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Supplement

S  1. Ecological and Forestry Inventory of Catalonia (IEFC): description and methods  

The IEFC (Gracia et al., 2000 - 2004) covers the entire forested territory of Catalonia (31900 km 2), in the North-east Iberian

Peninsula. Catalonia is bound by the Mediterranean Sea to the East, the Pyrenees to the North and the continental Ebro

depression to the West. The region is hydroclimatically diverse, as a result of the wide altitudinal range (0-3000 m.a.s.l.) and

a strong continentality gradient. The dominant climate type is Mediterranean, gradually shifting towards Continental types

inland and towards mountainous climates associated to mountain ranges,  including an alpine belt in the Pyrenees.  Mean

annual temperature ranges from 18°C (on the southern coast) to 3°C (in the alpine belt) and annual rainfall varies from 400

mm to more than 1,500 mm (Climatic Digital Atlas of Catalonia, Ninyerola et al., 2000). 

Forested land covers 38% of the total land area of Catalonia (1.2 x 106 ha), and the 13 species selected in this study dominate

> 90% of the forested area. The IEFC sampled the whole forested area of Catalonia between 1988 and 1998, totalling 10638

plots of  10 m radius,  at  a  density of approximately 1 plot/km2 of  forest.  A detailed methodological  description of  the

sampling and measurements can be found in http://www.creaf.uab.es/iefc/pub/metodes/Index.htm (in Catalan). In all plots,

all trees > 5 cm in diameter at breast height were tagged, identified to species and measured for diamaeter at breast height

(dbh).  For one or  two individuals  from each  dbh class  (5 cm intervals)  of  the  dominant  tree  species,  tree  height  was

measured with a hypsometer. Maximum tree height was estimated as the highest value for a given species at a given plot.

Wood samples were taken either from cores or from large first-order branches, and sapwood depth was visually estimated.

Wood density (WD) was calculated as the ratio of dry weight to fresh wood volume. Fresh volume was established either by

Archimedes’ principle or measuring precisely the dimensions of the sample (for wood cores), and dry weight was obtained

by weighting samples to a precision of 0.001 g after oven-drying for 48 h at 75ºC. 
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In a random subsample of all plots (20%), one or two individuals from each dbh class of the dominant tree species were

selected to estimate branch size distribution and to measure foliar and wood traits. Leaves from all cohorts in exposed

branches were sampled proportionally to their abundance. Leaf mass per area was calculated as the ratio of dry weight to

fresh leaf area. One-sided, projected leaf area was measured either using a leaf area meter (LiCor 3100 AM; LiCor, Lincoln,

NE) for broadleaves or measuring precisely the length and width of needles. Leaves were then weighted to a precision of

0.001 g after oven-drying for 48 h at 75ºC. A subsample of the dried leaves was ground with a Cyclotec Foss Tecator 1093-

001 grinder (Foss Analytical, Hilleroed, Denmark) and sent for chemical analyses to the Scientific-Technical Service of the

University of Barcelona. Nitrogen content was measured with an elemental analyzser (C.E. Instruments, Wigan, UK). For

the dominant species in each plot, first-order branches were collected, and their branch diameter and supported leaf biomass

was measured. Allometries between branch diameter and leaf biomass were built by aggregating branch measurements for

each species at the county level (N=41 counties). Tree-level leaf biomass was obtained from individual trees’ branch size

distributions and branch-level BL:AS allometries, as described in Laforest-Lapointe et al., (2014).

Figure S1. Map of Catalonia with the plots in the IEFC incomplete trait dataset used in this study, categorised by the dominant
species.
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S  2. Description of the kNN algorithm and optimisations of settings  

The implementation of the kNN algorithm in the ‘VIM’ package (Templ  et al., 2013) uses the Gower distance (Gower,

1971). The choice of the distance metric, the covariates selected to compute such distance, the k value and the aggregation

method may impact the performance of the kNN method. A value of k = 1 yields imputations that preserve the dependence

structure  of  the variables  and increasing  k improves the accuracy  of predictions up to  an optimum, beyond which the

probability of finding poor matches increases (Eskelson  et al., 2009). The choice of an optimum  k also depends on the

number of observations, and we followed McRoberts (2012) to optimise the value of k that minimises NRMSE. We explored

the performance of the kNN method for k = 1, 2, 3, 5, 7, 10, 15 and 20 and observed that the lowest prediction error was

observed for k = 7 (Fig. S2), similar to results reported elsewhere (Troyanskaya et al., 2001; McRoberts et al., 2002; Penone

et al., 2014). Median aggregation of the k-neighbouring values performed better than mean aggregation (data not shown), as

also found by Penone et al. (2014) .

Figure S2. Dataset NRMSE and correlation matrix error for kNN imputations at different missingness levels (10% to 80%) using 
k=1, 2, 3, 5, 7, 10, 15, 20. 

4

40

45



S  3. The MICE algorithm:univariate imputation models and settings  

In a k-variate dataset, MICE first fills all missing values by a random draw from the observed values within each variable.

Then, for the first target variable  x1 (i.e. first variable to be imputed),  the observed values of  x1 and the corresponding

imputed values  of  the predictors  are  used to  fit  the individual  imputation model  (see below for  a  description of some

univariate imputation methods used in this study). Then, missing values of x1 are replaced by simulated draws obtained from

the posterior predictive distribution of x1, given the model and the predictors. Next, for the following incomplete variable, x2,

posterior predictive distributions are derived from the previously imputed values of x1, x3...xk. This process is repeated for all

variables  with missing values  and constitutes  one iteration  or  cycle  (Azur  et  al.,  2011).  A relatively small  number  of

iterations (10-20) is usually sufficient for the posterior distributions to stabilize, avoiding dependence on the imputation

order. The whole process is repeated m times to obtain m imputed datasets.

We tested three univariate imputation models within the mice R package. The first method, here labelled as PRD, is the

imputation of target variables as a function of predictors in the dataset using a linear model  (the ‘norm.predict’ method in

mice). In the second method,  predictive mean matching (PMM), imputations are obtained using values from the complete

cases, matching the actual missing datum with respect to some metric (van Buuren, 2012). PMM does not need an explicit

model for the distribution of the missing values, it produces realistic imputations because they are drawn from the observed

distribution and it does not impute outside the data range (van Buuren, 2012). PMM is also generally robust to non-normality

and preserves non-linear relationships amongst the variables, although its performance may decrease at high missingness

levels (Morris et al., 2014). The third method, is based on a random forest (RF) algorithm, a recursive partitioning technique

which sequentially splits a dataset into the most homogeneous subsamples and creates tree-like structures (Breiman, 2001).

Applications  of  RF in  data  imputation  have  shown that  they  are  well-suited  to  deal  with  mixed  data  types,  complex

interactions  and  non-linearities  within  the  datasets  (Stekhoven  & Bühlmann,  2012;  van  Buuren,  2012).  Here,  in  this

comparison  of  univariate  imputation models,  we used  the  implementation  of  the  random forest  algorithm in MICE,  a

described in Doove et al., (2014).

Apart from the choice of univariate models and predictors, already addressed in the main text of this paper, there are several

settings in the specification of the imputation model within MICE. These settings are: (i) choosing the form of the imputation

model  for  each  variable,  (ii)  deciding  how to impute  variables  that  are  functions  of  other  (incomplete)  variables,  (iii)

choosing the imputation order, (iv) setting up the starting imputations and the number of iterations and (v) choosing the

number of imputed datasets. 

(i) Form of the imputation model
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We tested three forms for the imputation model, predictive mean matching, simple linear predictions and random forests (see

S3). Despite the good results of random forest-based methods observed elsewhere (Stekhoven & Bühlmann, 2012; Penone et

al., 2014), they did not perform better than PMM (Fig. S3-S4). The reduction of stochasticity within MICE, implemented by

the PRD method did not result in improved imputations either (Fig. S3-S4).

(ii) Imputation of derived variables and data transformation

In our dataset  BL:AS is a derived variable,  calculated as the ratio of leaf biomass to sapwood area.  We approached the

imputation of  BL:AS using two different variants of MICE: ‘passive imputation’ (Mice_PAS) and ‘just another variable’

imputation  (Mice_JAV).  In  Mice_PAS,  leaf  biomass  and  sapwood  area  enter  the  multivariate  dataset,  imputations  are

performed and then BL:AS is calculated. This approach preserves the consistency between original and derived variables (van

Buuren, 2012). In contrast, in the Mice_JAV approach, BL:AS is calculated first and then imputed. Our results show that the

Mice_JAV approach is superior (Fig. S3-S4), as also observed in other studies (Seaman et al., 2012). In Mice_TRN we first

log-transformed the trait values prior to imputation, but this did not result in a better performance compared to Mice_JAV

(Fig. S3-S4).

(iii) Imputation order

Preliminary tests  of  the influence  of  the visiting order  in the MICE algorithm did not  show substantial  differences  on

imputation performance (data not shown). We therefore used the default setting of imputing from left to right positions in the

data frame (in our case, variables were in alphabetical order). 

(iv) Starting imputations and number of iterations

The starting imputations were a random draw within each variable and the number of iterations t was set to 20, higher than

the mice default value of 5. This increased number of iterations ensures stabilisation of the parameters of the imputation

model and minimises the effects of the imputation order (van Buuren & Groothuis-Oudshoorn, 2011; van Buuren, 2012). We

monitored  the  convergence  of  the  MICE algorithm by plotting  the  mean  and  variance  of  imputations  per  stream and

checking that the traces corresponding to the different  streams intermingled with each other (van Buuren & Groothuis-

Oudshoorn, 2011; van Buuren, 2012).

(v) Number of multiply imputed datasets. 

As the purpose of this study is to explore different imputation approaches and imputation is computationally demanding, we

set the number of imputed datasets to the default value of m = 5. This value is within the classic recommendation of m =

[3,10], although in a final application of MICE a value of  m set closer to the average percentage of missing data may be

desired (van Buuren, 2012). A larger value of  m = 50 was used to obtain the final, imputed  -trait maps (Fig. 8 in the

manuscript).
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Figure S3. Trait-specific imputation performance (NRMSE)  at increasing missingness levels (10% to 80%) using different MICE
settings (see text for details).  The following approaches used the predictive mean matching method (PMM) as the univariate
imputation model:  passive imputation of  derived variables  (mice_PAS),  derived variables  imputed as ‘just  another variable’
(mice_JAV), imputation using log-transformed variables (mice_TRN). mice_PRD differed from PMM in that mice_PRD used the
predicted trait from the sequential, multiple regression models in the MICE framework, without the stochasticity in regression
coefficients that is introduced in PMM. mice_RF uses a random-forest algorithm for univariate imputation instead of PMM (see
text). The original trait distributions in the IEFC complete data set (Observed) are also shown. Traits: leaf biomass to sapwood
area ratio, BL:AS (t m-2); nitrogen per unit mass, Nmass (%mass);  maximum tree height, Hmax  (m); leaf mass per area LMA (mg cm-

2); wood density, WD, (gm cm-3). 
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Figure S4. Dataset-specific imputation performance (dataset NRMSE and correlation matrix error)  at increasing missingness 
levels (10% to 80%) using different MICE settings (see text for details). The following approaches used the predictive mean 
matching method (PMM) as the univariate imputation model: passive imputation of derived variables (Mice_PAS), derived 
variables imputed as ‘just another variable’ (Mice_JAV), imputation using log-transformed variables (Mice_TRN). Mice_PRD 
differed from PMM in that Mice_PRD used the predicted trait from the sequential, multiple regression models in the MICE 
framework, without the stochasticity in regression coefficients that is introduced in PMM. Mice_RF uses a random-forest 
algorithm for univariate imputation instead of PMM (see text). 
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S4  . Mean imputations compared to MICE and, Ordinary kriging and kNN imputations using only trait information  

Figure S5. Data set -averaged NRMSE and Δcormat at increasing missingness levels (10% to 80%) for different imputation 
methods: overall trait mean (Mean), MICE, OrdKrig and kNN, both using only the trait matrix in the predictor set (mice) or in 
the distance calculation (kNN).
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Figure S6. Imputed trait distributions at increasing missingness levels (10% to 80%) for different imputation methods: overall 
trait mean (Mean), MICE, OrdKrig and kNN, both using only the trait matrix in the predictor set (mice) or in the distance 
calculation (kNN). The original trait distributions in the IEFC complete data set (Observed) is are also shown. The original trait 
distributions in the IEFC complete data set (Observed) are also shown. Traits: leaf biomass to sapwood area ratio, BL:AS (t m-2); 
nitrogen per unit mass, Nmass (%mass);  maximum tree height, Hmax  (m); leaf mass per area LMA (mg cm-2); wood density, WD, (gm
cm-3). 
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S5. MICE imputations using different levels of ecological information

Figure S7. Imputed trait distributions at increasing missingness levels (10% to 80%) for MICE imputations using different 
combinations of additional predictor sets: species identity (‘s’), climate (‘c’), forest structure (‘t’), spatial variables (‘p’), lithology 
(‘l’) and sampling month (‘m’). See Fig. 1 for an overall view of the experimental design and the Methods section for a detailed 
description of the variables included in each predictor set. The original trait distributions in the IEFC complete data set 
(Observed) are also shown. Traits: leaf biomass to sapwood area ratio, BL:AS (t m-2); nitrogen per unit mass, Nmass (%mass);  
maximum tree height, Hmax  (m); leaf mass per area LMA (mg cm-2); wood density, WD, (gm cm-3). 
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S6  . Species mean imputations compared to MICE , Kriging and kNN imputations using optimum levels of ecological  
information

Figure S8. Variation in trait-specific KGE with increasing missingness levels (10% to 80%) and for different imputation methods: 
species mean (Spmean), miceMICE and kNN with species as predictor (mice_s and kNN_s, respectively) and , MICE and kNN 
with species, climate, forest structure and spatial variables as predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and 
RegKrig. Lines depict the LME fits. Traits: leaf biomass to sapwood area ratio, BL:AS (t m-2); nitrogen per unit mass, Nmass 

(%mass);  maximum tree height, Hmax  (m); leaf mass per area LMA (mg cm-2); wood density, WD, (gm cm-3). 
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Figure S9. Imputed trait distributions for different imputation methods at increasing missingness levels (10% to 80%): species 
mean (Spmean), MICE and kNN with species as predictor (mice_s and kNN_s, respectively) and , MICE and kNN with species, 
climate, forest structure and spatial structure as predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and RegKrig. The 
original trait distributions in the IEFC complete dataset (observed) are also shown. Traits: leaf biomass to sapwood area ratio, 
BL:AS (t m-2); nitrogen per unit mass, Nmass (%mass);  maximum tree height, Hmax  (m); leaf mass per area LMA (mg cm-2); wood 
density, WD, (gm cm-3). 
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Figure S10. Percentage of non-significant two-sample Kolmogorov-Smirnov tests at increasing missingness levels (10% to 80%): 
species mean (Spmean), MICE and kNN with species as predictor (mice_s and kNN_s, respectively) and , MICE and kNN with 
species, climate, forest structure and spatial structure as predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and 
RegKrig. Traits: leaf biomass to sapwood area ratio, BL:AS (t m-2); nitrogen per unit mass, Nmass (%mass);  maximum tree height, 
Hmax  (m); leaf mass per area LMA (mg cm-2); wood density, WD, (gm cm-3). 
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Figure S11. Linear regressions between log-transformed Nmass (nitrogen per unit mass, %mass) and LMA (leaf mass per area 

LMA, mg cm-2) in the IEFC complete trait dataset (blue), and in incomplete IEFC trait datasets at different missingness levels 
(from 10% to 80%), either imputed (red) or non-imputed (black). Imputation methods are: species mean (Spmean), MICE and 
kNN with species as predictor (mice_s and kNN_s, respectively), MICE and kNN with species, climate, forest structure and spatial 
structure as predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and RegKrig.
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Figure S12. Linear regressions between log-transformed Hmax (maximum tree height, m) and log-transformed WD (wood density, 
gm cm-3) in the IEFC complete trait dataset (blue), and in incomplete IEFC trait datasets at different missingness levels (from 10%
to 80%), either imputed (red) or non-imputed (black). 
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Table S1.  Tukey pairwise comparisons of the LME coefficients  relating Δcormat to increasing missingness levels for selected
imputation methods. Letters represent significant differences (P < 0.05) and imputation methods are listed in increasing order of
the model coefficient.

Coefficient SE df Lower CL Upper CL

mice_ctsp 1.27E-02 6.27E-04 148 1.15E-02 1.39E-02 a

kNN_ctsp 1.46E-02 6.27E-04 148 1.33E-02 1.58E-02 ab

mice_s 1.61E-02 6.27E-04 148 1.49E-02 1.73E-02 bc

RegKrig 1.68E-02 6.27E-04 148 1.55E-02 1.80E-02 bcd

kNN_s 1.71E-02 6.27E-04 148 1.58E-02 1.83E-02 cd

OrdKrig 1.84E-02 6.27E-04 148 1.71E-02 1.96E-02 d

Spmean 2.20E-02 6.27E-04 148 2.08E-02 2.33E-02 e
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S7  . Imputing traits for the main forest species in Catalonia  

Figure S13. Maps with the distribution of functional traits across the selected plots in the IEFC. The first row shows the 
incomplete dataset, with missing values in grey. The second row shows species mean imputations (‘Spmean’), the third row shows 
the ‘mice_ctsp’ imputations (MICE imputation using species identity, climate, forest structure and topography as predictors) and 
the fourth row shows the universal kriging imputations (RegKrig). Traits: leaf biomass to sapwood area ratio, BL:AS (t m-2); 
nitrogen per unit mass, Nmass (%mass);  maximum tree height, Hmax  (m); leaf mass per area LMA (mg cm-2); wood density, WD, (gm
cm-3). 
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