010; Sasse et al., 2013), with n con-
taining the following:

A,B,C =

 sin(λ)
sin(µ) · cos(λ)
−cos(µ) · cos(λ)

 . (2)

Co-located fCO2 (y) and proxy data (X) are used to cre-
ate training arrays (x). The final input for SVR and RFR
are (with 12 columns) log10(Chl aclim), SST, fCO2(atm),
ADT, log10(MLD), ICE, SSS, cos(j ), sin(j ) and n vectors
[A,B,C]. SVR requires each column of the proxies to be
z-scored, i.e. normalized to the mean (µ) and standard devi-
ation (σ ) of each column ( x−µ

σ
).

2.4 Empirical methods and implementation

Data are split randomly into a training and independent test
dataset with a ratio of 0.7 : 0.3. The independent dataset is
used to give a test error of the trained algorithm. The sta-
tistical learning package, scikit-learn, in Python is used for
all regression and cross-validation methods (Pedregosa et al.,
2011). The details on each cross-validation method are out-
lined in the subsections below.

2.4.1 Support vector regression

The basic formulation of SVR is similar to that of linear re-
gression as described by Smola et al. (2004):

f (x)= 〈w, x 〉+ b with b ∈ R, (3)

where b is an intercept and 〈·, ·〉 denotes the dot product of
the weights (w) and x, the training data. The weights and

intercept are found by solving the cost function:

minimize
1
2
||w||2 subject to

{
yi −〈w,xi〉− b ≤ ε

〈w,xi〉+ b− yi ≤ ε
. (4)

In this form, w is minimized according to the target val-
ues (yi) to a precision of ε – i.e. there is no room for er-
ror greater than ε. However, with the majority of problems,
meeting these constraints is not possible if data are noisy or
ε is set to be small. The inclusion of slack variables (ξi,ξ∗i )
relaxes the constraints and the problem is now formulated as
follows:

minimize
1
2
||w||2+C

n∑
i=1
(ξi + ξ

∗

i )

subject to


yi −〈w,xi〉− b ≤ ε+ ξi

〈w,xi〉+ b− yi ≤ ε+ ξ
∗

i

ξi,ξ
∗

i ≥ 0

. (5)

Here C is a parameter that adjusts for the amount of error
that the minimization allows. The slack variable |ξ | is only
counted towards the cost if the point lies outside the mar-
gin (|ξ | ≥ ε). The points on or outside the margins are called
support vectors and are used to construct the hypothesis func-
tion, h(x). This is shown in Fig. 2a where a linear SVR is
fitted to noisy data produced from a cubic spline. The opti-
mization problem shown in Eq. (5) is solved in its dual for-
mulation (see Hastie et al., 2009, for the full description).
Importantly, solving the dual formulation allows for efficient
kernelization of SVR.

Kernelization describes the process that maps the proxy
variables (x) onto a higher dimensional feature space. In this
study we used a Gaussian kernel (or radial basis function –
RBF), which allows for potentially infinite complexity de-
termined by the number of support vectors (Vapnik, 1999).
The RBF kernel introduces an additional hyper-parameter
(γ ) that defines the width of the Gaussian. Selection of the
SVR hyper-parameters (ε, C, γ ) is done using a two-stage
exhaustive grid search approach with cross-validation. We
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Figure 2. A simple example demonstrating the principle of (a) sup-
port vector regression and (b) random forest regression. The dashed
grey line is the true function f (x)= 0.4x3 with the blue dots repre-
senting a random sample taken from this function f (x)+ σ , where
σ is normally distributed noise. The black line in each panel, h(x),
shows the estimate of the true function. The orange dots in (a) show
the samples from the random subset chosen as support vectors from
which h(x) is estimated. The orange lines in (b) show 200 decision
tree estimates, gi(x), which are averaged to create the ensemble,
h(x).

use K-fold cross-validation, where the data are divided into
eight equal “folds” (k = 8). Seven of the folds are used to
train the model, while the remaining fold is used for vali-
dation. This is done iteratively until each excluded fold has
been used to test the results.

2.4.2 Random forest regression

Decision trees form the basic building block of a random for-
est (RF), with the average of n decision trees taken as the en-
semble estimate (Breiman, 2001) (Fig. 2b). The basic idea of
a decision tree is to iteratively partition data into boxes using
simple rules that minimize the error at each split (referred to
as a node) – these boxes would become hypercubes in higher
dimensional problems. This is described by the basic formu-
lation as described in Loh (2011):

1. Start at the root node.

2. For each X, find the set S that minimizes the sum of the
node impurities in the two child nodes and choose the
split X ∈ S that gives the minimum overall X and S.

3. If a stopping criterion is reached, exit. Otherwise, apply
step 2 to each child node in turn.

Decision trees have high variance due to their discrete nature.
Random forests reduce this high variance by bootstrapping
with aggregation (called bagging): a subset of the available
training dataset is sampled with a replacement for each de-
cision tree in the RF. The sampling with replacement means
that each training observation has a ∼ 63 % chance of be-
ing chosen at least once for a particular tree (Louppe, 2014).
This subsampling provides estimates that are robust to out-
liers as these have a chance of being omitted in training. This
means that a random forest typically performs better when
number of decision trees (t) is large, but increasing the num-
ber of trees has diminishing returns in terms of performance
vs. computation. Additional robustness is given to RFs by
randomizing and/or limiting the number of proxy variables
(m) given to the nodes in each tree when splitting the data
(hence random) (Louppe, 2014). In this study, the maximum
number of proxy variables (m= 11) was given to the RFR.
The complexity of a RF can be adjusted by limiting the mini-
mum number of leaves at a terminal branch (l), where a fully
grown tree would allow l to be one.

A useful feature of bagging is that it intrinsically provides
a cross-validation dataset (a.k.a. out-of-bag samples) that is
not part of the training procedure (for a specific set of trees).
The out-of-bag samples are those that are not selected during
bagging. The advantage of this approach over K-fold cross-
validation is that the full dataset can be used in the train-
ing procedure, as opposed to splitting the dataset for cross-
validation. The out-of-bag error is used to cross-validate the
model and select the hyper-parameters (t , m, l) for the RF.

2.5 CO2 fluxes

Air–sea CO2 fluxes are quantified with the following:

FCO2 =K0 · kw ·1pCO2 · (1− [ice]). (6)

The gas transfer velocity (kw) is calculated using a quadratic
dependency of wind speed with the coefficients of Wan-
ninkhof (2014). The u and v vectors of CCMP v2 are used
to compute the wind speed (Atlas et al., 2011). Coefficients
from Weiss (1974) are used for K0 and 1pCO2 is estimated
by the empirical models. The effect of sea-ice cover on CO2
fluxes is treated linearly; the fraction of sea ice cover ([ice])
is converted to fraction of open water by subtracting 1 as
shown in Eq. (6).

These results are analysed regionally with the three South-
ern Ocean biomes defined by Fay and McKinley (2014)
(Fig. 1). We compare our estimates of CO2 fluxes with those
of Landschützer et al. (2014), who used a two-step neu-
ral network method abbreviated to SOM-FFN. Note that the
SOM-FFN method was trained using SOCAT v2 compared
to the methods in this study that used SOCAT v3.

www.biogeosciences.net/14/5551/2017/ Biogeosciences, 14, 5551–5569, 2017
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2.6 Synthetic data experiments

Two experiments are run with the synthetic data. The first ex-
periment aims to identify the efficacy of including or omit-
ting coordinates as proxy variables on each method’s abil-
ity to estimate 1pCO2 using SOCAT v3 locations. This is
achieved by implementing the model with the transformed
coordinate variables as proxies and then without. Note that
the training procedure for the models remains the same as
for the observational estimates of 1pCO2.

The second experiment assesses the impact that the sea-
sonally sparse SOCAT v3 has on the ability of the methods
to estimate1pCO2. This is done by comparing the results of
1pCO2 estimates when trained according to (1) SOCAT v3
locations trained with synthetic data (Fig. 3a) and (2) uni-
formly random sampling locations (random in space and
time) with a sample size the same as SOCAT v3 (Fig. 3b).
Once again this the training procedure remains the same (as
stated above).

3 Results

3.1 Observational CO2 data results

We use the RMSE as the primary metric of the methods’
performance as shown in Fig. 4a–c. Note that the RFR
RMSE is calculated from the out-of-bag error (effectively
an independent error). SOM-FFN has the best RMSE score
of 14.84 µatm (using SOCAT v2), which is better than the
RMSE of RFR (16.45 µatm) and SVR (24.404 µatm), which
are trained with SOCAT v3. The biases of the different meth-
ods are similar in magnitude for each of the biomes (−0.40,
−0.03 and −0.75 µatm for the SOM-FFN, RFR and SVR,
respectively). The mean absolute errors (MAEs) for the re-
spective methods are 9.78, 9.85 and 15.27 µatm.

The difference between the MAE and the RMSE high-
lights the ability of methods to fit outliers or extreme points,
as the RMSE metric penalizes outliers more severely than
the MAE. The SOM-FFN approach has the smallest differ-
ence between these two metrics (5.06, 6.60 and 9.13 µatm for
the SOM-FFN, RFR and SVR, respectively). This superior
performance may be due to two factors. Firstly, the SOM-
FFN method may be better at fitting the extreme points (those
that are in the outer percentiles of the distribution). Second,
it may allude to the fact that the SOCAT v2 dataset is less
variable. Testing the SVR and RFR implementations against
SOCAT v2 yields similar results, with the exception of in the
SAZ, where both RMSE and MAE improve (results shown
in Table 2).

The RMSEs and biases in the PFZ are least variable be-
tween methods. While there is a substantial increase in the
number of observations from 2004 there is no appreciable
change in the RMSE. The Antarctic Zone (AZ) is the pri-
mary contributor to these errors with much larger average

Table 2. Various performance metrics for empirical estimates of
1pCO2 in the Sub-Antarctic Zone (SAZ), Polar Frontal Zone (PFZ)
and Antarctic Zone (AZ) (as defined by Fay and McKinley, 2014).
Results tested according to SOCAT v2 and SOCAT v3 are shown
for the SVR and RFR methods.

Method RMSE MAE r2 Bias

SAZ

SVR (v3) 18.14 11.28 0.48 0.61
SVR (v2) 15.99 10.36 0.49 0.20
RFR (v3) 13.67 8.16 0.70 −0.14
RFR (v2) 12.66 7.65 0.68 −0.29
SOM-FFN 10.07 7.04 0.76 −1.15

PFZ

SVR (v3) 14.45 10.06 0.48 0.31
SVR (v2) 14.29 10.01 0.44 −0.01
RFR (v3) 10.71 6.7 0.71 0.21
RFR (v2) 10.56 6.77 0.69 −0.34
SOM-FFN 11.01 7.68 0.6 0.26

AZ

SVR (v3) 36.14 25.19 0.56 −3.22
SVR (v2) 35.69 25.01 0.59 −2.88
RFR (v3) 23.8 15.81 0.8 −0.27
RFR (v2) 23.49 15.63 0.81 −0.62
SOM-FFN 21.32 14.91 0.82 −0.77

RMSE values than for the SAZ and PFZ (36.14, 23.80 and
21.32 µatm for SVR, RFR and SOM-FFN, respectively). This
increase in the RMSE is likely driven by the larger variability
of1pCO2 observations in the AZ, where standard deviations
of observations are 25.05, 20.01 and 54.65 µatm for the SAZ,
PFZ and AZ, respectively. This is reflected in the highest r2
scores in the AZ for the respective methods (Table 2).

The annual and seasonal averages (winter= JJA, sum-
mer=DJF) for 1pCO2 estimated by RFR, SVR and SOM-
FFN for the Southern Ocean are shown in Fig. 5. Note
that the estimates have been scaled to sea ice concentration
(1pCO2× (1− [ice])) as done for fluxes in Eq. (6) – this
mutes winter estimates in the AZ. There is, in general, good
agreement in the spatial distribution between the methods,
with the SAZ being a net sink of CO2 and the region south
of the polar front (PFZ and AZ) being a source of CO2 to the
atmosphere, as found by Metzl et al. (2006).

More specifically, there is stronger zonal asymmetry in
summer compared to winter. This is driven, in part, by a
strong reduction of pCO2 by biological production (Metzl
et al., 2006; Lenton et al., 2012). There are three regions
in the SAZ where 1pCO2 reduction is strongest and con-
sistent between methods (Fig. 5): east of South America
(Brazil–Malvinas Confluence), south-east of Africa (Agul-
has retroflection) and between Australia and New Zealand
(Tasman Sea). The reduction of 1pCO2 in the PFZ is
strongest in the Atlantic sector downstream of the South
Georgia and South Sandwich Islands and in the Indian sec-
tor downstream of the Kerguelen Plateau (Fig. 5d–f). In both
cases, SAZ and PFZ, these regions are consistent with re-
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Figure 3. The spatial distribution of sampling locations in the synthetic dataset (BIOPERIANT05). The top panel (a) shows the sampling
strategy using SOCAT v3 locations, and the bottom panel (b) shows the uniform random sampling distribution used in the second experiment.

Figure 4. The RMSE (top row, a–c) for each of the three Southern Ocean biomes for RFR (blue), SVR (green) and SOM-FFN (red). The
grey fill in the top row (a–c) shows the number of observations for each of the biomes for each year. The maps in the bottom row (d–f) show
the spatial distribution of residuals in the Southern Ocean for SVR (d), SOM-FFN (e) and RFR (out-of-bag errors) (f). The thin black lines
define the three Southern Ocean biomes as defined by Fay and McKinley (2014). Note that RFR and SVR are trained and tested with SOCAT
v3 while SOM-FFN is trained and tested with SOCAT v2.

gions of high biomass (Thomalla et al., 2011; Carranza and
Gille, 2015).

However, there are more subtle differences in the magni-
tudes and distributions of these patterns. The RFR underes-
timates winter outgassing south of the polar front (Fig. 5g)
compared to the other methods, resulting in a weaker annual
source. Conversely, the SVR has strong winter outgassing
(Fig. 5h) in the PFZ compared to other methods. In summer,
the largest difference occurs in the eastern Atlantic sector
of the SAZ where the SOM-FFN 1pCO2 estimates (high-

lighted in Fig. 5f) are larger compared to SVR and RFR.
Other differences in the spatial output are more subtle.

The agreements and differences between methods are also
observed in the time series for each of the biomes (Fig. 6).
Importantly, there is coherence in the strengthening sink
(2002 to 2012) and timing of the seasonal cycle between the
three methods (Landschützer et al., 2015). The differences in
the magnitude of the winter outgassing in the PFZ and AZ
(Fig. 6b, c) are also apparent, with the SVR overestimating
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Figure 5. Seasonal averages for 1pCO2 from 1998 to 2014 for SVR, SOM-FFN and FRF. The annual mean is shown in the top row (a, b,
c), the mean summer (DJF)1pCO2 is shown in the middle row (d, e, f) and the mean winter (JJA)1pCO2 is shown in the middle row (g, h,
i). The thin black lines denote the SAZ, PFZ and AZ from outside inward. Note that the 1pCO2 has been normalized to sea ice cover where
1pCO2 is multiplied by (1− [ice]). The red oval in (f) highlights the difference in SOM-FFN estimates of 1pCO2 during summer in the
Atlantic compared to SVR and RFR.

1pCO2 compared to other methods and the RFR with con-
servative outgassing estimates.

There is also a large difference between the SOM-FFN and
the two other methods in summer, particularly from 1998
through 2006. Figure 5f shows that this could be driven by
the difference in the eastern sector of the Atlantic (circled
with red). Estimates of winter1pCO2 are in agreement, with
the exception of the last 4 years when SVR winter estimates
increased relative to RFR. The SAZ and PFZ also show vari-
ability in the magnitude of a seasonal shoulder in late sum-
mer, where increasing 1pCO2 is briefly delayed by a short
sharp decrease resulting in a saw-tooth pattern. This effect is
the strongest for the SVR and weakest for the RFR.

The seasonal amplitude of 1pCO2 in the AZ is far larger
than in the SAZ and PFZ (Fig. 6c) resulting in large method-

ological differences. However, this large differential is not
realized in calculated air–sea CO2 fluxes due to ice cover, as
shown by the dashed lines (Fig. 6c). Summer estimates are
also influenced by sea ice cover, but not to the extent that
winter fluxes would be reduced.

3.2 Simulation experiment results

The advantage of using synthetic data is that both in- and out-
of-sample errors can be estimated, where the in-sample error
is calculated from the training points and the out-of-sample
error is from the entire predicted domain. The latter gives a
representation of the true error of the method. The results
from these experiments are shown in Table 3. The detailed
out-of-sample histograms are shown in Fig. B1.
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Figure 6. Time series of 1pCO2 estimates for the three Southern Ocean biomes as defined by Fay and McKinley (2014): SAZ, PFZ and
MIZ. The y-axis grid lines represent the same scale for figures (a) through (c). The SOM-FFN estimates are only available until 2011 as it is
trained with SOCAT v2, while the SVR and RFR are trained with SOCAT v3. The 1pCO2 normalized to sea ice cover is shown by dashed
lines in the AZ.

Table 3. Root mean squared error (RMSE, µatm) for the three syn-
thetic data experiments for RFR (left), SVR (middle) and the en-
semble mean (ENS) of the two methods. Both in- and out-of-sample
errors are reported (E[in] and E[out], respectively). SOCAT experi-
ments are those where the location of synthetic training data is the
same as SOCAT v3. This was run with (with coordinates) and with-
out coordinates (without coordinates), namely time, latitude and
longitude. A third experiment was run with random samples – co-
ordinate variables are included as proxies.

Experiment RFR SVR ENS

E[in]
SOCAT (without coordinates) 6.65 7.47 –
SOCAT (with coordinates) 5.12 5.10 –
Random Sampling 7.23 7.83 –

E[out]
SOCAT (without coordinates) 7.46 7.46 7.08
SOCAT (with coordinates) 5.76 6.19 5.36
Random sampling 4.88 4.94 –

3.2.1 Coordinates as proxy variables

This experiment used the synthetic dataset to test the in-
fluence of including or excluding transformed coordinates
(time, latitude and longitude) as proxies of 1pCO2. There
are four major results from the experiment results. Firstly,
the RMSE estimates are smaller when coordinates are in-
cluded as proxies for both in- and out-of-sample subsets
(Table 3). Secondly, RFR achieves marginally better out-of-
sample RMSE than SVR (5.76 and 6.19 µatm, respectively)
when trained with coordinates. Third, both RFR and SVR
have comparable out-of-sample RMSE estimates (7.46 µatm)
for 1pCO2 estimates trained with and without coordinate
proxies. Lastly, the ensemble mean of SVR and RFR has
lower out-of-sample RMSE estimates than the individual
estimates for implementations with and without coordinate
proxies, though these gains are marginal (Table 3).

These points can also be gleaned from RMSE maps
(Fig. 7). Both RFR and SVR errors are low; however, the
RFR outperforms the SVR marginally for the open-ocean re-
gions. Errors in coastal regions remain high for each of the
experiments and methods (Fig. 7a, b, d, e), such as in the
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Figure 7. Distributions of root mean squared error (RMSE) for the three synthetic data experiments for RFR in the top row (a–c), SVR in the
middle row (d–f) and the ensemble mean for RFR and SVR in the bottom row (g–i). The first column (a, d, g) shows the RMSE for synthetic
SOCAT training locations without coordinates (w/o coords) as proxies, while the second column (b, e, h) includes coordinates as proxies.
The last column (c, f, i) shows the RMSE of randomly sampled training locations where coordinates are included as proxies.

Argentine Sea, the Agulhas retroflection, and the marginal
ice zone. The ensemble mean of the estimates achieves a bal-
ance between the two methods with low and moderate RMSE
scores in the open-ocean and coastal regions. Lastly, the dis-
tributions of the errors for RFR and SVR without coordinate
proxies (and thus the ensemble mean) are similar.

The time series (Fig. 8) show that including coordinate
variables plays an important role in achieving accurate phas-
ing of the seasonal cycle. When coordinates are not included
as proxies, the phasing shifts earlier for both methods. There
is also an improvement of estimates over time, where the first
2 years (1998 and 1999) have worse estimates for both SVR
and RFR (Fig. 8). This does not seem to be linked to the
number of observations, but could be due to the distribution.
The ensemble1pCO2 in the 1998 to 1999 period is closer to
BIOPERIANT05 output as the over- and underestimates of
RFR and SVR, respectively, compensate for each other.

3.2.2 Random sampling regime

A second experiment is performed to assess the inaccuracies
that arise due to the spatial and temporal sampling biases in
the SOCAT v3 dataset. Training locations are chosen at ran-
dom and uniformly in time and space. This eliminates any
summer–winter biases as well as clustering of cruise tracks
in certain regions (such as the Argentine sea). Note that co-
ordinates are included as proxies of1pCO2 with the random
sampling regime.

Firstly, the results show that the biases in SOCAT v3 do
contribute to out-of-sample errors, as the random sampling
regime achieved lower RMSE scores than any of the other
experiments (4.88 and 4.94 µatm for RFR and SVR, respec-
tively, as in Table 3). However, RFR is marginally less sus-
ceptible to sampling biases than SVR, as the relative im-
provement for the latter is larger (with differences of 0.88 and
1.70 µatm, respectively). The spatial distributions of RMSE
for the random sampling implementations (Fig. 7c, f) show
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Figure 8. Time series of BIOPERIANT05 1pCO2 (target) and empirical estimates of 1pCO2 for each of the experiments for RFR (a),
SVR (b) and the ensemble mean estimates (c). The SOCAT v3 estimates are trained using the locations of SOCAT v3 data. The variant
with coordinates includes coordinates as proxies of 1pCO2 while these are not included for the variant labelled as without coordinates. The
Random estimates are trained with uniformly distributed random sample locations. The number of samples per time step for SOCAT (a) and
random sampling locations (b) are shown by the grey fill.

that errors in coastal regions remain high (> 12 µatm) with
uniform sampling. Lastly, there is an improvement in the
estimates from 1998 to 2000, particularly with the random
sampling for the SVR (Fig. 8), suggesting that the method is
more susceptible to the temporal bias than RFR (if coordi-
nates are included as proxies).

4 Discussion

4.1 Observational estimates

In this section we address the methods’ ability to fit the train-
ing data, in other words an assessment of in-sample errors
(Fig. 4 and Table 2). Thereafter we investigate the differences
in the estimates of 1pCO2 (Figs. 5 and 6).

4.1.1 Assessment of in-sample errors

Based on the results, the SOM-FFN method (by Land-
schützer et al., 2014) proves to be an elegant implementation
of neural network methods that is able to estimate SOCAT
1pCO2 (in-sample estimate) better than the RFR and SVR
methods (with respective RMSE estimates of 14.84, 16.45
and 24.40 µatm). Here we assess these differences and try to
identify the possible reasons for the differences.

One of the largest differences in the methods’ ability to fit
the training data is in the SAZ where the RFR and SVR score
poorly in comparison to SOM-FFN, particularly from 2000
to 2006 (Fig. 4a). This is during a period where the num-
ber of observations are still relatively low in the SOCAT v3
database (Fig. 4a). This may then be due to an increase in the
complexity of 1pCO2 measurements in the SAZ from SO-
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CAT v2 to v3 from 1998 through 2006, which makes the data
more challenging to fit accurately. This is exemplified in the
maps of RMSE (Fig. 4g–i), where coastal regions typically
have larger error estimates. A comparison of SOCAT v2 and
v3 for this period shows that the increase in the number of
observations occurs primarily in the Argentine Sea, thus con-
firming this hypothesis (Fig. A1a). The comparison of SO-
CAT v2 and v3 RMSE results for RFR and SVR confirm this
(Table 2), where there is a marked improvement when us-
ing the older dataset. Importantly, this shows that increasing
the number of measurements does not necessarily improve
the in-sample error estimates, but may yield a more accurate
out-of-sample estimate; however, this is difficult to test with
limited data.

Despite the improvement in performance when testing
against SOCAT v2, SVR and RFR still have poorer perfor-
mance than the SOM-FFN approach. We attribute this in
part to the SOM-FFN’s ability to reduce the large RMSE
contributions observed in the other two methods. This no-
tion is supported by the smaller difference between RMSE
and MAE, especially in the SAZ (Table 2). The SOM-FFN
achieves this by increasing the flexibility of the algorithm
by having multiple regression models that can each be op-
timized for data with a particular length scale of variability.
This allows the SOM-FFN approach to adapt to short scales
of variability in dynamic regions such as the Argentine Sea
and the coastal Antarctic (Fig. 4i).

In comparison, this implementation of SVR, which is
theoretically similar to an artificial neural network, only
has one length scale for the entire domain (Vapnik, 1999;
Smola et al., 2004). This becomes apparent in the AZ, where
many of the observations are in the more biogeochemically
dynamic coastal Antarctic, where melting sea ice results
in short decorrelation length scales (Bakker et al., 2008;
Chierici et al., 2012; Jones et al., 2012). The SVR has much
larger RMSE scores in the AZ than the RFR or SOM-FFN
(35.69, 23.49 and 21.32 µatm, respectively). This suggests
that implementing the SVR approach without an initial clus-
tering or regionalization step will not yield good results.

By comparison, the RFR approach is more adept at fitting
various length scales of variability, accounting for both the
higher and lower variability in the AZ and PFZ, respectively
(with SOCAT v3 standard deviations of 54.65 and 20.01, re-
spectively). The high r2 scores achieved by RFR in the AZ
and PFZ (0.81 and 0.71, respectively) highlight the flexibil-
ity in the method (Table 2). This is due to the differences in
the underlying mathematics of the methods. Decision trees,
which are the building blocks of RFR, separate data at each
decision node with a discrete boundary (Breiman, 2001).
Conversely, ANNs and SVRs often use Gaussian functions
in the cost function, resulting in smoother approximations
(Vapnik, 1999). This makes decision trees prone to over-
fitting, but the ensemble implementation of random forests
eliminates this to a large extent.

4.1.2 Differences in 1pCO2 estimates

One of the largest differences in 1pCO2 is the weaker sink
estimated by the SOM-FFN method in the SAZ (Fig. 6). This
difference can be traced to the eastern Atlantic SAZ, where
the SOM-FFN has higher estimates of 1pCO2 (Fig. 5e
shown by the red oval and the differences between the meth-
ods in Fig. A3a, b). A comparison between the SVR and
RFR trained with SOCAT v2 and v3 further eliminates the
use of different training datasets as primary sources of dif-
ference, where methodology is a higher-order driver of dif-
ference (Fig. A2). The lack of this feature in the eastern At-
lantic sector of the Southern Ocean in SVR and RFR esti-
mates suggests that this is a function of the initial cluster-
ing step in the SOM-FFN. The clustering process separates
pCO2 observations into clusters that are not restricted in time
and space (Landschützer et al., 2014). This allows the SOM-
FFN to “transfer knowledge” from a remote location (even
outside the Southern Hemisphere) if proxies are similar to
the Southern Ocean. This knowledge transfer assumes that
the relationship between pCO2 and the measured proxies is
globally consistent. Moreover, there is the assumption that
all pCO2 variability (within a cluster) can captured by the
measured proxies. This assumption is not made when using
coordinates or regional subsets as locations are isolated, but
there is then the potential loss of knowledge from remote lo-
cations. This question will be addressed further in the discus-
sion on the use of coordinate variables as proxies of1pCO2.

Another difference between 1pCO2 estimates is the ten-
dency for SVR to overestimate 1pCO2 relative to the RFR
and SOM-FFN approaches, particularly in the PFZ and AZ
where winter data are sparse (Fig. 6b, c). We attribute this to
the SVR’s sensitivity to outliers, determined by the fact that
the cost function penalizes outliers heavily (Eq. 5). In context
of the SOCAT v3 dataset, the algorithm may treat the sparse
winter data as outliers. This is due to the fact that sparse win-
ter measurements of 1pCO2 are positive, while the abun-
dant summer measurements are negative (Metzl et al., 2006;
Lenton et al., 2013). This may then be a positive realization
of a methodological attribute that is typically considered a
weakness.

Conversely, RFR winter estimates of 1pCO2 are often
lower than the SOM-FFN and SVR estimates, again in the
AZ and PFZ (Figs. 5g–i and 6b, c). This may be due to the
method’s resilience against outliers, which could be due to
two attributes (Louppe, 2014). Firstly, outliers are less likely
to dominate the feature space with the use of bootstrap ag-
gregation as these points will be sampled less frequently.
Secondly, individual decision trees regress values by using
the average of samples in a terminal node (or leaf), where
the minimum number of samples per terminal node is set
by the user. This second attribute means that estimates will
never be outside the bounds of the minimum and maximum
of the training dataset, thus leading to conservative estimates
(as shown in Fig. 2b). The differences between the methods
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shown in Fig. 6 could be a good case for an ensemble ap-
proach, where the strengths of one model compensate for the
weakness of another. This is assessed in the synthetic data
and will be discussed further.

These attributes may also be the reason for the differences
in the magnitudes of the autumn peak in 1pCO2 in the SAZ
and PFZ. Mechanistically this peak could be attributed to
a sharp increase in cooling leading into winter, resulting in
increased solubility of CO2 and thus a sharp reduction of
1pCO2 (Metzl et al., 2006; Takahashi et al., 2002). Deeper
mixing of the water column shortly thereafter would en-
train CO2-rich waters, thus increasing1pCO2 (Lenton et al.,
2013). However, the trend for this peak to shrink in the SAZ
and PFZ for all methods suggests that this may an artefact
that is specific to the SOCAT dataset.

4.2 Synthetic data experiments

In this section we discuss the outcomes of the two experi-
ments performed on the synthetic dataset (BIOPERIANT05
model output). The first experiment addresses the efficacy
of including coordinate variables as proxies of 1pCO2. This
is done by running two implementations of RFR and SVR:
without coordinates as proxies, and with coordinates as prox-
ies. The second experiment addresses the impact that the SO-
CAT dataset, biased in both space and time has on 1pCO2
estimates.

4.2.1 Coordinate variables improve estimates

This topic has to some extent already been mentioned in the
discussion of the observational data, in which the cases for
and against the inclusion of coordinate variables as proxies
for1pCO2 were put forward. If coordinates are not included
there is the benefit of potential information transfer from re-
mote parts of the domain, but this assumes that the satellite
observable proxies (and assimilative model output) constrain
1pCO2 in a globally consistent way. If coordinates are in-
cluded the information transfer is lost and the assumption
is made that the proxy variables are not able to constrain
1pCO2 in a globally consistent manner.

The results of this experiment show that coordinates im-
prove estimates of1pCO2 with better RMSE scores for both
SVR and RFR (Table 3). We are thus in favour of the sec-
ond hypothesis that the available proxies cannot sufficiently
constrain1pCO2 without coordinates. A two-step clustering
approach, such as SOM-FFN, may be able to achieve com-
parable results without coordinates, but this would have to be
tested with that specific method. However, this may also lead
to trends in the data that may be artefacts of remote knowl-
edge transfer, as potentially seen in the observational data
(Fig. 5f).

An important outcome of this experiment is that the in-
clusion of coordinates improves the seasonal phasing of the
methods (Fig. 8a, b). It is critical for the empirical methods

to correctly estimate the phasing of 1pCO2 as the seasonal
cycle phasing may be a useful indicator of anthropogenically
driven changes to the marine carbonate system.

One of the assumptions in these synthetic data experiments
is that the models are, to some extent, representative of the
variability in the observed ocean. However, the BIOPERI-
ANT05 output does not achieve this, with a standard devi-
ation of 19.80 µatm for synthetic SOCAT v3 data compared
to 38.20 µatm of the gridded SOCAT v3 observations (ac-
cording to Southern Ocean as defined by Fay and McKinley,
2014). This could be a cause for concern. However, we be-
lieve that this creates an even a stronger case for the use of
coordinates as proxy variables. The increased variability in
the observations could be due to processes that deterministic
models cannot yet constrain due to our lack of understanding
of the marine carbonate system (Lenton et al., 2013; Mongwe
et al., 2016).

4.2.2 SOCAT biases

The lack of winter pCO2 data is a problem throughout the
mid-latitude and high latitude oceans, but is particularly se-
vere in the Southern Ocean (Bakker et al., 2016), and the im-
pact of the lack of data in the Southern Ocean is not known.
Moreover, the efficacy of various methods to fill this large
temporal gap is unknown (Rödenbeck et al., 2015). Here we
show that there is a considerable impact in this synthetic data
environment, but the effect of the sampling bias is perhaps
smaller than we would have anticipated. Both methods are
able to estimate the spatial distribution and the seasonal cycle
of1pCO2 with relative accuracy (Figs. 8 and 7 and Table 3).
This could be due to two factors.

Firstly, winter data are less variable than summer data and
require less sampling. Mechanistically, this is a likely sce-
nario. In summer1pCO2 is spatio-temporally heterogeneous
in the Southern Ocean due to the uptake of CO2 by phyto-
plankton (Metzl et al., 2006; Bakker et al., 2008; Thoma-
lla et al., 2011; Chierici et al., 2012; Lenton et al., 2013).
The drivers of phytoplankton are complex due to the co-
limitation of light and iron (as a micronutrient) in the South-
ern Ocean (Boyd and Ellwood, 2010; Thomalla et al., 2011;
Tagliabue et al., 2014). This complexity would require more
sampling: perhaps additional proxies or increased spatial res-
olution to capture the variability of1pCO2. Conversely, pro-
cesses driving winter1pCO2, namely the interaction of mix-
ing and buoyancy, act on larger scales, potentially leading to
less spatio-temporal heterogeneity. However, the lack of ob-
servations means that we simply cannot know with certainty.
This makes a strong case for autonomous sampling platforms
to the Southern Ocean’s winter sampling gap. The SOCCOM
float project may soon yield such measurements with pH-
derived estimates of pCO2 (Russell et al., 2014; Johnson
et al., 2017; Williams et al., 2017).

Secondly, the model used to generate the synthetic data
may not be representative of the Southern Ocean. This has
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been discussed in the previous section, but here, rather than
increasing our confidence, it diminishes our confidence in
the result. Studies have shown that process models are not
able to accurately represent the seasonal cycle of CO2 in the
Southern Ocean (Lenton et al., 2013; Mongwe et al., 2016).
Moreover, 1pCO2 is often driven by processes that are not
representative of observations (Mongwe et al., 2016).

The most likely scenario is likely a combination of these
two factors, where winter data are in fact less variable than
summer data, but the error is larger than the experiment
shows due to incomplete knowledge of the processes that de-
scribe pCO2 in the process models.

4.2.3 The best method: the ensemble average

The synthetic data also allow us to compare the two methods
relative to each other, in the context of the SOCAT v3 data.
The data show that the RFR method performs better than the
SVR (trained with coordinates as proxies) with respective
out-of-sample RMSEs of 5.76 and 6.19 µatm (Table 3). How-
ever, it is the average of these two methods (ensemble mean)
that achieves the lowest RMSE (5.36 µatm), albeit marginal.
The time series in Fig. 8c shows that the improvement may
come from the period 1998 to 2000, when RFR is plagued
by underestimation of the sink strength, while SVR overes-
timates the sink strength. This supports the notion that the
strengths and weaknesses of these two methods compliment
each other. Moreover, it supports the merit of multiple ap-
proaches and further development of empirical methods for
the estimation of 1pCO2.

5 Conclusions

In this study two empirical methods (SVR and RFR) are pre-
sented as alternative and complementary pCO2 gap-filling
methods. These algorithms are established in other fields,
but have not been applied for the estimation of surface ocean
1pCO2. We apply the methods to the Southern Ocean where
the paucity of ship-based measurements during winter is one
of the major challenges. The SOCAT v3 dataset was co-
located with assimilative model output and satellite measur-
able proxy variables to create a training dataset (Bakker et al.,
2016). These estimates were compared with the SOM-FFN
approach by Landschützer et al. (2014).

We found that the SOM-FFN and RFR methods had er-
ror estimates of similar magnitudes, while SVR had a larger
error estimate. The RFR performed comparably to the SOM-
FFN approach when compared with the SOCAT v2 dataset,
with which SOM-FFN was trained. The increase in the num-

ber of measurements in the highly variable coastal ocean be-
tween SOCAT v2 and v3 leads to increased RMSE values,
particularly in the Sub-Antarctic Zone (SAZ). Despite ac-
counting for the increase in coastal data, the SOM-FFN had
error estimates comparable to RFR and SVR the approach in
the SAZ. We attribute this to the method’s ability to cluster
the training data into regions of different modes of variabil-
ity to which individual regressions are then applied. The SVR
method performed poorly due to its inability to adapt to vari-
ous modes of variability, while the RFR is intrinsically much
more flexible and thus performed well in fitting the training
data.

There was good agreement amongst the three methods
with respect to the overall trend of 1pCO2, but there were
also differences. The primary difference was in the At-
lantic sector of the SAZ, where the SOM-FFN overestimated
1pCO2 relative to the other methods. This is likely due to
remote knowledge transfer within a data-sparse cluster; how-
ever, we cannot identify this as right or wrong due to the lack
of data in this region. Other differences were due to intrin-
sic attributes of the methods: SVR was sensitive to outliers,
resulting in relatively large winter 1pCO2 estimates – po-
tentially a desirable feature for sparse winter data; RFR un-
derestimated 1pCO2 relative to the other methods due to its
robustness to outliers.

To test the efficacy of these methods, they were applied
to a synthetic dataset (process model output). Two major
questions were asked: (1) what is the efficacy of including
coordinate variables (time, latitude and longitude) as proxy
variables? (2) What is the impact of sampling biases in the
SOCAT v3 dataset? The results showed that including coor-
dinate variables improved the estimates of 1pCO2 for SVR
and RFR. Moreover, the phasing of the seasonal cycle was
also improved with the inclusion of coordinates. The second
experiment showed that there is only a small bias in the es-
timates of 1pCO2; however, the inability of process models
to represent Southern Ocean 1pCO2 variability accurately
places uncertainty on this result.

Lastly, we show that while the RFR approach outperforms
the SVR approach, the ensemble mean of the two methods
scores better than either individual methods. This provides a
motivation for continued research on methods that comple-
ment each other in strengths and weaknesses.

Data availability. The data are available at
https://doi.org/10.6084/m9.figshare.5369038 (Gregor et al.,
2017).
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Appendix A: Comparison of SOCAT v2 and v3

One of the shortcomings of this study is that the SOM-FFN
method used SOCAT v2 as a training dataset, while the SVR
and RFR methods were trained with SOCAT v3. Figure A3
shows that there is a marked difference between the two
datasets. Importantly, the increase in the number of obser-
vations between 1998 and 2006 between SOCAT v2 and v3
are almost exclusively in the Argentine Sea.

These differences may have an impact on the estimates of
1pCO2. To test this, the methods were implemented as ex-
plained in Sect. 2.4 with the exception that RFR and SVR
methods were trained with both SOCAT v2 and v3. Fig-
ure A2 shows that, on average, there is a larger difference
between the RFR and SVR methods than the different train-
ing datasets.
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Figure A1. The increase in the number of observations between SOCAT v2 and SOCAT v3 for two periods: (a) 1998 through 2006, and
2007 through 2014.

Figure A2. Comparison of air–sea CO2 flux RFR and SVR when trained with SOCAT v2 and v3. The SOM-FFN method, trained with
SOCAT v2, is also shown. The figure demonstrates that methodology plays a larger role in determining the outcome of the estimate than the
availability of data (for these two methods).

The differences between the different methods are shown
in Fig. A3. Figures (a) and (b) show that the SVR and RFR
methods estimate a stronger sink in the Atlantic sector of the
SAZ. Here (Fig. A3b) the tendency of the SVR method to
estimate strong outgassing south of the polar front relative to
SOM-FFN and RFR is also seen. Conversely, the RFR, on
average, underestimates 1pCO2 south of the polar front.
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Figure A3. The differences between annual averages of each of the approaches for the period 1998 to 2006: (a) RFR–SOM-FFN; (b)
SVR–SOM-FFN; (c) RFR–SVR.

Appendix B: Synthetic data experiments

Figure B1. Two-dimensional histograms for the distributions of out-of-sample estimates of 1pCO2 relative to target 1pCO2 (BIOPERI-
ANT05). The top row (a–c) shows estimates made by RFR and the bottom row (d–f) shows estimates of SVR. The first column (a, c) shows
those estimates trained SOCAT v3 locations without coordinate variables (time, latitude and longitude) as proxy variables and the second
column (b, e) shows those with coordinate proxies. The last column (c, f) shows estimates trained with random locations (uniform in time
and space) with coordinate proxies. The metrics are shown on each plot where MAE and RMSE are mean absolute error and root mean
squared error, respectively. The number of observations in the estimate is denoted by n.
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