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Abstract. We present a method for estimating land-use
change using a Bayesian data assimilation approach. The ap-
proach provides a general framework for combining multi-
ple disparate data sources with a simple model. This allows
us to constrain estimates of gross land-use change with reli-
able national-scale census data, whilst retaining the detailed
information available from several other sources. Eight dif-
ferent data sources, with three different data structures, were
combined in our posterior estimate of land use and land-use
change, and other data sources could easily be added in fu-
ture. The tendency for observations to underestimate gross
land-use change is accounted for by allowing for a skewed
distribution in the likelihood function. The data structure pro-
duced has high temporal and spatial resolution, and is ap-
propriate for dynamic process-based modelling. Uncertainty
is propagated appropriately into the output, so we have a
full posterior distribution of output and parameters. The data
are available in the widely used netCDF file format from
http://eidc.ceh.ac.uk/.

1 Introduction

Human-induced land-use change has a substantial impact on
biodiversity and both biogeochemical and hydrological cy-
cles (Gitz and Ciais, 2003; Levy et al., 2004; Newbold et
al., 2015; Piano et al., 2017; Post and Kwon, 2000). The
importance of representing it in models of the climate, hy-
drology, and ecosystem processes is increasingly recognised
(Martin et al., 2017; Prestele et al., 2017; Quesada et al.,
2017). However, although changes in land use tend to occur
incrementally over small areas, data on land-use change are
typically limited in spatial and temporal resolution (Alexan-

der et al., 2017). Furthermore, changes in land use may be
rotational or involve transitions between multiple land-use
classes over time, such that the gross area undergoing land-
use change may be much larger than the net change in area
(Fuchs et al., 2015; Tomlinson et al., 2018). From the point
of view of modelling ecosystem processes, it is these fine-
scale gross changes that we need to represent, because as
model inputs, these may give very different simulated out-
put, compared with simulations based on the net change at a
coarse scale (Fuchs et al., 2015; Kato et al., 2013; Wilken-
skjeld et al., 2014). For example, a reported net increase
in forest area of 10km? may actually result from afforesta-
tion of 50 km? and deforestation of 40 km?. As input data to
an ecosystem model, this might produce quite different re-
sults, compared to the parsimonious assumption (afforesta-
tion of 10km? and no deforestation) (Krause et al., 2016;
Levy and Milne, 2004). Over most of the globe, data on
land-use change are typically limited in spatial and temporal
resolution, and are typically represented by a time series of
the area occupied by each land-use class (Rounsevell et al.,
2006). Little information is available on the gross changes
which bring about this time series (Prestele et al., 2017). The
IPCC Good Practice Guidelines recommends the estimation
of land-use change matrices for reporting greenhouse gas
fluxes arising from land-use change (IPCC, 2003). This pro-
vides explicit information on the areas which have changed
from each land-use class to every other class. Whilst these
matrices contain more information, they are only valid over
the single time period for which they were derived, being a
two-dimensional summary. For modelling over longer time
periods, these are not very useful in themselves. To properly
represent the change in land use over time, we need a higher-
dimensional data structure.
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Land-use change is not easy to measure. A key problem is
identifying change from repeated map or survey data, where
the magnitude of the change signal is very small against
the background noise of sampling and measurement error.
Large censuses and careful survey techniques are required to
distinguish true change from differences arising from mea-
surement and sampling error (Fuller et al., 2003). A further
problem is that information on land-use change at national
scale typically comes from multiple disparate sources. These
sources are often inconsistent with each other, using different
land-use classifications and definitions (Phelps and Kaplan,
2017), arising from different thematic areas, and focusing on
different spatial and temporal domains, with different resolu-
tions (Fisher et al., 2017). For example, land-use data in the
UK are available from the agricultural census and surveys,
the national forestry sector, the national mapping survey, as
well as earth observation products such as Corine, MODIS
and the CEH Land Cover Maps. However, no single data
source provides a reliable estimate of land-use change with
national coverage which extends suitably far back in time.
A data assimilation approach is needed to make best use of
the available data, so as to provide such a product. Existing
methods ignore the large uncertainties which arise in estimat-
ing past land-use change, and data assimilation approaches
can explicitly address this issue.

In general terms, data assimilation is an approach for
fusing observations with prior knowledge (e.g. mathemat-
ical representations of physical laws; model output) to ob-
tain an estimate of the distribution of the true state of some
phenomenon. It has become very commonly used in fields
such as atmospheric and oceanographic modelling, and nu-
merical weather prediction (e.g. Lunt et al., 2016). Various
techniques are used, such as simulated annealing, ensem-
ble Kalman filtering, and 4-D variational assimilation. All
of these can be seen as special cases within the Bayesian
framework, where models, parameters and data are related
in a formal way via Bayes Theorem (Wikle and Berliner,
2007). There are some significant differences in applying
data assimilation in our land-use context, compared with at-
mospheric modelling. Firstly, there is only a very simple
model, compared with the complex physical models of the at-
mosphere or ocean. By contrast, the observational process by
which the data are produced is extremely complex, compared
with the simple observations of air or sea temperature or
pressure. Also, we are predicting retrospectively (i.e. “hind-
casting”) over many years in the past, rather than “nudging”
forecasts as new data becomes available.

Our aim here was to develop a generic Bayesian approach,
using multiple sources of data, to make spatially and tempo-
rally explicit estimates of land-use change. In a case study,
we apply the approach to Scotland over the period 1969-
2015. As an example application, we use a simple model of
carbon fluxes following land-use change to show how un-
certainties surrounding land-use change can be propagated
through to model output.
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Figure 1. Graphical depiction of a hypothetical 3-D cuboid U rep-
resenting land use in space and time dimensions. Different colours
show different land uses.

2 Materials and methods
2.1 Mathematical approach and notation

We  represent land  use u as a  num-
ber of discrete states from the set
{forest, crop, grassland, roughgrazing, urban, andother},
encoded as integers 1-6. At a single location (x,y), land
use can change between these states over time, represented
by the vector Uyy. (We use a convention of representing
matrices and arrays as uppercase bold (e.g. U), and indi-
vidual elements thereof as uppercase italic (e.g. Uyyr).)
An example for t = (1...5) would be U,y =(4, 3, 3, 2, 2),
showing a change in land use from rough grazing (class
4) to grassland (class 3) for two years, then to cropland
(class 2) for two years. Spatially, we represent land use on
a grid, where each grid cell contains a vector of land use.
Combining the spatial and temporal dimensions, we have
the 3-D space-time array U = {Uy,,} (Fig. 1). This is the
basic data structure required by any model which models the
effects of land use dynamically and spatially explicitly. Our
aim is to estimate the 3-D array U as accurately as possible
by constraining with multiple data sources. (We note that
for the purposes of non-spatial modelling, there is a lot of
redundancy in this data structure, and the information in U
can be condensed into the set of unique land-use vectors and
their corresponding areas. We return to this point later.)

We denote the area occupied by each land use u at time ¢
as A,;, obtained by counting the frequency of land uses in
U;:

ny Ny

Aur =D D Wy =ull®, )

x=1y=1

where the square brackets are Iverson notation, evaluating to
1 where true and zero otherwise, and /2 is the area of a single
grid square. We denote the array of all these areas (for each
land-use class and time step) as A = {A,;}. By differencing,
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we obtain the areas of net land-use change:

AAyr = Ay — Ay —1. (2)

At each time step, we have a square transition matrix

0 Bz Biz ... Pin|
Bar O Bz ... PBm

Bnt B2 Buz - 0 (=1

0 Biz Biz .. PBinl
Ba1 0 Bz ... B

_ﬂnl B2 Bnz - 0 di=2

0 B2 Biz ... Pinl
Pt 0 B3z ... Po

_ﬂnl Bn2 Bnz ... 0 di=n,

which represents the gross area changing from one land
use to another that year. For example, 8,3 is the area chang-
ing from land-use type 2 to land-use type 3 in km?. The tran-
sition matrix at time ¢ can be derived from U, by comparison
with the previous layer U;_;. Each element is given by

ny My

ﬁijt ZZZ[Uxﬂ—I Zi/\nyt 2]]12 (3)

x=1y=lI

At each time step, the net change in the area occupied
by each land use is given by the gross gains (the vector of
column sums, G,) minus the gross losses (the vector of row
sums, L;):

AAyr = Gys — Lys (4)

where

ny

Gut = Z,Biut
i=1
ny

Ly = Z,Bujt
j=1

and i and j are the row and column indices.

‘We thus have three data structures, U, B, and A, which are
inter-related by Eqgs. (1)—(4). U contains complete informa-
tion about the system, which can be summarised in the form
of A and B. B contains partial information about the system,
which can be summarised in the form of A, but does not di-
rectly specify U. In itself, A does not directly specify either
U or B, but can be used as a constraint in their estimation.
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Multiple data sources are available which provide infor-
mation in the form of these different data structures. Our ap-
proach here is to use Eqgs. (1)—(4) as a simple model to relate
the different observational data via Bayesian data assimila-
tion in a two-stage process. Firstly, we use a Bayesian ap-
proach to estimate the parameters in B, given prior informa-
tion and partial observations of U and A. Secondly, we use
the posterior distribution of B and spatial and probabilistic
information on the location of land-use change to simulate
posterior realisations of U. The maximum a posteriori prob-
ability (MAP, the mode of the posterior distribution) reali-
sations represent our best estimate of land use and land-use
change, given the available data.

2.2 Data sources

We combined a number of data sources (Table 1) to describe
the spatial and temporal change in land use in Scotland in the
approach outlined above. A classification scheme was pro-
duced for each of these to aggregate the data into the broad
classes used by Bradley et al. (2005 — forest, crop, grassland,
rough grazing, urban, and other), close to the IPCC land-use
classes (IPCC, 2003). This was considered coarse enough
that differences between classifications could be aggregated
into these six common classes, so that translation between
classifications did not cause major problems. In this classifi-
cation, “grassland” comprises all improved and actively man-
aged agricultural grassland. “Rough grazing” comprises all
unmanaged grassland and semi-natural land. All spatial data
were rasterised on a common 100 m resolution grid, defined
in the GB Ordnance Survey transverse Mercator projection.
The time domain considered was 1969 to 2015.

2.3 Data assimilation

Our data assimilation method is represented graphically in
Fig. 2 and proceeded as follows.

— From repeat ground-based surveys, the CEH Country-
side Survey (CS) (Norton et al., 2012; Wood et al.,
2017) provides direct observations of B for approxi-
mately 150 1km? survey squares in Scotland. Whilst
the coverage is not large compared to the total area of
Scotland, the sample squares were chosen on a strati-
fied design, and the observations are valuable in hav-
ing consistent recording methods over a long time pe-
riod. The method for scaling these survey squares to na-
tional scale is described in Milne and Brown (1997).
Surveys were carried out in 1978, 1984, 1990, 2000,
and 2007, and we interpolated linearly between survey
years to produce an annual time series. We used the
estimates derived in this way as our prior distribution
of B. Each year, the mean of the prior distribution was
taken to be the value of B from CS. The standard devi-
ation o of the prior distribution was estimated from an
earlier bootstrapping approach applied to the CS data
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Table 1. Data sources assimilated in the estimation of land-use change in Scotland.

Data structures  Temporal coverage

Abbreviation  Data source

CS Countryside Survey

AC Agricultural Census

EAC EDINA Agricultural Census

Corine Corine

IACS Integrated Administration and Control System

NFEW FC National Forest Estate and Woodlands
FC FC new planting

LCM CEH Land Cover Map

ALCM Agricultural Land Capability Map

B 1978, 1984, 1990, 2000, and 2007
A 1969-2016

G,L,W 1969-2016

U,B,W 1990, 2000, 2006, and 2012

U,B, W 2004-2015

U,B,W 1969-2014

Gorest 1969-2016

Aurban, U, W 1990, 2000, 2007, and 2015

w n/a

n/a — not applicable

(Scott, 2008), in an attempt to provide confidence in-
tervals on the national-scale estimates of the areas of
land-use transition (i.e. the B matrix).

National Agricultural Census (AC) data provide an-
nual records of the total area in the main agricultural
land uses (Scottish Government, 2017). The Agricul-
tural Census is conducted in June each year by the
government agriculture department. Farmers declare the
agricultural activity on their land in the form of ca.
150 items of data via a postal questionnaire. The results
are collated at national scale. These are a long-running
data set with near-complete coverage of agricultural
land, relatively consistent over time, and are reported
as national statistics and to the FAO. Hence it is desir-
able for our estimates of land-use change to be consis-
tent with these data as far as possible. We therefore use
these data as observations of A, in the Bayesian frame-
work, and predict AA,; from B; according to Eq. (4).
The likelihood of the net change observed by Agricul-
tural Census (AA,‘;';’S) arising from normal distributions
with means determined by Eq. (4) and the parameter
matrix B is:

ny
ny

1 ! a\2 2
Liet = H Tmexl’ (_ (AAS?b — DAL ) /zaz?rbs )’ &)

=) o
where AAgied is the prediction from Eq. (4) for the
change in land use u at time ¢, and 00" is the observa-
tional error in the Agricultural Census. So, we now have
(i) a simple model which predicts net land-use change in
terms of a parameter matrix; (ii) prior estimates of these
parameters for each year from the Countryside Survey;
and (iii) a function (Eq. 5) for the likelihood of the ob-
servations of net change given the model parameters.
Combining these in Bayes Theorem, we can estimate
the posterior distribution of the parameters, the transi-
tion matrix B. However before describing this, we can
extend this simplest likelihood function by adding fur-
ther sources of observational data.
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— The EDINA Agricultural Census (EAC) data (http:/

agcensus.edina.ac.uk/) provide additional information
on land-use change, as they attempt to produce a spa-
tially explicit version of the national-scale Agricultural
Census data. Farm-level data are aggregated to 2km
grid cells, and data are available (or can be inferred)
annually. While not containing explicit information on
the actual land-use transitions, the resolution of the data
is high enough that the net changes recorded each year
in each 2km cell may approximate the gross changes.
In other words, because the data records the annual in-
creases and decreases in land use across the grid of
2 km cells, the national totals of these increases and de-
creases gives an estimate of the gross change, the row
and column sums of the transition matrix B, as well
as the net change. When calculating the likelihood in
our Bayesian framework, we can thus use the more
informative observations of gross gains and losses (G
and L) rather than just the observations of net change
(AA) from the national Agricultural Census. However,
we know that the observations will tend to underesti-
mate the gross change, because of the nature of the data
reporting process: any counter-balancing gross change
within the 2 km square is not included. To account for
this, we can use a skewed normal distribution to rep-
resent this, such that predictions which overestimate
the observations are more likely than underestimates.
A skewed normal distribution of this form (Azzalini,
2017) gives the likelihood of the gross changes observed
as:

ny
ny obs pred obs pred
C _ 2 Lut _Lut ® Lut _Lut
gross — ¢ o
i onr \ ou o
1=
2 Gobs _ Gpred Gobs _ Gpred
x ® ut ut Of o 2wt (6)
b
%G %G %G

where ¢ is the standard normal probability density func-
tion, @ is the corresponding cumulative density func-
tion, and « is the skew parameter. Positive « produces a
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Figure 2. Schematic diagram showing information flow in the data
assimilation procedure. Data sources are listed in Table 1. The prior
estimate of the transition matrix B at each time point is provided
by the CEH Countryside Survey (CS). Observations of the area (A)
occupied by each land-use type u, the gross gains and losses(G and
L), and spatially explicit estimate of land use (U°b%) are combined
in a Bayesian calibration via the likelihood functions (Egs. 5-7) to
produce updated, posterior estimates of the transition matrix BPOS,
We then use spatial and probabilistic information on the location of
land-use change (W) to simulate posterior realisations of land use
and land-use change (UPOSY),

positive skew (when o = 0 we have the standard normal
distribution). The parameter « can itself be estimated as
part of the data assimilation procedure.

— Several data sources provide observations of U for one
or more land uses at a restricted set of time points. We
combine these into a single array U as follows.

— For an initial estimate of U, we use the Corine
data sets for 1990, 2000, 2007, and 2012 (Euro-
pean Environment Agency, 2016). For each grid
cell, change between these years was assumed to
occur at a random time within the interval, so that
at national scale we effectively interpolate linearly.
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This produces U with complete UK coverage at an-
nual resolution over the period 1990 to 2012.

— We overlay this with IACS data over the period
2004 to 2015 (Tomlinson et al., 2018). The Inte-
grated Administration and Control System (IACS)
is a European-wide spatially explicit dataset at the
field level that serves as a register of agricultural
subsidy claims under the EU Common Agricultural
Policy. IACS records field-level land use (crop type,
grassland age, forest coverage), field geometry and
its association to a farm holding. This has large, but
not complete spatial coverage (65 % of the Scottish
land area), and the Corine data are retained where
TACS data are missing. Where there are conflicts
with Corine, IACS data are given precedence be-
cause they are direct ground-based records.

— We then add forestry data from the GB Forestry
Commission (FC) National Forest Estate
and Woodlands  (https://www.forestry.gov.uk/
datadownload), which records the location and
planting date of forestry. Again, this only has
limited coverage, as it only covers forest land, but
is given precedence in the case of conflict with the
Corine/IACS data. We iterate over each time step
to calculate BY* with Eq. (3). B thus contains
an observed estimate of the transition matrix for
each year, from the combination of Corine, IACS
and FC data.

We can therefore add an additional term to the likeli-
hood function which incorporates the comparison of the
observations B°P* with the values in the current param-
eter set BPred,

ny

< 1 obs pred 2 2

11 ijt
1

i=
] =
t

To establish the posterior distribution, we use the
Markov chain Monte Carlo (MCMC) approach with
the “DEz” algorithm implemented in the R package
BayesianTools (Hartig et al., 2017). For each inter-
val in the 46 year time series, an MCMC simulation was
run, using the prior B; matrix from Countryside Survey,
the observations of AA;, L;, G, for that year, and the
observed B; matrix from Corine-IACS_NFEW. In prac-
tice, it is more convenient to use log-likelihoods, and
our overall likelihood was the summation of log(Lpe;),
log(Lgross) and log(Lp). Nine chains were used, with
100 000 iterations in each. To establish the initial B pa-
rameter values for one of the chains, a least-squares
fit with the AA was used. Other chains were over-
dispersed by adding random variation to this best-fit pa-
rameter set.

Biogeosciences, 15, 1497-1513, 2018
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— Having established the posterior distribution of B, we
use spatial and probabilistic information on the location
of land-use change to simulate posterior realisations of
UPSt, Starting with our best estimate of the near-present
state of land use, U?zszm 5, we work backwards in time.
At each time step, we know the number of grid cells
which need to change from land use i to land use j
from the posterior matrix B,. For each i to j transition,
we perform a weighted sampling operation to select this
number of cells from those where Uy, = i. In choosing
which cells to assign to j, we use the available data to
calculate the probabilities which weight the sampling.
Recall that U™ is given by the amalgamation of Corine,
IACS and NFEW data. In the simplest case, the prob-
abilities are determined solely by this: all cells where
U f)bts =i and U} obs vi—1 = J have equally high probabil-
ity of being selected in the sample, and all cells where
U;’}?f =i and U";’t | # J have equally low (but non-
zero) probability of being selected in the sample. This
requires only a few simple rules to construct the proba-
bility weightings, W, for sampling cells for conversion
fromi to j:

if U £ then Wyy <=0 else Wy, <1

xy,t

A if U;’;’g, | = J then Wy, <1 else Wy, < pp,
where pp, is the probability of cells being misclassified
in U°" which we estimate to be 0.05. Sampling is done
without replacement, so that a grid cell can only be se-
lected once per year. To illustrate with an example, we
start with our current map of land use, U?iszols- Suppose
our posterior estimate of B; determines that seven grid
cells change from crop to grass, as we go back to 2014.
Only cells which are crop in 2015 are valid candidates.
Of these, those which were grass in 2014 (according to
U°") will have high probability of being selected; oth-

ers will have a low probability. If the posterior ﬁ}ﬁm area
obs

is lower than f; it > not all the cells with high weightings
from the above rules will be selected in the sample. If
the posterior ,Bpm area is higher than ﬁ,"es, additional
cells, with low welghtlngs from the above rules, will
be selected in the sample. Thus, the cells which we are
likely to change are those which are designated by U
as crop in 2015 and grass in 2014. The effect of this is to
generally recreate the spatial and temporal pattern seen
in U°S (data from Corine, IACS and NFEW), but mod-
ified according to the extent of change estimated in the
posterior BPoSt,

— As well as using the data from Corine, IACS, and
NFEW, we can also use other spatial data sets to in-
form the location of land-use change in our simulations
of the posterior Uyy;. Any spatial data set which gives
information on where and when a land use or land-use
change occurs can be incorporated into the weighting
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used for sampling. Here, we used three additional data
sets.

— EDINA Agricultural Census gives an estimate of
AA at 2km resolution. For each land use, an ob-
served increase in area indicates the likely location
of predicted gains. We therefore add a term to W
which is proportional to AA.

— The CEH Land Cover Map (Rowland et al., 2017)
gives an estimate of U; in 1990, 2000, 2007, and
2015 at high spatial resolution. Occurrence of a
land use in the LCM suggests an area where gains
would be more likely to occur. We add a term to W,
based on occurrence of that land use in the LCM.

— Agricultural Land Capability Maps gives an esti-
mate of how suitable land is for intensive agricul-
ture, with a scale which ranges from good arable
land, through intensive grassland and extensive
grassland, to rough grazing. This scale can be trans-
lated into a probability of occurrence for the land
uses considered here, and added into the weight-
ing of the sampling again. We use all the above in-
formation to produce many posterior realisations of
UPoSt using the posterior B matrix and the sampling
process described earlier.

Because the U data structure is large, we are limited in
simulating many samples. It is therefore useful to summarise
as the much smaller set of unique vectors and their corre-
sponding areas. Our approach is to simulate 1000 samples,
to calculate the unique vectors and their areas, and not to re-
tain the larger data structure to reduce storage requirements.
Another possible approach would be to simulate using only
the MAP B matrix, and thereby generate the most likely real-
isations of Uyy,, rather than the whole posterior distribution.

2.4 Carbon dynamics following land-use change

We applied a simple empirical model of carbon fluxes fol-
lowing land-use change, based on the UK LULUCF green-
house gas inventory (Griffin et al., 2014). The soil compo-
nent is based on the work of Bradley et al. (2005), and uses
an analysis of the total soil carbon stock in a large number
of soil cores, classified by land use and soil series. A linear
mixed-effects model was applied to these data, to quantify
the average effect of land use on soil carbon stock, treating
soil series as a random effect. The model uses these mean
values to represent the equilibrium soil carbon stock for each
land-use class. When land-use changes, the soil carbon stock
moves towards the equilibrium soil carbon stock for the new
land use. The soil carbon stock at location (x, y) and time ¢
is given by:

Cryt = Cit — (Cy — Cyry —1) exp(—k At), (8)

www.biogeosciences.net/15/1497/2018/
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Figure 3. Land use in Scotland in 2015 as estimated by the CEH
Land Cover Map. “Grass” comprises all improved and actively
managed agricultural grassland. “Rough” includes all rough graz-
ing, unmanaged grassland and semi-natural land. “Other” com-
prises barren areas such as montane and coastal areas. Map coor-
dinates are in British National Grid. For legibility, we show data
aggregated to 2 km squares, though they are available at 25 m reso-
lution.

where C;;? is the equilibrium soil carbon stock for the current
land use u, Cyy ;1 is the soil carbon stock at the previous
time step, and k is a rate constant. The flux of carbon over
the time step, At, is given simply by difference:

FC = nyt - ny,t—l- (9)

The above-ground component applies to the growth of
biomass following afforestation, and uses the yield tables for
British forestry produced by Edwards and Christie (1981),
as interpolated and expanded to include non-merchantable
timber biomass and wood products by Dewar and Can-
nell (1992). The mean change in above-ground biomass was
assumed to be negligible in other land-use transitions in this
simple model.

3 Results

Because of the availability of remotely sensed data products,
we are relatively confident in the present-day distribution of
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land use (Fig. 3). This shows the concentration of urban areas
in Scotland in the central belt, the restriction of cropland to
the drier, flatter east coast, improved grassland mainly in the
lowlands in the wetter south and west, and rough grazing and
forestry sharing in the Southern Uplands and Highlands in
the north and west.

As an initial step in the data assimilation process, a close
least-squares fit to AA was achieved within a few tens of iter-
ations, indicating that there were no particular numerical dif-
ficulties in estimating the B parameters. Standard measures
were applied to assess whether the posterior distribution of B
was suitably characterised by the output of the MCMC sam-
pling. As well as inspection of the trace plots and the form
of the distribution of the B parameters, we calculated the ef-
fective sample size, the acceptance rate, and various standard
convergence diagnostics (Gelman and Rubin, 1992; Geweke,
1992; Raftery and Lewis, 1992). All of these showed satis-
factory performance, that the MCMC chains converged, and
that nine chains with 100 000 samples provides a reasonable
estimate of the posterior distribution of B.

Figure 4 shows the Agricultural Census observations, and
posterior predictions of the net change in area of each land-
use class. The net change implied by the prior CS and IACS
observations of B are also shown. The broad trends are: (i) an
increase in forest cover due to sustained commercial forest
planting; (ii) a corresponding decrease in rough grazing and
semi-natural land due to expansion of forestry and improved
grassland; (iii) an increase in cropland area between 1970
and 1990, with subsequent decline to the present day, due to
changes in economic forces and subsidy incentives; (iv) an
increase in grassland area since around 1990, partly corre-
sponding to the reduction in crop area, and partly due to a
general expansion on to rough grazing areas; and (v) a slow
but consistent expansion of the urban area. These trends are
picked up by the different sources of observations to some
extent. The Agricultural Census has near-complete cover-
age, and annual resolution, so shows a detailed pattern, to
which we give most credence. The CS data, used as the prior,
have only decadal time resolution, but pick up these general
trends, and approximate the same pattern as seen in the Agri-
cultural Census data. The IACS data show considerable year-
to-year variability, and tend to show exaggerated net changes
compared to AC. The posterior prediction generally falls in
between the AC observations and the CS prior, but tracks
closer to the AC.

CS provided our prior estimate of B. Given the relatively
small spatial coverage of CS, uncertainty (o) in the prior B
is rather high. This would be expected to effectively limit the
influence of the prior on the posterior B, compared to the
observations from IACS, which have national coverage. Fig-
ure 5 shows that estimates of B from these two data sources
are quite different. Particularly in the transitions to and from
grassland, values of B from IACS tend to be an order of
magnitude larger than values from CS, and more variable.
However, the posterior B remains closer to the prior than
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might be expected. This is because values of B close to the
TIACS observations are deemed unlikely with respect to the
other terms in the likelihood function. That is, the gross and
net changes in area implied by the TACS data are inconsis-
tent with the other observations of G, L, and AA from AC
(Figs. 4-7).

For cropland and improved grassland, CS and EAC show
general agreement on the magnitude and pattern in area
gained and lost to each land use (Figs. 6 and 7). An excep-
tion is an apparent anomaly in the early 2000s, when EAC
gains and losses are both around 1000 km? higher than aver-
age for two years. This is not reflected in the net changes re-
ported in the AC, so has to be treated with some caution. Re-
ported gains and losses of rough grazing are much higher and
very variable in EAC. This variability does not seem closely
linked to the net change reported at national scale, so again,
we treat this with some scepticism. There are no data on the
gross gains and losses of urban and other land-use areas, as
they are not covered by the AC or CS, and these terms are
less well constrained.

Figures 4—7 show that there is considerable spread in the
posterior distribution of B and predictions of AA. The 95 %
credibility interval is typically of the order of 100km? for
the individual B parameters, and several hundred km? for
the predictions of AA. The credibility intervals are smallest
where multiple data sources agree on the nature of land-use

Biogeosciences, 15, 1497-1513, 2018

change, and where the change is coherent across land uses.
That is, an increase in one land use has to be balanced by a
decrease in one or more other land uses. We have less confi-
dence in predictions where the observed change in one land
use is not compensated for by other land-use changes. Credi-
bility intervals in AA increase as we go back in time, because
the uncertainty accumulates from year to year, although the
increase has square root form rather than linear.

Figures 8 and 9 attempt to convey the detailed structure
of the posterior U in a simple graphical summary. Figure 8
shows the 100 most frequent vectors of land-use change.
Line thickness and opacity are proportional to the frequency
(=area) of each vector, so that the dominant vectors are the
most visually obvious. The plot shows that a wide range of
land-use transitions occurs over the time period considered.
Transitions from rough grazing to forest and to improved
grassland are dominant. Bi-directional transitions between
crop and improved grassland are particularly common in the
1980s. This comes from information in the prior, the B ma-
trices from CS which shows markedly higher crop to grass
and grass to crop conversion rates over this time.

Figure 9 shows the 20 most frequent vectors more clearly,
with each vector on a separate panel. This shows that 17 out
of 20 involve transitions to or from rough grazing (which in-
cludes all semi-natural) land, which is the largest land use
in Scotland by some way (around half the total area). Seven

www.biogeosciences.net/15/1497/2018/
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of these represent afforestation, which has mainly occurred
on less productive, upland rough grazing land. Five vectors
represent expansion of improved grassland on to rough graz-
ing land. Vectors with two or more changes are less frequent,
with none occurring in the top 20, but do represent a sig-
nificant part of the total area (~ 8 % of the area undergoing
change).

Figure 10 shows the CO; flux resulting from land-use
change over the 46-year period, derived from Egs. (8)—(9)
and the posterior distribution of U. The positive fluxes de-
note a gain to the terrestrial carbon stock, negative fluxes rep-
resent a loss to the atmosphere. We only represent land-use
change from 1969 onwards here, but the effects on carbon
flux are long-lasting. Hence, the carbon flux calculated here
is initially small, and increases as the area having undergone
land-use change accumulates over time. The accumulation of
carbon in forest biomass (and wood products) following af-
forestation over this period is the largest term in these results.
The forest planting rate has decreased markedly since 2005,
giving the reduction in carbon sequestration in recent years.
In this simple soil model, land uses with higher equilibrium
soil carbon than the average will tend to act as carbon sinks;
those lower than the average will be sources. Carbon emis-
sions from cropland increase as predominantly grassland is
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converted to cropland between 1970 and 1990. This then lev-
els off as the cropland area remains stable or declines there-
after. Transitions to forest and rough grazing result in carbon
sinks because they both have higher than average equilib-
rium soil carbon, and both show sizeable gross gains over the
period. Rough grazing land also shows substantially larger
gross area losses, but the associated carbon fluxes related to
this are attributed mainly to improved grassland, as this is
the main land use to which it changes. Improved grassland
therefore shows as a small net source of carbon, the result of
land-use changes from cropland to improved grassland (sink)
and rough grazing to improved grassland (source).

The overall effect of these component fluxes is to produce
a net sequestration of carbon from land-use change (Fig. 11).
The 95 % credibility interval in the near present-day carbon
flux is around 100 Gg Cyr~!, close to 50 % of the best esti-
mate. There is therefore considerable uncertainty in the car-
bon flux associated with land-use change, because the under-
lying changes in land use are themselves uncertain. Recog-
nition and propagation of this uncertainty is therefore impor-
tant.

Mapping the carbon fluxes calculated by Egs. (8)—(9) and
the MAP estimate of U, we can see that the carbon fluxes
closely follow the present-day land-use distribution (Fig. 12).

Biogeosciences, 15, 1497-1513, 2018
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The carbon sinks are associated mainly with new forest ar-
eas, and to a lesser extent, wherever improved grassland or
cropland has reverted to rough grazing. The carbon sources
are associated with wherever cropland or urban areas have
expanded.

4 Discussion

The results show that we can provide improved estimates
of past land-use change using multiple data sources in the
Bayesian framework. The computation involved is quite fea-
sible on a modern computer, requiring around three hours
to estimate the parameters for a 46-year period. The output
of the assimilation procedure provides vectors of land-use
change in the form required for dynamic and process-based
modelling, which we illustrate with the soil carbon modelling
example. The main advantage of the approach is that it pro-
vides a coherent, generalised framework for combining mul-
tiple disparate sources of data.

As far as we are aware, there are no previous applications
of formal data assimilation approaches to land-use change.
However, some studies have addressed the same problem
with related methods. Hurrt et al. (2011, 2006) used esti-
mates of A together with estimates of wood harvest to pre-
dict B. The study was carried out at global scale at 0.5° res-
olution, and covered both historical and future scenarios for
the period 1500-2100. To make the problem tractable, the
transition matrix B was initially specified for only three land
uses, so that a unique minimum solution could be found. Ad-
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ditional transitions associated with shifting cultivation and
wood harvest were then calculated in a further step. They
used a rule-based model which specified assumptions about
the residence time of agricultural land, the priority of land for
conversion to agriculture and for wood harvesting, and the
spatial pattern of wood harvesting within a country. The dis-
tribution of land use over space and time U was not explicitly
represented; instead, the area and age of “secondary” land in
each grid cell was tracked in a book-keeping approach. How-
ever, because only a matrix is calculated at each time step, the
approach does not produce explicit vectors of land use for
dynamic modelling, and such things as rotational land use
are not easily represented. Sensitivity to various assumptions
was analysed, but the uncertainties associated with the input
data and these model assumptions cannot readily be quanti-
fied.

Fuchs et al. (2013) used a number of data sets, including
that of Hurrt et al. (2006), to explicitly estimate the change
in land use over space and time U for the whole of Europe at
1 km? resolution for each decade 1900-2010. Using logistic
regression, they calculated “probability maps” for each land
cover class, based on biogeophysical and socio-economic
properties of each grid cell as explanatory variables for land
use in 2000. For each decade and each country within the
EU27, the net increase in the area of each land use (positive
AAy;) was allocated to the grid cells with the highest proba-
bility score for that land use. This approach yields essentially
the same data structure as our method, and is wider in scope,
covering all of Europe.

Biogeosciences, 15, 1497-1513, 2018
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Our method represents an advance on this in several ways.
Because the approach of Fuchs et al. (2013) is based on net
change in areas at country scale, the extent of the true, gross
changes will be under-estimated, possibly by orders of mag-
nitude, and implicitly the B matrices are minimised. Our ap-
proach uses explicit observations of the annual transition ma-
trices B as far as possible. Rather than regression relation-
ships, our approach uses annual spatially explicit observa-
tions of where and when land-use change is likely to have oc-
curred (based on CS, IACS and EAC). We use higher tempo-
ral and spatial resolution (annually, at 100 m) because this is
possible with the data available in the UK, and with the lim-
ited spatial domain we attempt to cover. At continental and
global scales, the same quantity and resolution of data is not
available, and the computation issues become much larger.
Our approach explicitly incorporates and propagates the un-
certainty in the posterior distribution of B and predictions of
A and subsequently modelled carbon fluxes. The uncertainty
in land-use change is substantial, even in the UK where land
management records are good. Our methodology accounts
for this uncertainty in a mathematically rigorous way (Van
Oijen, 2017), and propagates this through to the subsequent
modelling of other outputs, such as soil carbon fluxes. On
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a fundamental level, the Bayesian approach gives the cor-
rect theoretical answer to the data assimilation problem: if
the observational error and prior are correctly specified and
the posterior is adequately characterised by the MCMC sam-
pling, then the posterior correctly represents the actual state
of knowledge about the system parameters and predictions
(Gelman et al., 2013; Reich, 2015).

We thus need to consider how well we can characterise
the observational error, and the prior and posterior distribu-
tions. Establishing that the posterior distribution has been
adequately characterised by the MCMC sampling is rela-
tively straightforward. There are various criteria for assess-
ing this (the effective sample size, and measures of MCMC
chain convergence) which the results meet. In this study we
chose to use an informative prior based on CS. This follows
the way in which the data became available chronologically;
these were the only data available with which we could esti-
mate land-use change in the UK when an inventory of carbon
emissions was first attempted (Cannell et al., 1999). The un-
certainty in the prior distribution of B can be relatively well
quantified, because considerable effort has gone into quanti-
fying the likely level of error in the national-scale estimates
of land use (Scott, 2008; Wood et al., 2017). The standard
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deviation o of the prior distribution was most easily esti-
mated by applying a bootstrapping approach to the CS data,
but more advanced approaches have been investigated (Hen-
rys et al., 2015). Alternative options for the prior are possi-
ble, and would be worth exploring further to examine sensi-
tivity to the specification of the prior. Where little informa-
tion is available, an uninformative prior is often used, either
uniform, or exponentially declining to capture the parsimony
principle that low values of B are more likely than high ones,
all else being equal. More usefully, because we iterate over
all years independently, we could form the prior distribution
at time ¢ from the posterior distribution for the previous year.
In practice, we iterate backwards in time, so in fact the poste-
rior at time ¢ becomes the prior for time ¢ — 1; this is mathe-
matically simple but linguistically confusing. This approach
means that information gained in the recent part of the time
series is carried over into the earlier part of the time series.
Subsequent estimates “borrow strength” from previous ones,
in the Bayesian terminology. Currently, we do not use this
approach because of the extra computation time this incurs,
but methods to speed up this step can be explored.
Observational error can be difficult to estimate objectively
and accurately, and often the o terms are poorly known. Even
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in relative terms, it can be hard to judge the degree of cer-
tainty to place in different data sources, where observational
error is not readily quantified. In our case, we need to esti-
mate the o terms in the likelihood function (Eqs. 5-7) for
the AC, EAC, and TACS data. Spatial coverage in the data
sets is similarly large so there is no clear a priori reason to
trust one more than the other. However, there are reasons
to prioritise the national-scale trends in AC over those from
IACS, and to be cautious of the spatial patterns in EAC. AC
is a long-established survey with relatively consistent meth-
ods, whereas IACS is a recent introduction, and the record-
ing methodology has not been entirely stable over this period
(for example, with changes to how much farm woodland is
recorded). It also attempts to collect a much higher level of
detail (at the individual field scale), and this brings more po-
tential for misclassification to appear as ostensible land-use
change. However, with the limited information available, we
cannot rule out that this is the more accurate data set, and
that EAC and CS underestimate gross change. The accuracy
of spatial information in EAC is limited by the way in which
the data are collated, using postcodes of the land owner who
completes the census return. Where large estates are owned,
the correspondence between the centroid of the postcode dis-
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1510

600~

IS
S
=]

Carbon flux from land-use change, Gg C yr'
N
o
8

1970 1980 1990
Year

P. Levy et al.: Estimation of gross land-use change

— Maximum a posterior

95% ClI

2000 2010

Figure 11. Total net carbon flux from land-use change in Scotland over 1969-2015, showing the maximum a posteriori estimate and the
95 % credibility interval. Positive fluxes denote a gain to the terrestrial carbon stock; negative fluxes represent a loss to the atmosphere.

1200 000

15

1000 000

10

800 000
|

600 000
1

T T T T T T T
—-le+05 le+05 2e+05 3e+05 4e+05 5e+05 6e+05

Figure 12. Net carbon flux (in kg C m~2) from land-use change in
Scotland over 1969-2015 from the maximum a posteriori estimate
of U. Positive fluxes denote a gain to the terrestrial carbon stock;
negative fluxes represent a loss to the atmosphere. Map coordinates
are in British National Grid.

Biogeosciences, 15, 1497-1513, 2018

trict and the actual location of the land may not be very close.
We therefore ascribe lowest uncertainty to AC, and higher but
equal uncertainty to EAC and IACS data. In our Bayesian
data assimilation procedure, IACS-based estimates of B are
effectively down-weighted when they produce a mismatch
with the national-scale AC trends. IACS coverage on forest,
urban and other land is not large, and we would not expect
accurate detection of changes in these land uses.

A potential problem with the method as we have imple-
mented it is the assumption of independence of errors in the
likelihood functions (Egs. 5-7). However, we do not think
this is a serious issue here, for the following reasons. Several
data sources were used, so different independent estimates
of the area of the different land uses are brought in, which
mitigates the problem. In all the likelihood functions, o is
generally large, making non-independence less of an issue,
at least in relative terms. The consequence of assuming non-
independence of errors would be to produce unreasonably
small uncertainties in the posterior parameters, and this is
not the case here.

One of the main problems in land-use studies is that of
classification. Depending on definitions used to delimit land-
use classes, quite different areas may be calculated for the
same nominal classes, and there is a real problem in combin-
ing data from different sources in that we may not be com-
paring like with like. Here, we minimise this problem by us-
ing a relatively coarse land-use classification, with only six
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classes. This would become more problematic if attempting
to distinguish more refined classes. The computation time
and difficulty increases with the square of the number of
land-use classes, so there may be practical limits to the level
of detail in the classification used, especially if applying on
larger spatial domains.

An attractive feature of the Bayesian data assimilation ap-
proach is that additional data sources can be added to the
process as they become available, without any major changes
to software or step-changes in results. Several other data
sources exist in the UK which could be incorporated. These
include spatial data on the granting of woodland felling li-
censes, which would further constrain the likely location
of deforestation, and national mapping agency data on ur-
ban expansion. As new satellite instruments come on-stream
(e.g. from Sentinel and synthetic aperture radar), further re-
motely sensed data products will become available which
could be added into the estimation of A, B, and U. In this
study, we do not attempt to forecast future land-use change,
but in principle this is simple with this methodology. If no
new data are available, the posterior distribution will widen
as future years are iterated over. If scenario data were sup-
plied, such as projected forest planting rates (G) or cropland
areas required for food security (A), these could be used in
the estimation of A, B, and U in the same way as historical
data. The method has applications in providing estimates of
historical land use and land-use change input data for mod-
elling work in many domains, including climate modelling
(Lawrence et al., 2016), ecosystem and biogeochemical mod-
elling (Ogle et al., 2003; Ostle et al., 2009), species distribu-
tion modelling (Dainese et al., 2017; Martin et al., 2013), and
socio-economics (Moran et al., 2011; Sharmina et al., 2016).

Data availability. The data will be available in the near future at
the data archive UK Environmental Information Data Centre (http:
/leide.ceh.ac.uk, DOI pending at time of publication).
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