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Abstract. The response of the terrestrial net ecosystem ex-
change (NEE) of CO2 to climate variations and trends may
crucially determine the future climate trajectory. Here we di-
rectly quantify this response on inter-annual timescales by
building a linear regression of inter-annual NEE anomalies
against observed air temperature anomalies into an atmo-
spheric inverse calculation based on long-term atmospheric
CO2 observations. This allows us to estimate the sensitiv-
ity of NEE to inter-annual variations in temperature (seen
as a climate proxy) resolved in space and with season. As
this sensitivity comprises both direct temperature effects and
the effects of other climate variables co-varying with tem-
perature, we interpret it as “inter-annual climate sensitivity”.
We find distinct seasonal patterns of this sensitivity in the
northern extratropics that are consistent with the expected
seasonal responses of photosynthesis, respiration, and fire.
Within uncertainties, these sensitivity patterns are consistent
with independent inferences from eddy covariance data. On
large spatial scales, northern extratropical and tropical inter-
annual NEE variations inferred from the NEE–T regression
are very similar to the estimates of an atmospheric inversion
with explicit inter-annual degrees of freedom. The results of
this study offer a way to benchmark ecosystem process mod-
els in more detail than existing effective global climate sensi-
tivities. The results can also be used to gap-fill or extrapolate
observational records or to separate inter-annual variations
from longer-term trends.

1 Introduction

About one-quarter of the carbon dioxide (CO2) emitted to
the atmosphere by human fossil fuel burning and cement
manufacturing is currently taken up by the terrestrial bio-
sphere (Le Quéré et al., 2016), thereby slowing down the
rise of atmospheric CO2 levels and thus mitigating climate
change. The magnitude of this terrestrial net ecosystem ex-
change (NEE) of CO2, however, is subject to substantial vari-
ability and trends, in large part as a response to variations and
trends in climate. Due to this feedback loop, the response of
NEE to climate may crucially determine the future climate
trajectory (Friedlingstein et al., 2001), yet present-day cou-
pled climate–carbon cycle models strongly disagree on its
strength (Friedlingstein et al., 2014).

To reduce these uncertainties, observations of present-day
year-to-year variations have been used as a constraint on the
unobservable longer-term changes (Cox et al., 2013; Mys-
takidis et al., 2017) using the finding that these models show
a close link between the climate–carbon cycle responses at
year-to-year and centennial timescales. It cannot be known,
however, to what extent this link indeed holds in reality
(Mystakidis et al., 2017). While carbon cycle anomalies on
the year-to-year timescale are clearly attributable to climate
anomalies (through the variable occurrence of sunny vs.
cloudy, warm vs. cold, and wet vs. dry days or periods), ad-
ditional longer-term trends may arise as a response to grow-
ing nitrogen and CO2 fertilization, slow warming, expanding
or shrinking vegetation, adaptation of ecosystems, shifts in
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species composition, or changing human agricultural prac-
tices and fire suppression. Some of these processes may
also slowly change the strength of the short-term climate–
carbon cycle responses over time. Moreover, both year-to-
year and decadal to centennial carbon cycle changes are over-
laid by the much larger periodic variability (day–night cy-
cle, seasonal cycle). When using observations to constrain
the climate–carbon cycle responses, it is therefore essential
to employ observational records spanning time periods as
long as possible to get statistically significant results and to
separate the signals on seasonal, inter-annual, and decadal
timescales (compare Rafelski et al., 2009).

Variability and trends of terrestrial carbon exchange have
been observed through a variety of sustained measurements,
including local measurements by eddy covariance towers
measuring ecosystem fluxes (e.g. Baldocchi et al., 2001;
Baldocchi, 2003) and indirect measurements by satellites
recording changes in vegetation properties (e.g. Myeni et al.,
1997). The longest observational records are the atmospheric
CO2 measurements started in the late 1950s at Mauna Loa
(Hawaii) and the South Pole by Keeling et al. (2005) and
since then extended into a network of more than 100 CO2
sampling locations worldwide. Based on the Mauna Loa
long-term record considered to reflect global CO2 fluxes,
a close link between the atmospheric CO2 growth rate
and tropical temperature variations has been established
(e.g. Wang et al., 2013). Using measurements from Bar-
row (Alaska) conceivably reflecting variations in boreal CO2
fluxes, similar relationships have been suggested for high-
latitude ecosystems (e.g. Piao et al., 2017).

Extending these analyses, the aim of this study is to di-
rectly quantify the contributions of the different seasons and
different climatic zones to the response of NEE to inter-
annual climatic variations in order to obtain more process-
relevant information. To this end, we combine a linear re-
gression between NEE and climate anomalies with an “atmo-
spheric inversion” (e.g. Newsam and Enting, 1988; Rayner
et al., 1999; Rödenbeck et al., 2003; Baker et al., 2006;
Peylin et al., 2013) which quantitatively disentangles the at-
mospheric CO2 signal into its contributions from the various
regions and times of origin and allows us to make use of mul-
tiple long-term atmospheric CO2 records. In addition to the
atmospheric data, eddy covariance data are used for indepen-
dent verification.

2 Method

2.1 The standard inversion

As a starting point, we use the existing Bayesian atmospheric
CO2 inversion implemented in the Jena CarboScope, run
s85oc_v4.1s (update of Rödenbeck et al., 2003; Rödenbeck,
2005, see http://www.BGC-Jena.mpg.de/CarboScope/). It
estimates spatially and temporally explicit CO2 fluxes be-

tween the Earth’s surface and the atmosphere based on atmo-
spheric CO2 measurements from 23 stations (marked with ∗

in Table 1) each of which spans the entire analysis period
(chosen here to be 1985–2016 when more data are available;
see Rödenbeck et al. (2018) for runs over 1957–2016). Using
an atmospheric tracer transport model to simulate the atmo-
spheric CO2 field that would arise from a given flux field,
the inversion algorithm finds the flux field that leads to the
closest match between observed and simulated CO2 mole
fractions. In addition, the estimation is regularized by a pri-
ori constraints meant to suppress excessive spatial and high-
frequency variability in the flux field. The a priori settings
do not involve any information from biosphere process mod-
els. Fossil fuel fluxes are fixed to accounting-based values.
In the particular run s85oc_v4.1s used here, ocean fluxes are
fixed to estimates based on an interpolation of surface–ocean
pCO2 data (Jena CarboScope run oc_v1.5). A more detailed
technical specification, including references and highlighting
changes with respect to earlier Jena CarboScope versions, is
given in Appendix A.

For reference in Sect. 2.2 below, we mention here that this
standard inversion calculation represents the total surface-to-
atmosphere CO2 flux f as a decomposition,

f = f
adj
NEE,LT+ f

adj
NEE,Seas+ f

adj
NEE,IAV+ f

fix
Ocean+ f

fix
Foss, (1)

into adjustable long-term mean terrestrial NEE (f adj
NEE,LT),

adjustable large-scale seasonal NEE anomalies (f adj
NEE,Seas),

adjustable inter-annual and shorter-term NEE anomalies
(f adj

NEE,IAV), the prescribed ocean fluxes (f fix
Ocean), and the pre-

scribed fossil fuel emissions (f fix
Foss). All these terms represent

spatio-temporal fields.
This standard inversion will be used as a reference to

compare the results of the NEE–T inversion introduced be-
low (Sect. 2.2) at large spatial scales. Further, we used its
estimated NEE variations in preparatory tests to confirm
that NEE–T correlations actually exist and to determine the
degrees of freedom needed to accommodate their spatio-
temporal heterogeneity.

2.2 The NEE–T inversion

Compared to the standard inversion (run s85oc_v4.1s), the
NEE–T inversion (base run s04XocNEET_v4.1s) uses the
same transport model and the same prescribed data-based
CO2 fluxes of the ocean (f fix

Ocean) and fossil fuel emissions
(f fix

Foss). It also possesses the same adjustable degrees of
freedom representing the long-term mean CO2 fluxes (term
f

adj
NEE,LT) and its large-scale seasonality (f adj

NEE,Seas).
The NEE–T inversion differs only by replacing the explic-

itly time-dependent inter-annual NEE variations (f adj
NEE,IAV)

with a linear NEE–T regression term plus residual terms:
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Table 1. Atmospheric CO2 measurement stations used in the NEE–
T inversion. The smaller set of stations used in the standard inver-
sion is labelled with an asterisk. The eight parts individually omitted
in sensitivity tests are separated by horizontal lines. Institutions are
referenced as follows: AEMET: Gomez-Pelaez and Ramos (2011);
BGC: Thompson et al. (2009); CSIRO: Francey et al. (2003); EC:
Worthy (2003); FMI: Kilkki et al. (2015); HMS: Haszpra et al.
(2001); IAFMS: Colombo and Santaguida (1994); JMA: Watan-
abe et al. (2000); LSCE: Monfray et al. (1996); NIES: Tohjima
et al. (2008); NIPR: Morimoto et al. (2003); NOAA: Conway et al.
(1994); Saitama: http://www.pref.saitama.lg.jp/b0508/cess-english/
index.html, last access: 17 January 2018; SAWS: Labuschagne et al.
(2003); SIO: Keeling et al. (2005), Manning and Keeling (2006);
UBA: Levin et al. (1995). Appended letters indicate the record type:
(f): flask data, mostly weekly; (h): in situ data, mostly hourly; (d):
in situ data, daytime only; (n): in situ data, night-time only.

Code Latitude Longitude Height Institution
(◦) (◦) (m a.s.l.)

∗CMN 44.18 10.70 2165 IAFMS(n)
∗LJO 32.87 −117.25 15 SIO(f)
∗ASC −7.97 −14.40 88 NOAA(f)
∗BHD −41.40 174.90 85 SIO(f)
∗BRW 71.32 −156.61 13 NOAA(h,f), SIO(f)
∗CHR 1.70 −157.16 3 NOAA(f)
∗MID 28.21 −177.37 10 NOAA(f)
∗MLO 19.53 −155.57 3417 NOAA(h,f), SIO(f)
∗SPO −89.97 −24.80 2816 NOAA(h,f), SIO(f)
∗SYO −69.00 39.58 29 NIPR(h)
∗KER −29.03 −177.15 2 SIO(f)

ESP 49.38 −126.54 27 CSIRO(f), EC(f)
MQA −54.48 158.97 13 CSIRO(f)
RYO 39.03 141.83 230 JMA(d)
MNM 24.30 153.97 8 JMA(d)
MHD 53.32 −9.81 18 NOAA(f)
RPB 13.16 −59.43 19 NOAA(f)
UTA 39.90 −113.72 1332 NOAA(f)
HUN 46.95 16.64 353 HMI(d), NOAA(f)

AZR 38.76 −27.23 23 NOAA(f)
HBA −75.58 −26.61 24 NOAA(f)
LEF 45.93 −90.26 791 NOAA(f)
SEY −4.68 55.53 6 NOAA(f)
CPT −34.35 18.48 230 SAWS(d)
PAL 67.96 24.12 565 FMI(d), NOAA(f)
WLG 36.28 100.91 3852 NOAA(f)
HAT 24.05 123.80 10 NIES(f)
SBL 43.93 −60.01 5 EC(d,f)
CRZ −46.43 51.85 202 NOAA(f)
SGP 36.71 −97.49 348 NOAA(f)
SUM 72.60 −38.42 3214 NOAA(f)

WES 54.93 8.32 12 UBA(d)
AVI 17.75 −64.75 5 NOAA(f)
EIC −27.15 −109.44 63 NOAA(f)
ICE 63.40 −20.29 124 NOAA(f)
TIK 71.60 128.89 29 NOAA(f)
CVR 16.86 −24.87 10 BGC(f)
ZOT301 60.80 89.35 301 a.gr. BGC(d,f)
POCN30 29.48 −134.24 20 NOAA(f)
POCN20 19.69 −132.68 20 NOAA(f)
POCN10 9.68 −140.37 20 NOAA(f)
POC000 0.60 −150.35 20 NOAA(f)
POCS10 −10.02 −3.61 20 NOAA(f)
POCS20 −20.28 0.08 20 NOAA(f)
POCS30 −29.68 −0.04 20 NOAA(f)

Table 1. Continued.

Code Latitude Longitude Height Institution
(◦) (◦) (m a.s.l.)

∗ALT 82.47 −62.42 202 CSIRO(f), EC(f),
NOAA(f)

∗CBA 55.21 −162.71 41 NOAA(f), SIO(f)
∗CGO −40.67 144.70 130 CSIRO(f), NOAA(f)
∗GMI 13.39 144.66 6 NOAA(f)
∗IZO 28.30 −16.50 2367 AEMET(h)
∗KEY 25.67 −80.18 4 NOAA(f)
∗KUM 19.51 −154.82 22 NOAA(f), SIO(f)
∗NWR 40.04 −105.60 3526 NOAA(f)
∗PSA −64.92 −64.00 12 NOAA(f), SIO(f)
∗SHM 52.72 174.11 27 NOAA(f)
∗SMO −14.24 −170.57 51 NOAA(h,f), SIO(f)
∗AMS −37.80 77.54 55 LSCE(d)

CFA −19.28 147.06 5 CSIRO(f)
MAA −67.62 62.87 42 CSIRO(f)
SIS 60.18 −1.26 31 BGC(f), CSIRO(f)
SCH 47.92 7.92 1205 UBA(n)
BMW 32.26 −64.88 46 NOAA(f)
TAP 36.72 126.12 21 NOAA(f)
UUM 44.45 111.10 1012 NOAA(f)

ASK 23.26 5.63 2715 NOAA(f)
TDF −54.86 −68.40 20 NOAA(f)
WIS 30.41 34.92 319 NOAA(f)
ZEP 78.91 11.89 479 NOAA(f)
FSD 49.88 −81.57 250 EC(d)
YON 24.47 123.02 30 JMA(d)
COI 43.15 145.50 45 NIES(f)
CYA −66.28 110.52 55 CSIRO(f)
THD 41.04 −124.15 112 NOAA(f)

CIB 41.81 −4.93 848 NOAA(f)
KZD 44.26 76.22 506 NOAA(f)
LLN 23.47 120.87 2867 NOAA(f)
NAT −5.66 −35.22 53 NOAA(f)
NMB −23.57 15.02 461 NOAA(f)
STM 66.00 2.00 3 NOAA(f)
STP 50.00 145.00 0 SIO(f)
BIK300 53.22 23.02 300 a.gr. BGC(f)
DDR 36.00 139.18 840 Saitama(n)
KEF+RYF var. var. 0 JMA(f)
POCN25 25.20 −133.99 20 NOAA(f)
POCN15 15.07 −135.22 20 NOAA(f)
POCN05 4.80 −145.11 20 NOAA(f)
POCS05 −4.66 −4.24 20 NOAA(f)
POCS15 −14.72 −0.15 20 NOAA(f)
POCS25 −25.01 −0.17 20 NOAA(f)

f
adj
NEE,IAV→ γ

adj
NEE-Tw(T − TLT+Seas+Deca+Trend) (2)

+ (1−w)f adj
NEE,IAV+ f

adj
NEE,Trend+ f

adj
NEE,SCTrend.

T represents the monthly spatio-temporal field of air tem-
perature taken from GISS (Hansen et al., 2010; GISTEMP
Team, 2017) and interpolated to the spatial grid and daily
time steps of the inversion (Appendix A). Its long-term mean,
mean seasonal cycle, and decadal variations including lin-
ear trend (TLT+Seas+Deca+Trend) have been subtracted to only
retain inter-annual (including non-seasonal month-to-month)
anomalies. The scalar w is a temporal weighting being 1
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within the analysis period 1985–2016 and zero outside; this
ensures that the regression specifically refers to this period.
The inter-annual temperature anomaly field is multiplied by
unknown (i.e. adjustable by the inversion) scaling factors
γNEE-T (the NEE–T regression coefficients). These scaling
factors are identical in each year of the inversion, but are al-
lowed to vary smoothly both seasonally (with a correlation
length of about 3 weeks such that γNEE-T contains 13 in-
dependent degrees of freedom in time, repeated every year)
and spatially (with correlation lengths of about 1600 km in
the longitude direction and 800 km in the latitude direction,
imposing a spatial smoothing on γNEE-T over the same spa-
tial scales as the smoothing imposed on the inter-annual flux
anomalies f adj

NEE,IAV in the standard inversion). The need for
seasonal and spatial resolution of γNEE-T has been inferred
from an analysis of the standard inversion results (Sect. 2.1).
The a priori spatial and temporal correlations are imposed on
γNEE-T to prevent a localization of inverse adjustments in the
vicinity of the atmospheric stations. In contrast to the stan-
dard inversion, however, where the a priori correlations lead
to a smooth NEE field, the NEE result of the NEE–T inver-
sion still retains structure on the pixel and monthly scale from
the temperature field. By having only 13 degrees of freedom
in the time dimension, the introduction of the regression term
also regularizes the inversion further compared with the ex-
plicit inter-annual term of the standard inversion, which has
796 degrees of freedom in the time dimension.

Equation (2) also contains adjustable residual terms (2nd
line) to accommodate modes of variability from the atmo-
spheric CO2 signals that cannot be explicitly represented by
the regression term and might therefore be at risk of being
aliased into spurious adjustments to γNEE-T .

– Outside the non-zero period 1985–2016 of the regres-
sion term, inter-annual NEE variations are represented
by a standard inter-annual term f

adj
NEE,IAV with weights

(1−w) opposite to those of the regression term.

– An adjustable linear trend (f adj
NEE,Trend) is needed be-

cause trends have explicitly been removed from T . For
every pixel, f adj

NEE,Trend is proportional to the time dif-
ference 1t since the beginning of the calculation pe-
riod multiplied by an unknown trend parameter to be
adjusted by the inversion (with zero prior). The trend
parameters are correlated with each other in space with
the same correlation length scale as the mean and inter-
annual variability components of the standard inversion
(i.e. as f adj

NEE,LT and f adj
NEE,IAV in Eq. 1).

– Further, as the NEE field from the standard inversion
contains a strong increase in seasonal cycle amplitude
in northern extratropical latitudes (described earlier in
Graven et al., 2013, and Welp et al., 2016) which is ex-
pected to not (solely) arise from changes in the tempera-
ture seasonal cycle, we decoupled this mode of variabil-

ity from the regression by adding it as an explicitly ad-
justable term f

adj
NEE,SCTrend. For each degree of freedom

in the mean seasonality term f
adj
NEE,Seas in Eq. (1), the

additional term f
adj
NEE,SCTrend contains the same mode

multiplied by1t and having its own adjustable strength
parameter.

Any further residual modes of variability (including NEE
variations related to variations in other environmental drivers
uncorrelated to T variations, non-linear responses, memory
effects and internal ecosystem dynamics, errors in the em-
ployed T field, errors in the a priori fixed ocean and fossil
fuel terms, and effects of transport model errors) are not ex-
plicitly accounted for, as we lack sufficient a priori informa-
tion to model them explicitly. To the extent that they are un-
correlated to T variations, they will stay in the data residual
of the inversion.

In contrast to the standard inversion using 23 stations with
temporally homogeneous records over 1985–2016, the NEE–
T inversion uses atmospheric data from 89 stations (Ta-
ble 1) partially with shorter records but spatially covering
the globe more evenly (including stations in northern Siberia
and tropical America). While the standard inversion with ex-
plicitly time-dependent degrees of freedom can develop spu-
rious NEE variations when stations pop in or out with time,
the major inter-annual variability from the NEE–T inversion
comes from the regression term using its degrees of freedom
(γNEE-T ) repeatedly each year such that any data point in-
fluences all years of the calculation period simultaneously.
Therefore, the NEE–T inversion is not prone to spurious
variations from a temporally changing station network.

2.3 Sensitivity cases

The algorithm uses several inputs carrying uncertainties and
contains several parameters that are not well determined
from a priori available information. Therefore, we also ran an
ensemble of sensitivity cases. In each such sensitivity case,
one of the uncertain elements of the algorithm is changed
within ranges that may be considered as plausible as the base
case: (1) longer spatial a priori correlations (2.4 times in the
longitude direction and 1.6 times in the latitude direction)
for γNEE-T , (2) 4 weeks (rather than 3 weeks) of temporal a
priori correlation length scale for γNEE-T , (3) halved a pri-
ori uncertainty range for γNEE-T , (4) using ocean CO2 fluxes
from the PlankTOM5 ocean biogeochemical process model
(Buitenhuis et al., 2010) instead of the fluxes based on pCO2
measurements, (5) taking the gridded monthly land tempera-
ture field from Berkeley Earth (www.BerkeleyEarth.org, last
access: 29 November 2017) instead of the GISS data set,
and (6) using ERA-Interim meteorological fields (Dee et al.,
2011) to drive the atmospheric transport model rather than
NCEP meteorological fields.

Eight additional sensitivity cases have been run to demon-
strate coherent information in the atmospheric data. The set

Biogeosciences, 15, 2481–2498, 2018 www.biogeosciences.net/15/2481/2018/
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Table 2. Eddy covariance sites used for comparison. For vegetation type abbreviations, see Fig. 3 (caption).

FLUXNET-ID Data period Latitude (◦) Longitude (◦) Vegetation type

AU-How 2001–2014 −12.4943 131.1523 WSA
AU-Tum 2001–2014 −35.6566 148.1517 EBF
BE-Bra 1996–2014 51.3092 4.5206 MF
BE-Vie 1996–2014 50.3051 5.9981 MF
CA-Man 1994–2008 55.8796 −98.4808 ENF
CH-Dav 1997–2014 46.8153 9.8559 ENF
DE-Hai 2000–2012 51.0792 10.4530 DBF
DE-Tha 1996–2014 50.9624 13.5652 ENF
DK-Sor 1996–2014 55.4859 11.6446 DBF
DK-ZaH 2000–2014 74.4732 −20.5503 GRA
FI-Hyy 1996–2014 61.8474 24.2948 ENF
FI-Sod 2001–2014 67.3619 26.6378 ENF
FR-LBr 1996–2008 44.7171 −0.7693 ENF
FR-Pue 2000–2014 43.7414 3.5958 EBF
GF-Guy 2004–2014 5.2788 −52.9249 EBF
IT-Col 1996–2014 41.8494 13.5881 DBF
IT-Cpz 1997–2009 41.7052 12.3761 EBF
IT-Lav 2003–2014 45.9562 11.2813 ENF
IT-Ren 1998–2013 46.5869 11.4337 ENF
IT-SRo 1999–2012 43.7279 10.2844 ENF
NL-Loo 1996–2013 52.1666 5.7436 ENF
RU-Cok 2003–2014 70.8291 147.4943 OSH
RU-Fyo 1998–2014 56.4615 32.9221 ENF
US-Ha1 1991–2012 42.5378 −72.1715 DBF
US-Los 2000–2014 46.0827 −89.9792 WET
US-Me2 2002–2014 44.4523 −121.5574 ENF
US-MMS 1999–2014 39.3232 −86.4131 DBF
US-NR1 1998–2014 40.0329 −105.5464 ENF
US-PFa 1995–2014 45.9459 −90.2723 MF
US-Syv 2001–2014 46.2420 −89.3477 MF
US-Ton 2001–2014 38.4316 −120.9660 WSA
US-UMB 2000–2014 45.5598 −84.7138 DBF
US-Var 2000–2014 38.4133 −120.9507 GRA
US-WCr 1999–2014 45.8059 −90.0799 DBF
ZA-Kru 2000–2010 −25.0197 31.4969 SAV

of 89 stations used in the base case was divided into eight
mutually exclusive parts (Table 1). In each of the sensitivity
cases, one of these parts was omitted, leaving sets of 73 to 82
remaining stations. With this construction, all eight runs still
have global data coverage, but every station is absent in one
of the runs. If the results depended on any particular station
without being backed up by other stations, then the run omit-
ting this station would show a substantial difference from the
base run.

The range of results from this ensemble of sensitivity cases
will be shown as an uncertainty range around the base case.

2.4 Comparison to eddy covariance data

For comparison of the estimated sensitivities γNEE-T against
independent information, we also calculate NEE–T rela-
tionships from eddy covariance (EC) measurements. We

use NEE and co-measured air temperature records from the
FLUXNET2015 data set (https://fluxnet.fluxdata.org, last ac-
cess: 25 October 2017). EC sites (Table 2) have been chosen
based on having long records (at least 12 years; two sites with
11 years were also included to have more ecosystem types
represented). Crop sites have not been included because their
flux variability may strongly depend on crop rotation.

We start from the half-hourly or hourly data sets (variables
NEE_CUT_REF and TA_F_MDS, respectively). Records
classified as “measured” (QC flag= 0) or “good quality gap-
fill” (QC flag= 1) in both variables are averaged over each
month. Months with data coverage of 90 % or less are dis-
carded from the statistical analysis.

For each EC site and each month of the year, all avail-
able monthly CO2 flux values from the different years
were regressed against the corresponding monthly air tem-
perature values using ordinary least squares regression.

www.biogeosciences.net/15/2481/2018/ Biogeosciences, 15, 2481–2498, 2018
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Figure 1. Inter-annual climate sensitivity γNEE-T in (gC m−2 yr−1) K−1 shown as Hovmöller diagrams: longitudinal averages of γNEE-T are
plotted as colour over latitude (vertical) and month of the year (horizontal). The stippling indicates robustness: crosses mark values with
absolute deviations ≤ 40 (gC m−2 yr−1) K−1 (one colour level) of all sensitivity cases from the base case.

This yields sensitivities as regression slopes gEC
NEE-T =

1NEEEC /1T EC. We also calculated the confidence inter-
val of the slope for the confidence level 90%, reflecting the
uncertainty of gEC

NEE-T given the scatter of the monthly values
around a linear relationship.

The sensitivities γNEE-T from the inversion and
gEC

NEE-T from the explicit linear regression are not fully
comparable mathematically because (i) the time period (and
to some extent the frequency filtering) are different, and
(ii) the explicit linear regression of the total NEE is not only
influenced by the year-to-year variations but also by the
ratio of NEE trend and temperature trend, while γNEE-T has
deliberately been made insensitive to the trend (Sect. 2.2).
Therefore, we also calculated sensitivities gInv

NEE-T from
the total monthly mean non-fossil CO2 flux (i.e. including
regression and residual terms of Eq. 2) and the employed
temperature field of the inversions in the same way and
subsampled at the same months as for the EC data. A perfect
match between gEC

NEE-T and gInv
NEE-T cannot be expected nev-

ertheless because (iii) sensitivities from the inversion even
at its smallest resolved scale – the pixel scale – represent a
mixture of ecosystem types in unknown proportions, while
the EC data represent a specific ecosystem type, (iv) NEE
from the inversion includes the effects of disturbances such
as fire, which are absent from the EC data, and (v) there may
be local trends in the ecosystem behaviour observed by the
EC data due to ageing or slow species shifts, which average
out on the larger spatial scales seen by the atmospheric
inversion.

3 Results

3.1 How does the inter-annual climate sensitivity
γNEE-T vary in space and by season?

As a starting point, we present the results of the NEE–T in-
version in terms of γNEE-T , which is the local regression co-
efficient between inter-annual variations in NEE and temper-
ature, resolved seasonally (Sect. 2.2). As γNEE-T not only re-
flects direct temperature responses but also responses to other
environmental variables that co-vary with temperature (such
as water availability, incoming solar radiation), we refer to it
as inter-annual climate sensitivity.

Figure 1 presents the seasonal and spatial patterns of
the inter-annual climate sensitivity as Hovmöller diagrams
showing longitudinally averaged γNEE-T with dependence
on latitude and month of the year. The longitudinal aver-
age is taken separately over North and South America (left
panel), Europe and Africa (middle panel), and Asia and Aus-
tralia (right panel). This representation summarizes the es-
sential variations of γNEE-T , as it is found to be relatively uni-
form across longitude within the individual continents (not
shown).

In essentially all northern extratropical land areas (north
of about 35◦ N), we estimate negative γNEE-T in spring (and
to a lesser extent autumn), which is consistent with photo-
synthesis being temperature limited such that higher-than-
normal temperatures lead to more negative NEE (i.e. larger-
than-normal CO2 uptake) and vice versa. Warmer conditions
tend to coincide with higher incoming solar radiation in May
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Figure 2. (a, b, c) Inter-annual anomalies of NEE integrated over all land (a), northern extratropical land (b), and tropical plus southern
land (c) as estimated by the standard inversion (Sect. 2.1, black) and different runs of the NEE–T inversion (Sect. 2.2, orange). The grey
band comprises the results of the sensitivity cases. (d, e, f) Taylor diagrams quantifying the agreement between the NEE–T inversions and
the standard inversion. Due to the construction of the Taylor diagram (Taylor, 2001), the horizontal position of a point gives the relative
fraction of the reference signal present in the test time series, while the vertical distance of this point from the horizontal axis gives the
relative amplitude (temporal standard deviation) of any additional signal components uncorrelated with the reference signal.

and/or June in the northern extratropics (according to a cor-
relation analysis of CRUNCEPv7 data, not shown), which
would tend to amplify the direct temperature effect. In sum-
mer when photosynthesis is no longer limited by tempera-
ture, we find positive γNEE-T values. Such positive γNEE-T is
consistent with enhanced respiration in warmer summers, but
also with the fact that warmer-than-normal periods are often
also drier, leading to reduced photosynthetic uptake or en-
hanced fire activity. In winter, NEE is not found to respond
much to inter-annual climate variations. The interpretation
of the seasonality of γNEE-T is confirmed by its latitude de-
pendence: consistent with the later spring and shorter sum-
mer in the higher northern latitudes, the period of negative
γNEE-T starts later there, and the period of positive γNEE-T is
shorter.

In the tropics, we find stronger and less systematic varia-
tions in γNEE-T . However, as indicated by the missing stip-
pling, we also find larger disagreement between our sensitiv-
ity cases designed to embrace plausible ranges for the essen-
tial inputs and parameters in the algorithm (Sect. 2.3). This
reveals that the seasonal variations in γNEE-T are of limited
robustness here. Nevertheless, a clear feature in the tropics is
the dominance of positive γNEE-T values.

In southern extratropical America and Africa, the seasonal
pattern has similarities with the northern extratropical pattern
shifted by 6 months. The pattern in Australia is difficult to in-
terpret, but also not very robust. Larger errors in the southern

extratropics may conceivably arise because the much smaller
land area involves a much smaller number of degrees of free-
dom available to satisfy the data constraints (remember that
the oceanic flux cannot be adjusted in this inversion, while
the pCO2-based ocean prior flux is actually less well con-
strained in the southern extratropics due to the much smaller
density of pCO2 data).

3.2 How much inter-annual variability of NEE can be
reproduced by the seasonally resolved linear
regression to T ?

The assumed linear relationship between NEE anomalies and
air temperature anomalies around their respective seasonal
cycles represents a strong abstraction of the complex under-
lying physiological and ecosystem processes. Nevertheless,
the inter-annual variations of global total NEE estimated by
the NEE–T inversion are very similar to those estimated by
the standard inversion (Fig. 2a). The agreement is confirmed
by high correlation (Fig. 2d). For interpretation, we note that
variations in the global total CO2 flux are very well con-
strained from atmospheric CO2 observations at timescales
longer than the atmospheric mixing time (about 4 years)
(Ballantyne et al., 2012). Variations on the year-to-year scale
are already tightly constrained (Peylin et al., 2013). We thus
use the global CO2 flux from the standard inversion with ex-
plicit inter-annual degrees of freedom as a benchmark. Since
the ocean flux is identical in both the standard and NEE–T
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Figure 3. Comparison between the inter-annual climate sensitivities calculated from the inversion and from eddy covariance (EC) data for
various sites with longer EC records. Black dots give the sensitivities gEC

NEE-T calculated by the linear regression of monthly EC CO2 flux
data (FLUXNET2015 data set) against monthly air temperature co-measured at the flux towers (months with data in only 6 years or less are
discarded). The error bars around the dots comprise the confidence intervals of the regression slopes (at the 90 % confidence level); if the
confidence interval is above 300 (gC m−2 yr−1) K−1 (i.e. larger than the typical seasonal range), the corresponding dot is hollow. Orange and
grey lines give the sensitivities γNEE-T taken directly from various NEE–T inversions (base and sensitivity cases as in Fig. 2) at the respective
pixels enclosing the EC site locations. To allow for a more direct comparison between NEE–T inversion results and EC data, sensitivities for
the inversion (base case) have also been calculated by linear regression from the total monthly mean non-fossil CO2 flux and the temperature
field employed in the inversions in the same way and subsampled at the same months as for the EC data; these gInv

NEE-T values are shown as
orange dots. Panels are roughly ordered by latitude and land cover type (DBF: deciduous broadleaf forest, EBF: evergreen broadleaf forest,
ENF: evergreen needleleaf forest, GRA: grassland, MF: mixed forest, OSH: open shrubland, SAV: savanna, WET: permanent wetland, WSA:
woody savanna). See Table 2 for EC site locations.

inversion runs, the high level of agreement in Fig. 2 (panels a
and d) means that the spatially and seasonally resolved linear
NEE–T regression already provides a good approximation of
global inter-annual NEE variations.

Almost the same level of agreement is also found for a
split of the global NEE into a northern extratropical and a
tropical plus southern extratropical contribution (Fig. 2b, c
and e, f). Due to the faster atmospheric mixing within the ex-
tratropical hemispheres compared to the mixing across lati-

tudes, these two NEE contributions are expected to be rela-
tively well constrained by atmospheric data independently of
each other. The linear approximation of the NEE–T inversion
is able to distinguish extratropical and tropical behaviour.

For a further split into smaller regions, in particular along
longitude, inter-annual NEE variations from standard and
NEE–T inversions stay similar, but deviations get larger (not
shown). This could indicate that the limits of the linear NEE–
T relationship start to kick in at these scales. However, the
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NEE variations can no longer be expected to be well con-
strained from the atmospheric data at the regional scale.
Thus, the discrepancy can also be caused by the standard in-
version, while the NEE–T inversion could be the more real-
istic one by profiting from the pixel-scale information added
through the temperature field, as discussed in Sect. 4.1.

3.3 Are the estimated patterns of γNEE-T compatible
with ecosystem-scale eddy covariance data?

Figure 3 compares inter-annual climate sensitivities (ordi-
nate) calculated by the NEE–T inversion with those calcu-
lated independently from eddy covariance (EC) data for each
month of the year (abscissa). Each panel represents an EC
site roughly arranged by ecosystem types and latitudes. The
orange line with the surrounding grey band gives the sensi-
tivities γNEE-T from the various NEE–T inversion runs as in
Fig. 2 taken at the respective pixels enclosing the EC sites.
The black dots are the sensitivities gEC

NEE-T calculated by the
explicit linear regression of monthly EC flux records against
the co-measured monthly air temperature (Sect. 2.4).

To allow for a fairer comparison between inversion re-
sults and EC data, additional colour dots give sensitivities
gInv

NEE-T calculated from the NEE–T inversion results in the
same way and subsampled at the same months as for the
EC data (Sect. 2.4). At most EC sites, the sensitivities cal-
culated by the inversion itself (γNEE-T , orange lines) or by
explicit regression afterwards (gInv

NEE-T , orange dots) mostly
agree within the confidence interval of the regression. This
shows that the comparison of inversion and EC sensitivities
is meaningful despite their differences in meaning and calcu-
lation (in particular, the trend influence (issue ii in Sect. 2.4)
on gInv

NEE-T turns out to be relatively small because the ex-
plicit regressions are only done over the limited time period
spanned by the EC records).

Despite their completely independent sources of informa-
tion and their remaining incompatibilities (Sect. 2.4), the sen-
sitivities from the EC data and the atmospheric NEE–T in-
version have a similar order of magnitude and similar sea-
sonal patterns for a majority of EC sites (Fig. 3). For most
sites and months, the sensitivities agree within their confi-
dence intervals. The level of agreement roughly depends on
ecosystem type and latitude.

– Generally good consistency is found in high northern
latitudes (line 1 of panels in Fig. 3) and at evergreen
needleleaf forest (ENF) sites in temperate northern lati-
tudes (line 2 and rightmost part of line 3).

– At mixed forest (MF) and deciduous broadleaf forest
(DBF) sites in temperate northern latitudes (left part of
line 3 and line 4), consistency is mostly good as well,
though some months in spring or summer have more
negative gInv

NEE-T sensitivities from EC data (e.g. DE-
Hai, DK-Sor, BE-Bra). However, the behaviour of DBF
ecosystems is not an important contribution to larger-

scale NEE variability because DBF ecosystems only
cover 11 to 25 % of the area around the sites shown.

– Generally good consistency within the confidence in-
terval is also found at sites of various other ecosystem
types in temperate northern latitudes (line 5).

– At the tropical and southern extratropical sites (last
line), the comparison does not yield conclusive infor-
mation, because the confidence intervals of the regres-
sion are much larger than the seasonal variations of both
inversion and EC results. We can only state that the
gInv

NEE-T and gEC
NEE-T sensitivities do not contradict each

other statistically. Some qualitative consistency is found
at the Australian EBF site, even though the dominant
vegetation round the site is shrubland (about 45 %).

Though this comparison partly remains inconclusive (as the
confidence intervals at tropical and Southern Hemispheric
sites are large, as gInv

NEE-T and gEC
NEE-T are not actually fully

comparable (Sect. 2.4), and as by far not all areas and dom-
inating ecosystem types are represented), it does support the
results of the NEE–T inversion, at least in the northern ex-
tratropics.

4 Discussion

4.1 NEE variations in the northern extratropics

Given that we found robust seasonal patterns of
γNEE-T which can be interpreted in terms of the fundamental
physiological processes (Sect. 3.1), that these patterns are
compatible with inferences from independent ecosystem-
scale eddy covariance (EC) measurements (Sect. 3.3), and
that the corresponding inter-annual NEE variations are
compatible with the atmospheric constraint on the most
reliable large scales (Sect. 3.2), we conclude that the linear
dependence of NEE anomalies on air temperature anomalies
(as climate proxy) represents a meaningful approximative
empirical description of the northern extratropical biosphere.
The compatibility of the NEE–T relationships inferred from
large-scale atmospheric constraints and the ecosystem-scale
EC constraints of dominating vegetation types suggests
that the regional or continental NEE variations are to a
substantial degree due to local variations linked to local
climate anomalies; otherwise the NEE–T inversion could not
have worked. Given that, we expect the NEE–T inversion
to provide more realistic inter-annual NEE variations on
regional scales than the standard inversion, which smoothly
interpolates NEE on scales smaller than station-to-station
differences (compare to the last paragraph of Sect. 3.2).

Note that as EC data measure fluxes on small spatial scales
(a few hundreds of metres), the EC flux variations them-
selves cannot directly be compared to the inversion results
representing NEE over (sub)continental scales and integrat-
ing over many ecosystem types and climate regimes. In con-
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trast to the fluxes, however, derived relationships (such as
the NEE–T relationships considered here) may well be able
to bridge this scale gap.

Besides the inter-annual variations, the NEE–T inversion
also reproduces the small negative trend in NEE through
its residual term f

adj
NEE,Trend in Eq. (2) (Fig. 2). Likewise,

it reproduces the northern extratropical increase in seasonal
cycle amplitude through its residual term f

adj
NEE,SCTrend (not

shown).

4.2 NEE variations in the tropics

In contrast to the northern extratropics, we did not find
conclusive seasonal patterns of γNEE-T in the tropics
(Sect. 3.1). However, despite the substantial uncertainty
range of γNEE-T (Fig. 1), the sensitivity cases reproduce al-
most identical inter-annual NEE variations in the tropics (see
the narrow grey band around the NEE–T estimate in Fig. 2c).
This underlines the fact that pan-tropical NEE variations are
actually well constrained from the atmospheric data, while
the seasonal differences in γNEE-T arise to compensate for the
set-up differences among the sensitivity cases. As shown be-
low (Sect. 4.3), all the seasonally different γNEE-T estimates
correspond to a similar effective sensitivity (having a positive
value) on yearly timescales. Due to this, the NEE–T inver-
sion is found to possess predictive skill on the timescale of
the El Niño–Southern Oscillation (Rödenbeck et al., 2018).

The positive effective γNEE-T in the tropics (Sect. 3.1)
is consistent with the strong positive correlation of atmo-
spheric CO2 growth with large-scale tropical annual tem-
perature (Wang et al., 2013). This is unlikely to arise from
a direct temperature effect, however, because process stud-
ies (e.g. Meir et al., 2008; Bonal et al., 2008; Alden et al.,
2016) point to water availability rather than temperature as
the dominant control on the ecosystem scale. This is also
confirmed by the large confidence intervals of the NEE–T
regression of the EC data from the only tropical site available
here (GF-Guy, leftmost on last line of Fig. 3). A strong corre-
lation with temperature can still arise statistically due to the
strong link of temperature and precipitation anomalies over
larger spatial scales (Berg et al., 2014). Moreover, the vapour
pressure deficit (VPD) controlling photosynthesis responds
particularly strongly to temperature variations in the warm
tropical climate due to the non-linearity of the VPD(T) de-
pendence (Monteith and Unsworth, 1990). Further, T is spa-
tially coherent over much larger areas in the tropics, while
variability in water availability is local and averages out over
larger spatial scales (Jung et al., 2017). Nevertheless, a direct
temperature effect in the tropics was found by Clark et al.
(2013), at least for a component flux of NEE (wood produc-
tion) in 12-year plot data.

4.3 An extended benchmark for process models

Data-based empirical relationships between inter-annual
NEE variations and air temperature variations have been pro-
posed in the literature as benchmarks to evaluate biogeo-
chemical process models. For example, Cox et al. (2013)
calculated an effective global climate sensitivity of 5.1±
0.9 PgC yr−1 K−1 over 1960–2010 by regressing the annual
CO2 growth rate observed at the station Mauna Loa (Hawaii)
(taken as a proxy for the global total CO2 flux) against
30◦ N–30◦ S (both land and ocean) averaged air tempera-
ture (after detrending both time series by subtracting an
11-year running mean). In a similar way (using the aver-
age atmospheric growth rate from a varying set of back-
ground sites, a slightly different time series treatment, and
24◦ N–24◦ S land temperature), Wang et al. (2013) obtained a
value of 3.5±0.6 PgC yr−1 K−1 over 1959–2011. Wang et al.
(2014) regressed the mean Mauna Loa and South Pole CO2
growth rates against 23◦ N–23◦ S vegetated land temperature
over moving 20-year windows and reported effective global
climate sensitivities between 3.4± 0.4 PgC yr−1 K−1 (dur-
ing 1960–1979) and 5.4± 0.4 PgC yr−1 K−1 (during 1992–
2011).

The inversion results presented here allow us to extend
these benchmarks in two ways. As a first extension, we can
evaluate to what extent the inter-annual variations in local or
averaged atmospheric CO2 growth rates are indeed equiva-
lent to the inter-annual variations in the global total CO2 flux
(as implicitly assumed in the above-mentioned studies) and
to what extent the global total CO2 flux is indeed representa-
tive of global terrestrial NEE or, even more specifically, trop-
ical NEE. This can be evaluated here because all these time
series (spatially explicit CO2 fluxes with all their contribu-
tions, as well as the corresponding atmospheric CO2 varia-
tions at the measurement stations) are available within the
inversion calculation. To ensure a mutually consistent treat-
ment of these time series, we used running yearly averages
(January through December, February through next January,
etc.) of the flux time series and running yearly differences
(next January minus January, next February minus February,
etc., multiplied by 2.12 PgCppm−1; Ballantyne et al., 2012)
of the atmospheric CO2 time series. All these inter-annual
time series were then regressed over 1985–2016 against an-
nual tropical land temperature (25◦ N–25◦ S) derived from
the same temperature field without decadal variations as used
in the NEE–T inversion. The resulting effective climate sen-
sitivities are shown in Fig. 4. The sensitivities of the total
CO2 flux (solid bars in the middle) calculated from the stan-
dard inversion (black) or from the NEE–T inversion (orange)
are similar to each other and fall in between the values by
Cox et al. (2013) and Wang et al. (2013). Part of the discrep-
ancies between these results can be attributed to the different
time periods and the different time series treatments (in par-
ticular, to the extent to which decadal variability has been
removed). Figure 4, however, reveals another reason for the

Biogeosciences, 15, 2481–2498, 2018 www.biogeosciences.net/15/2481/2018/



C. Rödenbeck et al.: How does the terrestrial carbon exchange respond to climatic variations? 2491

discrepancies: the sensitivity of the Mauna Loa growth rate
(middle hashed blue bar) is larger than that of the global flux
(solid bars). This cannot be due to a deficiency in the in-
versions to fit Mauna Loa’s variability because the modelled
Mauna Loa sensitivities (hashed bars next to the middle blue
bar) agree well with the observed ones. Thus, a sensitivity
calculated from the Mauna Loa growth rate (as in Cox et al.,
2013) somewhat overestimates the sensitivity of the global
flux. The Mauna Loa sensitivity is still much closer to that of
the global CO2 flux than sensitivities calculated from most
other stations: southern extratropical stations like the South
Pole (or the mean of Mauna Loa and the South Pole as in
Wang et al., 2014) lead to a substantial underestimation (it is
unclear why the sensitivity reported by Wang et al. (2014) for
the recent 1992–2011 period is nevertheless even higher than
our Mauna Loa value), while northern extratropical stations
like Point Barrow lead to an even stronger overestimation
than Mauna Loa. This suggests that using a varying mixture
of stations (as in Wang et al., 2013) can induce further er-
rors, in particular when possible changes in sensitivity are
considered. We note that the atmospheric inversions bene-
fit from using multiple station records because the transport
model links the atmospheric CO2 signals to their different
areas of origin rather than the instantaneous link of the atmo-
spheric signals to the global flux as in the direct use of station
records.

Care is also needed in the interpretation of the estimated
effective sensitivities: the sensitivity of the total CO2 flux
(solid bars) underestimates that of global NEE only (hori-
zontally hashed bars) because the ocean flux is substantially
anti-correlated with NEE on the inter-annual timescale. The
sensitivity of tropical-only NEE (vertically hashed bars) is
smaller than that of global NEE, though the reduction is less
than according to the ratio of land area, confirming the dom-
inance of tropical NEE variations.

As a second extension of process model benchmarking,
the data-based estimates of the spatially and seasonally re-
solved γNEE-T from the NEE–T inversion can directly be em-
ployed as target values by regressing the NEE simulated by
the terrestrial biosphere or Earth system model against the
model temperature for individual small regions and seasons
across the years 1985–2016 and comparing these model-
derived local and season-specific sensitivities to the data-
based values presented here (using the ensemble of sensi-
tivity cases as a measure of uncertainty in γNEE-T ). Impor-
tantly, before regressing, the model NEE and temperature
fields need to be deseasonalized, detrended, and filtered in
the same way as done for the observed temperature in the
NEE–T inversion (Sect. 2.2) because the numerical γNEE-T
values are somewhat specific to the chosen filtering, in par-
ticular to the exact way to remove decadal variations (as
is also the case for the effective global climate sensitivity
targets by Cox et al., 2013, and Wang et al., 2013, 2014).
For the northern extratropics, where γNEE-T is quite robustly
constrained and shows distinct spatial and seasonal patterns
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Figure 4. Effective large-scale inter-annual climate sensitivities
(PgC yr−1 K−1) calculated from the standard inversion (black),
from the NEE–T inversion (orange), or from observed atmospheric
CO2 (blue). The sensitivities refer to inter-annual variations in the
CO2 growth rate at three selected atmospheric stations (Point Bar-
row, Alaska (BRW), Mauna Loa, Hawaii (MLO), and the South
Pole (SPO), diagonally hashed), in the global total CO2 exchange
(solid bars), in the global terrestrial NEE (horizontally hashed), or in
tropical NEE (25◦ N–90◦ S, vertically hashed), all regressed against
inter-annual variations in air temperature averaged across tropical
land (25◦ N–25◦ S) over 1985–2016. The red line surrounded by
grey shading denotes the result 5.1±0.9 PgC yr−1 K−1 by Cox et al.
(2013), even though it is calculated in a slightly different way.

(Sect. 3.1), this offers a much more detailed benchmark of the
process representation in the models than the existing single-
valued effective climate sensitivity of the global CO2 growth
rate. For the tropics, unfortunately γNEE-T is not constrained
well enough to do that, but due to the fact that pan-tropical
NEE variations are nevertheless quite robust (Sect. 4.2), the
effective climate sensitivity of tropical NEE from Fig. 4
(4.2 PgCyr−1 K−1 with a range across the sensitivity cases of
3.8. . .4.4 PgCyr−1 K−1) may be used as a specifically tropi-
cal target instead.

4.4 Could the results be improved by using a
multivariate regression against further climatic
variables?

We also tested the algorithm with precipitation (P ) or so-
lar radiation as explanatory variables, individually or in mul-
tivariate combinations (not shown). While, for example, an
NEE–P inversion had almost as good an explanatory power
as the NEE–T inversion, a multivariate NEE–T –P inversion
did not explain much more NEE variations than the univari-
ate NEE–T inversion did already. This confirms the strong
background correlations of air temperature with the other cli-
mate variables on inter-annual timescales. It also means that
a multivariate regression would – despite a mathematically
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unique partitioning into contributions of the individual ex-
planatory variables – likely not yield a uniquely interpretable
attribution of NEE variability to different causes.

Given that, a univariate NEE–T inversion seems advan-
tageous because T likely has data sets best constrained by
observations. As a regression is confined to the variability
present in the explanatory variables, using less well-observed
or even modelled variables (as would be the case for precip-
itation or cloud cover) involves the risk of contamination.

5 Conclusions and outlook

The response of net ecosystem exchange (NEE) to climate
anomalies has been estimated by linear regression against
anomalies in air temperature (T ) within an atmospheric in-
version based on a set of long-term atmospheric CO2 ob-
servations. The resulting spatially and seasonally resolved
regression coefficients γNEE-T are interpreted as an inter-
annual climate sensitivity comprising the direct tempera-
ture response as well as responses to co-varying anomalies
in other environmental conditions (e.g. moisture, radiation)
(Sect. 4.4).

– The inferred inter-annual climate sensitivity
γNEE-T shows distinct and interpretable patterns
along latitude and season. In particular, we find neg-
ative γNEE-T during spring and autumn (consistent
with a temperature-limited photosynthesis) and positive
γNEE-T during summer (consistent with a water-limited
photosynthesis) in all northern extratropical ecosystems
(Sect. 3.1).

– Despite the complexity of the underlying plant and
ecosystem processes, the spatially and seasonally re-
solved linear regression of NEE against temperature
anomalies (taken as climate proxy) fitted to atmospheric
CO2 data can reproduce a large fraction of inter-annual
variations in the NEE, at least in the northern extrat-
ropics. This conclusion is based on the agreement of
the inferred NEE variations with a time-explicit atmo-
spheric inversion at well-constrained large spatial scales
(Sect. 3.2) and the consistency of γNEE-T with indepen-
dent calculations from eddy covariance data at small
spatial scales (Sect. 3.3). Among the reasons for this po-
tentially surprising finding is that the regression is only
applied to the inter-annual anomalies of NEE around its
mean seasonal cycle (rather than to the full range of sea-
sonal temperature variations) and that the different be-
haviours in different seasons have been accounted for.

The results of the NEE–T inversion can be applied to
benchmark process models of the land biosphere or Earth
system models: the spatially and seasonally resolved inter-
annual climate sensitivity γNEE-T can be calculated from the
model output (using detrended NEE over the period 1985–
2016 for consistency) and compared to the values presented
here; this allows for a more detailed benchmark for the north-
ern extratropical ecosystem processes than existing effective
global sensitivities. Further, as its adjustable degrees of free-
dom are identically applied every year, the regression of-
fers a way to bridge temporal gaps in the atmospheric CO2
records; it transfers information from the recent data-rich
years into the more data-sparse past. Similarly, the NEE–T
regression allows us to forecast the CO2 flux for some years
if forecasted air temperatures (and extrapolations of fossil
fuel emissions and the ocean exchange) are available. As an-
other application, the regression may help to uncover smaller
decadal trends in the atmospheric CO2 signal by separating
them from the larger inter-annual responses of NEE. By ex-
tending the calculation to the full period of atmospheric CO2
measurements (since the late 1950s; see Rödenbeck et al.,
2018), we can investigate possible decadal changes in the
inter-annual climate sensitivity γNEE-T .

Data availability. The inversion results are available for use in col-
laborative projects from the Jena CarboScope website at http://
www.BGC-Jena.mpg.de/CarboScope/ (http://dx.doi.org/10.17871/
CarboScope-s85oc_v4.1s, Rödenbeck and Heimann, 2017a; http://
dx.doi.org/10.17871/CarboScope-s04XocNEET_v4.1s, Rödenbeck
and Heimann, 2017b).

Biogeosciences, 15, 2481–2498, 2018 www.biogeosciences.net/15/2481/2018/

http://www.BGC-Jena.mpg.de/CarboScope/
http://www.BGC-Jena.mpg.de/CarboScope/
http://dx.doi.org/10.17871/CarboScope-s85oc_v4.1s
http://dx.doi.org/10.17871/CarboScope-s85oc_v4.1s
http://dx.doi.org/10.17871/CarboScope-s04XocNEET_v4.1s
http://dx.doi.org/10.17871/CarboScope-s04XocNEET_v4.1s


C. Rödenbeck et al.: How does the terrestrial carbon exchange respond to climatic variations? 2493

Appendix A: More specification details of
the inversion algorithm

This Appendix first reviews the base set-up and implemen-
tation of the Jena CarboScope atmospheric CO2 inversion
in its current version 4.1, from which the particular runs
used in this study are derived (Sect. A1). Section A2 gives
differences of the run s85oc_v4.1s used as standard inver-
sion here. The further differences of the NEE–T inversion
s85ocNEET_v4.1s have already been described in Sect. 2.2.

For more details, formulas, or deeper explanations, the
reader is referred to the technical report of Rödenbeck
(2005).

A1 The Jena CarboScope atmospheric
CO2 inversion v4.1

The Jena CarboScope CO2 inversion is a linear Bayesian at-
mospheric inversion estimating land–atmosphere and ocean–
atmosphere CO2 fluxes from long-term atmospheric CO2
mole fraction measurements (Rödenbeck, 2005). As the Jena
CarboScope is particularly focused on inter-annual varia-
tions, flux estimates are only used over time periods homoge-
neously covered by all data records to avoid spurious jumps
(or changes in the amplitude of variations) that can result
from changes in the station set over time. To deal with the
fact that many of today’s measurement stations came into op-
eration at various points in time during the last decades, the
Jena CarboScope provides several runs, either over longer
periods (the longest one currently being 1976–2016) with
only a few stations or runs with more stations (currently up
to 59) but correspondingly shorter periods. Despite these dif-
ferent “periods of validity”, however, all base runs are car-
ried out over 1955–2017, which includes time for spin-up
and spin-down to minimize “edge effects”. The Jena Car-
boScope inversion is regularly updated, mostly yearly to in-
clude the latest year of measurements. These updates may
also involve some changes in the station sets according to
data availability, as well as changes in the inversion set-up
and implementation details. All results are available for use
in collaborative projects from the Jena CarboScope website
at http://www.BGC-Jena.mpg.de/CarboScope/.

The following provides some specification details for the
current version 4.1 of the CarboScope inversion, also point-
ing out changes with respect to the previous version 3.8.

A1.1 Grid resolution

The CO2 fluxes have a daily time resolution and are repre-
sented on the grid of the transport model (≈ 4◦× 5◦, see be-
low).

A1.2 Prior information

Bayesian prior information is used to regularize the other-
wise underdetermined estimation. However, none of the ba-

sic CarboScope inversion runs involve any information from
terrestrial and oceanic carbon cycle models in order to trans-
parently base the results on atmospheric information and thus
to allow for an independent comparison to process models or
to empirical models like the NEE–T inversion.

The a priori probability distribution of the fluxes is not
directly implemented through a covariance matrix, but indi-
rectly through a statistical “flux model” that expresses the
spatio-temporal CO2 flux field as a linear function of a vec-
tor of independent adjustable dimensionless parameters with
zero mean and unit variance. This makes it easy to specify,
e.g. timescale-dependent statistical properties, or to simulta-
neously specify temporal and spatial a priori correlations.

The prior flux of all land NEE components is zero. This
means that the “error” in this prior is identical to the land
CO2 flux itself; i.e. the a priori probability density describes
the expected statistical properties of NEE. Its a priori uncer-
tainties are proportional to the fraction of vegetated land area
in each pixel taken as the sum of “crop”, “dbf”, “dnf”, “ebf”,
“enf”, “grass”, and “shrub” fractions from SYNMAP (Jung
et al., 2006). The results of the v4.1 inversions on larger spa-
tial scales are still quite similar to v3.8 (which still used spa-
tial patterns of a priori uncertainty derived from model out-
put), confirming that the variability was not driven by these
spatial patterns. The largest difference of v4.1 results to pre-
vious versions is a smaller amplitude of inter-annual varia-
tions in the tropical land fluxes.

NEE adjustments are split into the temporal mean, a
large-scale mean seasonality, and (inter-annual) variations.
The large-scale mean seasonality has a priori correlations
of about 3825 km longitudinally, 1275 km latitudinally, and
about 4 weeks in time. The correlation lengths of the other
two flux contributions are about 1600 km longitudinally
and about 800 km latitudinally and in the “variations” part
2 weeks in time. For practical reasons, the temporal varia-
tions in all adjustable terms are implemented as Fourier se-
ries. The temporal correlations can then simply be imple-
mented by downweighting the a priori uncertainties of the
Fourier modes with higher frequencies according to the spec-
trum corresponding to the desired autocorrelation function.
The split into long-term, seasonal, and non-seasonal contri-
butions can be implemented by simply activating only the
corresponding part of the Fourier series. Note that not only
the “mean seasonality” part but also the “variations” part
contains seasonal Fourier terms to allow seasonal variability
to also be adjusted on the smaller spatial scales.

Ocean fluxes are implemented analogously to land NEE,
with a priori uncertainties proportional to the ocean frac-
tion and slightly longer a priori spatial correlations (about
1912 km longitudinally and about 956 km latitudinally). In
contrast to land NEE, however, the mean spatial flux pattern
and its mean seasonal cycle are not adjusted, but prescribed
to the mean seasonal cycle of the flux estimates oc_v1.4 (up-
date of Rödenbeck et al., 2014) based on an interpolation
of pCO2 data from the SOCATv4 database (Bakker et al.,
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2016). Only the (inter-annual) ocean flux variability can be
adjusted by the inversion in the basic v4.1 runs (see the differ-
ence in the present “standard inversion” in Sect. A2 below).

The fossil fuel emission prior is taken from monthly values
of CDIAC (Andres et al., 2016). The years after 2013 have
been extrapolated by global scaling factors based on the ra-
tios in the emission totals from Le Quéré et al. (2016, update
for year 2016). There are no inverse adjustments to fossil fuel
emissions.

A1.3 Data treatment

The CarboScope inversion uses the individual data points in
the atmospheric CO2 records (flask pair values or hourly av-
erages). In order to prevent the in situ records with hourly
data from dominating the result, a “data density weighting”
has been implemented. It artificially increases the model–
data mismatch uncertainty of data points from dense records
in such a way that weekly periods of data always have the
same impact on the results.

The individual CO2 data points are screened for outliers
by a “2σ criterion” (newly introduced in CarboScope version
v4.1): a pre-run of the inversion is done using the base Car-
boScope set-up and a large set of stations potentially used in
later runs. Then, the CO2 mole fraction residuals between a
forward run from the posterior fluxes and the data are consid-
ered. For each station, data points are removed if their resid-
ual is larger than 2 standard deviations across all residuals of
that station. This procedure is similar to the outlier flagging
done routinely by many atmospheric data providers. By do-
ing it within the inversion, the deficiencies of the transport
model in reproducing small-scale circulation are taken into
account to some extent. The procedure can also be under-
stood as an approximate way to implement a non-Gaussian
probability density for the model–data mismatch: as resid-
uals larger than 2σ are very unlikely in the Gaussian dis-
tribution, an inversion assuming Gaussian model–data mis-
matches will respond strongly to “outliers” to reduce these
mismatches; in contrast, the “2σ screening” effectively as-
signs an infinitely large uncertainty to these data points. The
results mostly stay similar after this screening, but some
flux anomalies get removed. In most cases, these anomalies
were unrobust in that they were dampened much faster than
other anomalies when increasing the strength of the prior
constraint (parameter µ in Rödenbeck, 2005). For example,
many of the spikes in the CO2 record of station KEY and
their effect on the CO2 flux estimates for northern temperate
America are removed by the screening. We interpret these
spikes as the influence of local fossil fuel emissions, which
would be mistaken by the inversion as regional signals. This
interpretation is supported by the fact that more and more of
these spikes occur in the more recent decades. The introduc-
tion of the 2σ screening made it possible to re-add further
stations with pronounced spikes, such as station TAP.

A1.4 Further implementation details

Atmospheric tracer transport in the global CarboScope in-
versions is simulated by the TM3 model (Heimann and
Körner, 2003) (resolution ≈ 4◦× 5◦× 19 layers) driven by
meteorological fields from the NCEP reanalysis (Kalnay
et al., 1996). Since CarboScope v4.1, NCEP has been used
again (rather than ERA-Interim) as only NCEP is currently
available before 1980.

The cost function minimization uses the conjugate gradi-
ent algorithm enhanced by a re-orthonormalization after each
iteration to avoid the usual degradation of the convergence
rate. The re-orthonormalization requires storing the state vec-
tors and gradients of all iterations performed, which opens
the additional possibility of also recalculating the solution
for tighter prior constraints without the need to run the it-
erative minimization again. It also accumulates information
about the a posteriori covariance matrix, though the actual
calculation of matrix elements generally needs further dedi-
cated iterations.

A2 The standard inversion s85oc_v4.1s

In comparison to the basic v4.1 runs (Sect. A1), the particular
run s85oc_v4.1s involves three specifics or differences.

The station set s85v21 is used, comprising the 23 stations
marked with ∗ in Table 1.

The calculation is done over the shorter period 1980–2017
(indicated by the appended “s” in the version tag).

The entire ocean flux (including inter-annual variations) is
fixed to the CarboScope estimates oc_v1.5 (update of Rö-
denbeck et al., 2014) based on an interpolation of pCO2 data
from the SOCATv5 database (Bakker et al., 2016). Fixed
ocean fluxes are used here because atmospheric inversions
are known to have limited capability to correctly assign sig-
nals to land or ocean (Peylin et al., 2013). While this error
is relatively small for the land fluxes, it means a large rela-
tive error for the ocean fluxes because the ocean variability is
much smaller than the land variability. The pCO2 data offer a
much closer constraint on ocean CO2 fluxes in well-observed
regions (northern extratropics, tropical Pacific) and constrain
at least some features (seasonality, decadal trends) in most
ocean areas. (For the NEE–T inversion, fixed ocean fluxes
are particularly beneficial because they avoid the need for
time-dependent degrees of freedom.)
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