



# Supplement of

## Variation pattern of particulate organic carbon and nitrogen in oceans and inland waters

Changchun Huang et al.

*Correspondence to:* Changchun Huang (huangchangchun\_aaa@163.com, huangchangchun@njnu.edu.cn) and Yimin Zhang (zhangyimin@njnu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

**Supporting information introduction:** Supporting information includes seven tables (Table S1 - S7) and six figures (Figure S1 - S6).

Table S1 Data information and sources for POC, PON and corresponding dissolved organic carbon (DOC), dissolved organic nitrogen (DON), chlorophyll-a and total suspended matter.

| Ocean datasets                 | location                       | Data link and description                                          |
|--------------------------------|--------------------------------|--------------------------------------------------------------------|
| Marine POM                     | Global Ocean                   | http://dx.doi.org/10.5061/dryad.d702p/3                            |
| Cruise NBP1302                 | Rose Sea                       | http://www.bco-dmo.org/dataset/658394                              |
| Cruise VDT0410                 | South East of New Zealand      | http://www.bco-dmo.org/dataset/3329                                |
| Cruise KN199-04                | N. Atlantic Ocean              | http://www.bco-dmo.org/dataset/3851                                |
| Cruises LMG 0414- 0602         | Southern Ocean                 | http://www.bco-dmo.org/dataset/3035                                |
| Cruise IronEx II               | Pacific Ocean                  | http://www.bco-dmo.org/dataset/3152                                |
| Cruise RB-08-02                | Southwest Atlantic             | http://www.bco-dmo.org/dataset/3304                                |
| Cruise MV1008                  | Eastern Tropical Pacific Ocean | http://www.bco-dmo.org/dataset/516495                              |
| Cruises KY0103-01-02           | Sub-Arctic Pacific Ocean       | http://www.bco-dmo.org/dataset/2907                                |
| Cruise NH1008                  | Monterey Bay                   | http://www.bco-dmo.org/dataset/3725                                |
| Cruise 61TG_3052               | Southern Ocean                 | http://www.bco-dmo.org/dataset/2866                                |
| Cruise M80/2                   | North Atlantic Ocean           | https://doi.pangaea.de/10.1594/PANGAEA.843427                      |
| Cruise PS79                    | Atlantic Ocean                 | https://doi.pangaea.de/10.1594/PANGAEA.848818                      |
| Dünweber, 2010                 | Arctic Ocean                   | https://doi.pangaea.de/10.1594/PANGAEA.809471                      |
| Cruise PS69/001                | Pacific and Atlantic Oceans    | https://doi.pangaea.de/10.1594/PANGAEA.759667                      |
| Cruise SS2010v09               | Pacific Oceans                 | https://doi.pangaea.de/10.1594/PANGAEA.843554                      |
| Cruise M97                     | Atlantic Ocean                 | https://doi.pangaea.de/10.1594/PANGAEA.863119                      |
| SBC LTER                       | Santa Barbara Coastal          | https://pasta.lternet.edu/package/metadata/eml/knb-lter-sbc/10/21  |
| Palmer Station Antarctica LTER | West Antarctica                | https://pasta.lternet.edu/package/metadata/eml/knb-lter-sbc/215/01 |
| Cruise CalCOFI                 | North Atlantic Ocean           | https://pasta.lternet.edu/package/metadata/eml/knb-lter-cce/54/1   |
| Cruise CCE Process             | North Atlantic Ocean           | https://pasta.lternet.edu/package/metadata/eml/knb-lter-cce/104/1  |
| MCR LTER                       | North Atlantic Ocean           | https://pasta.lternet.edu/package/metadata/eml/knb-lter-mcr/104/1  |
| Cruise NBP01-02                | Pacific and Atlantic Oceans    | ftp://ftp.nodc.noaa.gov/nodc/archive/arc0060/0112164/              |
| Cruise OC404                   | Atlantic Ocean                 | ftp://ftp.nodc.noaa.gov/nodc/archive/arc0037/0078011/              |
| Cruise WB0508                  | Atlantic Ocean                 | ftp://ftp.nodc.noaa.gov/nodc/archive/arc0042/0086459/              |
| Cruise WB0506                  | Atlantic Ocean                 | ftp://ftp.nodc.noaa.gov/nodc/archive/arc0042/0086459/              |
| Cruise WB0409                  | Atlantic Ocean                 | ftp://ftp.nodc.noaa.gov/nodc/archive/arc0042/0086459/              |
| Cruise WB0413                  | Atlantic Ocean                 | ftp://ftp.nodc.noaa.gov/nodc/archive/arc0042/0086459/              |

#### Ocean Database

|   | Cruise WCOA11   | North Atlantic Ocean   | ftp://ftp.nodc.noaa.gov/nodc/archive/arc0072/0123607/              |
|---|-----------------|------------------------|--------------------------------------------------------------------|
|   | Cruise WCOA2011 | Pacific Ocean          | https://www.nodc.noaa.gov/archive/arc0093/0155173/1.1/data/0-data/ |
|   | Lecture data    | Ocean and Coastal      | Sterner et al., 2008                                               |
|   | Lecture data    | China sea              | Cai, P.H. et al., 2015                                             |
|   | Lecture data    | northern Adriatic Sea  | Salvi et al., 1998                                                 |
|   | Lecture data    | Columbia River Estuary | Small and Prahl, 2004                                              |
| - |                 |                        |                                                                    |

### Lake Database

| Lake datasets          | location                                  | Data link and description                                           |
|------------------------|-------------------------------------------|---------------------------------------------------------------------|
| Lacustrine Communities | Lacustrine Central Group                  | https://pasta.lternet.edu/package/metadata/eml/knb-lter-cdr/579/5   |
| NWT LTER               | Green Lake                                | https://pasta.lternet.edu/package/metadata/eml/knb-lter-nwt/107/8   |
| MCML LTER              | McMurdo Dry Valleys Lakes                 | https://pasta.lternet.edu/package/metadata/eml/knb-lter-mcm/57/9    |
| NTL LTER               | Great Lakes Group                         | https://pasta.lternet.edu/package/metadata/eml/knb-lter-ntl/278/6   |
| Arctic LTER            | Alaskan Lakes                             | https://pasta.lternet.edu/package/metadata/eml/knb-lter-arc/10090/3 |
| Water/Soil Environment | Lake Kasumigaura                          | http://www.nies.go.jp/db/index-e.html                               |
| Lecture data           | Northern American Lakes                   | Sterner et al., 2008                                                |
| Lecture data           | Norwegian Lakes                           | Sterner et al., 2008                                                |
| Lecture data           | Hokkaido Lakes                            | Sterner et al., 2008                                                |
| Lecture data           | Biwa Lake                                 | Sterner et al., 2008                                                |
| Lecture data           | Hovsgol Lake                              | Sterner et al., 2008                                                |
| Lecture data           | Baikal Lake                               | Sterner et al., 2008                                                |
| Lecture data           | Taihu Lake                                | This study                                                          |
| WPlum Island LTER      | Ipawich and Parker river (USA)            | https://pasta.lternet.edu/package/metadata/eml/knb-lter-sbc/108/6   |
| Lecture data           | Skidaway River (USA)                      | Verity, 2002                                                        |
| Lecture data           | Yukon River (USA)                         | Dornblaser and Striegl, 2007                                        |
| Lecture data           | Mississippi River (USA)                   | Trefry et al., 1994; Bianchi. et al., 2007                          |
| Lecture data           | Union and Skokomish River (USA)           | Ward et al., 2012                                                   |
| Lecture data           | Yanagtze River (China)                    | Zhang et al., 2007; Wu et al., 2007;2007; Yu et al., 2011           |
| Lecture data           | Pearl River (China)                       | He et al., 2010; Guo et al., 2015                                   |
| Lecture data           | Paraiba do sul River (Brazil)             | Suzuki et al., 2015                                                 |
| Lecture data           | Amazon River (Brazil)                     | Suzuki et al., 2015; Ward et al., 2015; Rosengard, 2011             |
| Lecture data           | Fraser, Robson, Bowron, et al., 14 Rivers | Vrag 2000                                                           |
|                        | (Canada)                                  | V058, 2009                                                          |
| Lecture data           | Mandovi River (India)                     | Fernandes, 2011; Khodse and Bhosle, 2013                            |
| Lecture data           | Ping River (Thailand)                     | Ziegler et al., 2016                                                |
| Lecture data           | Russian Rivers (Russian)                  | Lobbes et al., 2000                                                 |

| Lecture data | Orinoco River (Venezuela)    | Paolini, 1995     |
|--------------|------------------------------|-------------------|
| Lecture data | Fly River (Papua New Guinea) | Goni et al., 2006 |

Table S2 Relationship between PON and POC for each latitudinal range. Three mathematical functions  $POC=A_0 \times PON+C_0$ ,  $POC=A_1 \times PON$  and  $POC=A_2 \times PON^{B2}$  were used to fit the relationship between PON and POC. The parameters and determined coefficients of each function are listed in the table. The  $R^2$  with \* marked is the best regression function for the POC and PON.

| Thomas  | POC    | $POC=A_0 \times PON+C_0$ POC= |        | POC=A  | 1×PON | PO    | C=A <sub>2</sub> ×PC | ON <sup>B2</sup> | <b>POC/PON</b> | Ν     |
|---------|--------|-------------------------------|--------|--------|-------|-------|----------------------|------------------|----------------|-------|
| items - | $A_0$  | $\mathbf{C}_0$                | $R^2$  | $A_1$  | $R^2$ | $A_2$ | $\mathbf{B}_2$       | $R^2$            |                |       |
| 80-90N  | 8.828  | 0.080                         | 0.772  | 9.294  | 0.767 | 6.211 | 0.835                | 0.832*           | 12.2±7.5       | 958   |
| 70-80N  | 7.081  | 0.221                         | 0.932* | 7.149  | 0.931 | 6.573 | 0.866                | 0.896            | 9.4±6.4        | 2321  |
| 60-70N  | 11.961 | 6.833                         | 0.915  | 11.436 | 0.907 | 7.131 | 1.105                | 0.961*           | $7.6 \pm 2.7$  | 211   |
| 50-60N  | 8.289  | -0.142                        | 0.835  | 8.262  | 0.835 | 7.547 | 1.016                | 0.937*           | 8.3±5.0        | 776   |
| 40-50N  | 5.929  | 1.486                         | 0.850  | 6.401  | 0.836 | 7.547 | 0.872                | 0.875*           | 8.7±4.5        | 4913  |
| 30-40N  | 6.800  | -1.126                        | 0.881  | 6.582  | 0.879 | 6.399 | 0.948                | 0.911*           | 6.7±2.7        | 23441 |
| 20-30N  | 5.197  | 0.340                         | 0.959* | 5.336  | 0.956 | 5.528 | 0.903                | 0.870            | $6.6 \pm 2.8$  | 2776  |
| 10-20N  | 6.920  | 2.496                         | 0.876  | 7.038  | 0.876 | 7.488 | 0.974                | 0.953*           | $7.9{\pm}4.0$  | 4335  |
| 0-10N   | 5.900  | 0.460                         | 0.905* | 6.448  | 0.890 | 6.379 | 0.897                | 0.853            | $7.5 \pm 2.6$  | 1004  |
| 0-10S   | 7.607  | 0.345                         | 0.836* | 8.100  | 0.831 | 7.617 | 0.905                | 0.792            | 8.7±3.0        | 898   |
| 10-20S  | 6.190  | 0.961                         | 0.895* | 7.016  | 0.869 | 7.216 | 0.826                | 0.864            | 8.5±3.2        | 749   |
| 20-30S  | 5.521  | 1.120                         | 0.896  | 5.994  | 0.883 | 6.823 | 0.830                | 0.936*           | $7.4 \pm 2.2$  | 494   |
| 30-40S  | 6.621  | 0.362                         | 0.951* | 6.834  | 0.948 | 6.610 | 0.749                | 0.887            | $8.7 \pm 4.1$  | 283   |
| 40-50S  | 14.909 | -5.115                        | 0.881  | 13.967 | 0.860 | 7.646 | 0.918                | 0.941*           | 8.7±3.6        | 1191  |
| 50-60S  | 6.133  | 0.577                         | 0.898  | 6.585  | 0.888 | 6.945 | 0.910                | 0.965*           | 8.3±3.5        | 973   |
| 60-70S  | 5.984  | 1.424                         | 0.930  | 6.025  | 0.930 | 7.349 | 0.889                | 0.939*           | 7.6±3.9        | 16002 |
| 70-80S  | 8.395  | -5.181                        | 0.928  | 7.849  | 0.917 | 7.961 | 0.868                | 0.973*           | 8.0±3.4        | 1858  |
| mean    | 7.545  | 0.302                         | 0.891  | 7.666  | 0.882 | 6.998 | 0.901                | 0.905            |                |       |
| STDEV   | 2.498  | 2.658                         | 0.047  | 2.169  | 0.048 | 0.645 | 0.081                | 0.052            |                |       |

Table S3 Relationship between PON and POC for each depth interval in the southern and northern hemispheres. Three mathematical functions  $POC=A_0 \times PON+C_0$ ,  $POC=A_1 \times PON$  and  $POC=A_2 \times PON^{B2}$  were used to fit the relationship between PON and POC. The parameters and determined coefficients of each function are listed in the table.

| Nouthour   | POC=A <sub>0</sub> ×PON+C <sub>0</sub> |       | POC=A <sub>1</sub> | POC=A <sub>1</sub> ×PON |       | $C = A_2 \times PC$ | DN <sup>B2</sup> | <b>POC/PON</b> | Ν       |      |
|------------|----------------------------------------|-------|--------------------|-------------------------|-------|---------------------|------------------|----------------|---------|------|
| Northern - | $A_0$                                  | $C_0$ | $R^2$              | $A_1$                   | $R^2$ | $A_2$               | $\mathbf{B}_2$   | $R^2$          |         |      |
| 0-5m       | 5.534                                  | 3.078 | 0.898              | 5.867                   | 0.889 | 7.493               | 0.897            | 0.941*         | 6.9±2.3 | 6476 |
| 5-10m      | 5.762                                  | 3.276 | 0.884*             | 6.268                   | 0.871 | 8.664               | 0.801            | 0.868          | 6.7±2.1 | 3689 |

| 10-20m | 6.347 | 0.438  | 0.936 | 6.411 | 0.935 | 7.208 | 0.878 | 0.948* | 7.0±2.8 | 3754  |
|--------|-------|--------|-------|-------|-------|-------|-------|--------|---------|-------|
| 20-80m | 8.003 | -3.386 | 0.914 | 7.650 | 0.908 | 7.602 | 0.902 | 0.959* | 7.1±3.4 | 11511 |
| >80m   | 7.173 | -0.610 | 0.967 | 7.086 | 0.966 | 7.690 | 0.856 | 0.969* | 8.4±6.5 | 15384 |
| mean   | 7.110 | 0.646  | 0.898 | 7.002 | 0.897 | 6.675 | 0.956 | 0.934  |         |       |
| STDEV  | 0.358 | 0.986  | 0.020 | 0.293 | 0.021 | 0.106 | 0.035 | 0.011  |         |       |

| Southown | POC   |       | N+C <sub>0</sub> | POC=A | POC=A <sub>1</sub> ×PON |       | C=A <sub>2</sub> ×PC | N <sup>B2</sup> | POC/PON       | Ν    |
|----------|-------|-------|------------------|-------|-------------------------|-------|----------------------|-----------------|---------------|------|
| Southern | $A_0$ | $C_0$ | $R^2$            | $A_1$ | $R^2$                   | $A_2$ | $\mathbf{B}_2$       | $R^2$           |               |      |
| 0-5m     | 7.027 | 0.681 | 0.877            | 6.966 | 0.876                   | 7.533 | 0.883                | 0.944*          | $7.9 \pm 4.4$ | 5274 |
| 5-10m    | 6.410 | 0.377 | 0.903            | 6.440 | 0.902                   | 7.482 | 0.877                | 0.938*          | $7.8 \pm 4.5$ | 2329 |
| 10-20m   | 5.516 | 3.142 | 0.865            | 5.670 | 0.861                   | 7.560 | 0.882                | 0.942*          | $7.9{\pm}5.0$ | 3198 |
| 20-80m   | 6.366 | 0.480 | 0.953*           | 6.379 | 0.953                   | 7.356 | 0.888                | 0.945           | $7.8 \pm 4.4$ | 6758 |
| >80m     | 5.274 | 2.534 | 0.909            | 5.335 | 0.907                   | 7.200 | 0.891                | 0.947*          | 8.1±4.9       | 4940 |
| mean     | 6.119 | 1.443 | 0.901            | 6.158 | 0.900                   | 7.426 | 0.884                | 0.943           |               |      |
| STDEV    | 0.716 | 1.296 | 0.034            | 0.651 | 0.035                   | 0.149 | 0.005                | 0.004           |               |      |

Table S4 Relationship between PON and POC and offshore distance in the southern and northern hemispheres. Three mathematical functions  $POC=A_0 \times PON+C_0$ ,  $POC=A_1 \times PON$  and  $POC=A_2 \times PON^{B2}$  were used to fit the relationship between PON and POC. The parameters and determined coefficients of each function are listed in the table.

| Northerm   | POO            | C=A <sub>0</sub> ×PON | I+C <sub>0</sub> | POC=A | I×PON | PO    | C=A <sub>2</sub> ×PO | N <sup>B2</sup> | POC/PON       | Ν    |
|------------|----------------|-----------------------|------------------|-------|-------|-------|----------------------|-----------------|---------------|------|
| Northern   | A <sub>0</sub> | $\mathbf{C}_0$        | $R^2$            | $A_1$ | $R^2$ | $A_2$ | $\mathbf{B}_2$       | $R^2$           |               |      |
| 5 km       | 7.059          | -1.326                | 0.937            | 6.852 | 0.935 | 6.471 | 1.003                | 0.957*          | 6.6±1.4       | 3131 |
| 5-10 km    | 8.059          | 2.586                 | 0.887            | 7.750 | 0.883 | 6.684 | 0.979                | 0.958*          | $6.8 \pm 2.0$ | 1385 |
| 10-15 km   | 8.424          | -5.191                | 0.926            | 7.815 | 0.914 | 7.056 | 0.955                | 0.962*          | $7.0{\pm}2.1$ | 1093 |
| 15-20 km   | 6.839          | -0.701                | 0.942            | 6.696 | 0.941 | 6.658 | 0.951                | 0.945*          | $6.7 \pm 2.0$ | 1146 |
| 20-30 km   | 6.866          | -0.772                | 0.932            | 6.723 | 0.931 | 6.993 | 0.879                | 0.934*          | 7.3±3.2       | 2480 |
| 30-40 km   | 6.594          | -0.182                | 0.932*           | 6.555 | 0.932 | 6.796 | 0.903                | 0.924           | $6.9 \pm 2.9$ | 1880 |
| 40-50 km   | 7.096          | 0.915                 | 0.882            | 7.143 | 0.882 | 7.358 | 0.963                | 0.953*          | 7.7±3.8       | 3766 |
| 50-75 km   | 8.520          | -1.832                | 0.820            | 8.127 | 0.813 | 6.994 | 0.874                | 0.944*          | 8.6±5.1       | 1610 |
| 75-100 km  | 6.275          | 0.333                 | 0.846            | 6.357 | 0.845 | 6.592 | 0.928                | 0.941*          | 7.4±3.7       | 1020 |
| 100-125 km | 6.530          | 0.005                 | 0.935            | 6.530 | 0.935 | 6.695 | 0.864                | 0.936*          | 8.1±4.4       | 966  |
| 125-150 km | 6.189          | 0.762                 | 0.931*           | 6.395 | 0.927 | 6.967 | 0.935                | 0.930           | $7.9 \pm 4.6$ | 582  |
| 150-200 km | 8.367          | 2.994                 | 0.966*           | 8.146 | 0.962 | 6.535 | 0.939                | 0.936           | 7.1±3.2       | 1001 |
| 200-300 km | 6.280          | 0.067                 | 0.933*           | 6.271 | 0.933 | 6.451 | 0.893                | 0.919           | $7.5 \pm 4.4$ | 1776 |
| 300-500 km | 7.869          | 0.574                 | 0.821            | 7.784 | 0.821 | 7.068 | 0.893                | 0.898*          | $8.7 \pm 5.6$ | 3317 |
| 500-800 km | 7.454          | 0.741                 | 0.841            | 7.522 | 0.841 | 7.760 | 0.924                | 0.939*          | $8.9 \pm 4.9$ | 2112 |

| STDEV       | 0.877 | 1.851 | 0.047 | 0.719 | 0.047 | 0.376 | 0.042 | 0.018  |         |       |
|-------------|-------|-------|-------|-------|-------|-------|-------|--------|---------|-------|
| mean        | 7.086 | 0.078 | 0.900 | 6.995 | 0.897 | 6.853 | 0.930 | 0.937  |         |       |
| North       | 7.103 | 0.881 | 0.893 | 7.004 | 0.892 | 6.656 | 0.955 | 0.932* | 7.5±4.6 | 41297 |
| >1100 km    | 5.826 | 0.493 | 0.855 | 5.918 | 0.854 | 6.243 | 0.929 | 0.900* | 6.9±3.6 | 13184 |
| 800-1100 km | 6.220 | 1.857 | 0.908 | 6.326 | 0.906 | 7.183 | 0.998 | 0.945* | 7.7±3.3 | 857   |

.

.

.

| Careful arm | POC   | C=A <sub>0</sub> ×PON | +C <sub>0</sub> | POC=A <sub>1</sub> | ×PON  | PO    | C=A <sub>2</sub> ×PO | N <sup>B2</sup> | POC/PON       | Ν     |
|-------------|-------|-----------------------|-----------------|--------------------|-------|-------|----------------------|-----------------|---------------|-------|
| Southern –  | $A_0$ | $C_0$                 | $R^2$           | $A_1$              | $R^2$ | $A_2$ | $\mathbf{B}_2$       | $R^2$           |               |       |
| 5 km        | 5.534 | 3.078                 | 0.898           | 5.867              | 0.889 | 7.493 | 0.897                | 0.941*          | 8.3±10.1      | 4536  |
| 5-10 km     | 5.762 | 3.276                 | 0.884*          | 6.268              | 0.871 | 8.664 | 0.801                | 0.868           | 7.6±3.1       | 598   |
| 10-15 km    | 5.634 | 2.570                 | 0.952*          | 5.912              | 0.945 | 7.485 | 0.878                | 0.928           | 7.6±3.8       | 1196  |
| 15-20 km    | 5.156 | 4.301                 | 0.853           | 5.530              | 0.838 | 7.699 | 0.854                | 0.912*          | 8.2±5.5       | 1378  |
| 20-30 km    | 7.687 | -2.723                | 0.965*          | 7.645              | 0.965 | 7.165 | 0.875                | 0.945           | $7.6{\pm}4.0$ | 1794  |
| 30-40 km    | 6.721 | 0.793                 | 0.825           | 6.686              | 0.825 | 7.261 | 0.878                | 0.939*          | 7.5±3.5       | 1222  |
| 40-50 km    | 6.772 | 2.072                 | 0.969*          | 6.756              | 0.969 | 7.501 | 0.870                | 0.951           | 8.3±4.8       | 733   |
| 50-75 km    | 6.200 | 0.915                 | 0.919           | 6.323              | 0.918 | 7.409 | 0.853                | 0.932*          | $8.0{\pm}4.4$ | 814   |
| 75-100 km   | 3.614 | 8.133                 | 0.701           | 4.027              | 0.648 | 7.479 | 0.877                | 0.946*          | 7.9±4.3       | 910   |
| 100-125 km  | 5.471 | 2.559                 | 0.948*          | 5.488              | 0.947 | 7.018 | 0.896                | 0.937           | $7.7{\pm}4.9$ | 726   |
| 125-150 km  | 5.665 | 1.567                 | 0.975*          | 5.698              | 0.975 | 6.957 | 0.899                | 0.947           | $7.4 \pm 3.6$ | 511   |
| 150-200 km  | 4.416 | 4.793                 | 0.918           | 4.609              | 0.903 | 6.996 | 0.890                | 0.964*          | $7.7 \pm 4.2$ | 316   |
| 200-300 km  | 6.062 | 1.003                 | 0.903           | 6.195              | 0.902 | 7.065 | 0.889                | 0.925*          | $7.4 \pm 4.2$ | 541   |
| 300-500 km  | 6.347 | 0.438                 | 0.936           | 6.411              | 0.935 | 7.208 | 0.878                | 0.948*          | $7.4 \pm 3.8$ | 280   |
| 500-800 km  | 8.003 | -3.386                | 0.914           | 7.650              | 0.908 | 7.602 | 0.902                | 0.959*          | $7.9{\pm}3.8$ | 2207  |
| 800-1100 km | 7.173 | -0.610                | 0.967           | 7.086              | 0.966 | 7.690 | 0.856                | 0.969*          | 8.6±3.7       | 3985  |
| >1100 km    | 5.719 | 1.092                 | 0.840           | 6.010              | 0.831 | 7.142 | 0.895                | 0.939*          | 8.2±3.5       | 164   |
| South       | 5.974 | 1.528                 | 0.913           | 6.033              | 0.912 | 7.373 | 0.890                | 0.948*          | $7.8 \pm 3.8$ | 21911 |
| mean        | 5.996 | 1.757                 | 0.904           | 6.127              | 0.896 | 7.402 | 0.876                | 0.938           |               |       |
| STDEV       | 1.098 | 2.720                 | 0.070           | 0.942              | 0.080 | 0.406 | 0.025                | 0.023           |               |       |

Table S5 Relationship between PON and POC for different lakes. Three mathematical functions  $POC=A_0 \times PON+C_0$ ,  $POC=A_1 \times PON$  and  $POC=A_2 \times PON^{B2}$  were used to fit the relationship between PON and POC. The parameters and determined coefficients of each function are listed in the table. Table S5 list the lake names and their abbreviations.

| Itoma - | POC=A <sub>0</sub> ×PON+C <sub>0</sub> |                |        | POC=A <sub>1</sub> ×PON |       | POC    | $POC=A_2 \times PON^{B2}$ |        |                 | Ν    |
|---------|----------------------------------------|----------------|--------|-------------------------|-------|--------|---------------------------|--------|-----------------|------|
| items - | $A_0$                                  | $\mathbf{C}_0$ | $R^2$  | $A_1$                   | $R^2$ | $A_2$  | $\mathbf{B}_2$            | $R^2$  |                 |      |
| MDV     | 7.689                                  | 9.426          | 0.717* | 9.686                   | 0.623 | 16.217 | 0.599                     | 0.611  | $14.7{\pm}10.1$ | 3024 |
| ALa     | 8.418                                  | 4.139          | 0.766  | 9.157                   | 0.755 | 11.490 | 0.858                     | 0.921* | 11.6±6.8        | 2037 |

| NL    | 7.345  | 15.668   | 0.940* | 7.913  | 0.924  | 13.340 | 0.842 | 0.935  | $10.4 \pm 2.8$ | 119  |
|-------|--------|----------|--------|--------|--------|--------|-------|--------|----------------|------|
| BkL   | 7.912  | -0.412   | 0.963* | 7.765  | 0.963  | 7.812  | 0.979 | 0.954  | $7.8 \pm 0.9$  | 64   |
| HL    | 10.101 | -0.468   | 0.797* | 9.691  | 0.796  | 9.448  | 0.843 | 0.731  | 9.7±2.2        | 28   |
| GLG   | 1.606  | 3.994    | 0.190  | 2.612  | 0.066  | 4.615  | 0.247 | 0.089  | 5.1±7.7        | 163  |
| LCG   | 12.869 | -1.856   | 0.946* | 12.826 | 0.946* | 13.473 | 0.971 | 0.920  | $12.8 \pm 3.1$ | 93   |
| NA    | 7.700  | 18.412   | 0.925  | 7.966  | 0.921  | 12.963 | 0.871 | 0.926* | $10.0{\pm}2.9$ | 133  |
| HkL   | 7.499  | 3.009    | 0.941* | 7.566  | 0.941* | 8.384  | 0.966 | 0.925  | 8.6±3.9        | 21   |
| GL    | 7.800  | 11.132   | 0.933  | 7.967  | 0.931  | 10.745 | 0.932 | 0.949* | 9.6±2.7        | 175  |
| KkL   | 6.435  | 24.082   | 0.889  | 6.818  | 0.884  | 9.582  | 0.916 | 0.917* | 7.1±1.5        | 4678 |
| BwL   | 7.048  | 7.449    | 0.868* | 8.202  | 0.839  | 11.606 | 0.811 | 0.844  | 8.8±1.6        | 79   |
| ThL   | 7.274  | -103.900 | 0.805* | 5.757  | 0.742  | 1.278  | 1.220 | 0.492  | $4.0{\pm}4.0$  | 82   |
| Mean  | 7.531  | 6.738    | 0.796* | 7.929  | 0.756  | 11.601 | 0.850 | 0.772  |                |      |
| STDEV | 2.328  | 40.756   | 0.221  | 2.181  | 0.280  | 7.393  | 0.215 | 0.247  |                |      |
|       |        |          |        |        |        |        |       |        |                |      |

Table S6 Relationship between PON and POC for different rivers. Three mathematical functions  $POC=A_0 \times PON+C_0$ ,  $POC=A_1 \times PON$  and  $POC=A_2 \times PON^{B2}$  were used to fit the relationship between PON and POC. The parameters and determined coefficients of each function are listed in the table. PR is Pearl River (China), YZR is Yanagtze River (China), PDSR is paraiba do sul River (Brazil), AMR is Amazon River (Brazil), FLR is Fly River (Papua New Guinea), FRR is Fraser River (Canada), YKR is Yukon River (USA), MISR is Mississippi River (USA), RUR is Russian rivers (Russian), PIR is Ping River (Thailand), USR is Union and Skokomish River (USA), ORR is Orinoco river(Venezuela), DMR is Mandovi river (India), SkR is Skidaway River (USA), IPPR is Ipswich and Parker rivers (USA).

| Itoma | POC    | C=A <sub>0</sub> ×PON+ | -C <sub>0</sub> | POC=A <sub>1</sub> ×PON |        | $POC=A_2 \times PON^{B2}$ |                |        | POC/PON        | Ν  |
|-------|--------|------------------------|-----------------|-------------------------|--------|---------------------------|----------------|--------|----------------|----|
| Items | $A_0$  | $C_0$                  | $R^2$           | $A_1$                   | $R^2$  | $A_2$                     | $\mathbf{B}_2$ | $R^2$  |                |    |
| PR    | 5.496  | 1.589                  | 0.816*          | 5.577                   | 0.816* | 10.153                    | 0.759          | 0.718  | 6.0±1.9        | 54 |
| YZR   | 15.957 | -483.79                | 0.858           | 14.730                  | 0.851  | 20.498                    | 0.931          | 0.905* | $14.4 \pm 3.0$ | 23 |
| PDSR  | 3.866  | 88.846                 | 0.781           | 6.021                   | 0.493  | 25.179                    | 0.619          | 0.833* | $9.0{\pm}5.8$  | 20 |
| AMR   | 12.506 | -127.73                | 0.780           | 11.705                  | 0.775  | 8.483                     | 1.047          | 0.920* | $10.8 \pm 3.3$ | 36 |
| FLR   | 18.557 | 40.388                 | 0.937*          | 19.560                  | 0.931  | 20.137                    | 1.004          | 0.933  | $21.5 \pm 8.5$ | 19 |
| FRR   | 12.487 | -7.112                 | 0.966*          | 11.663                  | 0.957  | 8.702                     | 1.068          | 0.935  | $9.7{\pm}2.5$  | 55 |
| YKR   | 16.877 | 2.177                  | 0.992*          | 16.973                  | 0.992  | 16.540                    | 1.001          | 0.986  | $16.9 \pm 3.8$ | 26 |
| MISR  | 10.251 | -6.326                 | 0.966           | 9.871                   | 0.964  | 8.044                     | 1.072          | 0.977* | 9.7±0.7        | 29 |
| RUR   | 8.669  | 15.902                 | 0.948           | 9.543                   | 9.332  | 13.971                    | 0.876          | 0.967* | $10.9 \pm 1.8$ | 21 |
| PIR   | 14.249 | -35.624                | 0.928           | 13.482                  | 0.923  | 9.703                     | 1.072          | 0.960* | $12.3 \pm 2.8$ | 15 |
| USR   | 14.225 | -8.2007                | 0.970*          | 14.203                  | 0.969  | 17.531                    | 0.884          | 0.884  | $14.8 \pm 4.7$ | 57 |
| ORR   | 7.105  | 10.048                 | 0.957           | 7.525                   | 0.952  | 10.144                    | 0.905          | 0.960* | $7.9{\pm}1.2$  | 35 |

| STDEV | 4.815  | 137.184 | 0.150  | 4.354  | 0.224  | 7.604  | 0.156 | 0.136  |                 |     |
|-------|--------|---------|--------|--------|--------|--------|-------|--------|-----------------|-----|
| Mean  | 10.523 | -25.834 | 0.871  | 10.747 | 0.828  | 15.136 | 0.904 | 0.867  |                 |     |
| IPPR  | 5.773  | 107.960 | 0.391  | 7.310  | 0.151  | 34.735 | 0.731 | 0.518* | $28.7 \pm 18.6$ | 223 |
| SkR   | 7.498  | 2.433   | 0.863* | 7.700  | 0.863* | 8.326  | 0.967 | 0.855  | $7.7 \pm 0.7$   | 956 |
| DMR   | 4.332  | 11.933  | 0.912* | 5.343  | 0.847  | 14.889 | 0.620 | 0.653  | 7.8±4.4         | 17  |

Table S7 Parallel table of lake names and their abbreviations.

| Name | Full name                 | Nation     | Latitude |  |
|------|---------------------------|------------|----------|--|
| MDV  | McMurdo Dry Valleys Lakes | Antarctica | -77.09   |  |
| ALa  | Alaskan Lakes             | USA        | 68.59    |  |
| NL   | Norwegian Lakes           | Norway     | 60.69    |  |
| BkL  | Lake Baikal               | Russia     | 53.99    |  |
| HL   | Lake Hovsgol              | Mongolia   | 51.12    |  |
| GLG  | Great Lakes Group         | USA        | 45.52    |  |
| LCG  | Lacustrine Central Group  | USA        | 45.42    |  |
| NA   | Northern American Lakes   | USA        | 43.81    |  |
| HkL  | Hokkaido Lakes            | Japan      | 43.54    |  |
| GL   | Green Lake                | Canada     | 39.99    |  |
| KkL  | Lake Kasumigaura          | Japan      | 36.15    |  |
| BwL  | Lake Biwa                 | Japan      | 35.33    |  |
| ThL  | Lake Taihu                | China      | 31.18    |  |

Figure S1 Global distribution of paired samples of POC and PON for each depth interval, the original map data of world vector downloaded from http://www.naturalearthdata.com/.







Figure S2 the establishment of buffers for different distance from offshore implemented by Arcgis 10 (Esri). the original map data of world vector downloaded from http://www.naturalearthdata.com/.



Figure S3 scatter plot of POC and PON for each depth range. The relationships between POC and PON were listed in Table S3.



Figure S4 scatter plot of POC and PON for different distance from offshore. The relationships between POC and PON were listed in Table S4.



Figure S5 scatter plot of POC and PON for each lake. The relationships between POC and PON were listed in Table S5.



Figure S6 scatter plot of POC and PON for each river. The relationships between POC and PON were listed in Table S6.



#### References

- Voss, B. M. (2009). Spatial and temporal dynamics of biogeochemical processes in the Fraser River, Canada: A coupled organic-inorganic perspective. PhD. Massachusetts Institute of Techenology.
- He, B., Dai, M., Huang, W., Liu, Q., Chen, H., Xu, L.(2010). Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions. Biogeosciences, 7, 3343–3362.
- Zhang, J., Wu, Y., Jennerjahn, T.C., Ittekkot, V., He, Q.(2007). Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics. Marine Chemistry 106, 111 126.
- Wu, Y., Zhang, J., Liu, S.M., Zhang, Z.F., Yao, Q.Z., Hong, G.H., Cooper, L.(2007). Sources and distribution of carbon

within the Yangtze River system. Estuarine, Coastal and Shelf Science 71,13-25.

- Wu, Y., Dittmar, T., Ludwichowski, K.U., Kattner, G., Zhang, J., Zhu, Z. Y., Koch, B. P.(2007). Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea. Marine Chemistry 107,367 – 377.
- Guo, W., Ye, F., Xu, S.D., Jia G. D.(2015). Seasonal variation in sources and processing of particulate organic carbon in the Pearl River estu ary, South China. Estuarine, Coastal and Shelf Science 167,540-548.
- Suzuki, M.S., Rezende, C.E., Paranhos, R., Falcão, A .P.(2015). Spatial distribution (vertical and horizontal) and partitioning of dissolved and particulate nutrients (C, N and P) in the Campo s Basin, Southern Brazil. Estuarine, Coastal and Shelf Science 166, 4-12.
- Yu, H., Wu, Y., Zhang, J., Deng, B., Zhu, Z.Y.(2011). Impact of extreme drought and the Three Gorges Dam on transport of particulate terrestrial organic carbon in the Changjiang (Yangtze) River. Journal of Geophysical Research 116, F04029, doi:10.1029/2011JF002012.
- Ward, N. D., Krusche, A. V., Sawakuchi, H. O., Daimio C. Brito, AlanC. Cunha, José Mauro Sousa Moura, Rodrigo da Silva, PatriciaL. Yager, Richard G. Keil, Jeffrey E. Richey (2015). The compositional evolution of dissolved and particulate organic matter along the lower Amazon River—Óbidos to the ocean. Marine Chemistry 177 (2015) 244–256
- Fernandes,L.(2011). Origin and biochemical cycling of particulate nitrogen in the Mandovi estuary. Estuarine, Coastal and Shelf Science 94,291-298.
- Khodse, V. B., Bhosle, N. B.(2013). Distribution, origin and transformation of amino sugars and bacterial contribution to estuarine particulate organic matter. Continental Shelf Research. 68, 33-42.
- Goni, M. A., Monacci, N., Gisewhite, R., Ogston, A., Crockett, J., Nittrouer, C. (2006). Distribution and sources of particulate organic matter in the water column and sediments of the Fly River Delta, Gulf of Papua (Papua New Guinea). Estuarine, Coastal and Shelf Science. 69, 225-245.
- Trefry, J.H., Nelsen, T.A., Trogine, R.P., Eadie, B.J.(1994). Transport of Particulate Organic Carbon by the Mississippi River and Fate in the Gulf of Mexico. Estuaries 17(4):839-849.
- Ziegler, A.D., Benner, S. G., Kunkel, M. L., Phang, V. X.H., Lupascu, M., Tantasirin, C.(2016).Particulate carbon and nitrogen dynamics in a headwater atchment in Northern Thailand: hysteresis, high yields, and hot spots. Hydrol. Process. 30, 3339–3360.
- Rosengard,S.Z. (2011). Novel analytical strategies for tracing the organic carbon cycle in marine and riverine particles. PhD. Massachusetts Institute of Techenology.
- Bianchi, T. S., Stewart, M., Wysocki, L. A., Filley, T. R., McKee, B. A.(2007). Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries. Geochimica et Cosmochimica Acta, 71(18), 4425-4437.
- Lobbes, J.M., Fitznar, H.P., Kattner, G. (2000). Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica et Cosmochimica Acta, 64(17), 2973-2983.
- Paolini, J.(1995) Particulate organic carbon and nitrogen in the Orinoco river (Venezuela). Biogeochemistry 29: 59-70.
- Dornblaser, M. M., Striegl, R. G.(2007). Nutrient (N, P) loads and yields at multiple scales and subbasin types in the Yukon R iver basin, Alaska. Journal of Geophysical Research 112, G04S57, doi:10.1029/2006JG000366.

Goni, M. A., Monacci, N., Gisewhite, R., Ogston, A., Crockett, J., Nittrouer, C. (2006). Distribution and sources of

particulate organic matter in the water column and sediments of the Fly River Delta, Gulf of Papua (Papua New Guinea). Estuarine, Coastal and Shelf Science, 69,225-245.

Ward, N. D., Richey, J. E., Keil, R. G. (2012). Temporal variation in river nutrient and dissolved lignin phenol concentrations and the impact of storm events on nutrient loading to Hood Canal, Washington, USA. Biogeochemistry, 111(1):629-645.