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Abstract. The ubiquity of missing data in plant trait
databases may hinder trait-based analyses of ecological pat-
terns and processes. Spatially explicit datasets with informa-
tion on intraspecific trait variability are rare but offer great
promise in improving our understanding of functional bio-
geography. At the same time, they offer specific challenges
in terms of data imputation. Here we compare statistical im-
putation approaches, using varying levels of environmental
information, for five plant traits (leaf biomass to sapwood
area ratio, leaf nitrogen content, maximum tree height, leaf
mass per area and wood density) in a spatially explicit plant
trait dataset of temperate and Mediterranean tree species
(Ecological and Forest Inventory of Catalonia, IEFC, dataset
for Catalonia, north-east Iberian Peninsula, 31 900 km2). We
simulated gaps at different missingness levels (10–80 %) in
a complete trait matrix, and we used overall trait means,
species means, k nearest neighbours (kNN), ordinary and re-
gression kriging, and multivariate imputation using chained
equations (MICE) to impute missing trait values. We as-
sessed these methods in terms of their accuracy and of their
ability to preserve trait distributions, multi-trait correlation
structure and bivariate trait relationships. The relatively good
performance of mean and species mean imputations in terms
of accuracy masked a poor representation of trait distribu-
tions and multivariate trait structure. Species identity im-
proved MICE imputations for all traits, whereas forest struc-
ture and topography improved imputations for some traits.

No method performed best consistently for the five stud-
ied traits, but, considering all traits and performance met-
rics, MICE informed by relevant ecological variables gave
the best results. However, at higher missingness (> 30 %),
species mean imputations and regression kriging tended to
outperform MICE for some traits. MICE informed by rele-
vant ecological variables allowed us to fill the gaps in the
IEFC incomplete dataset (5495 plots) and quantify impu-
tation uncertainty. Resulting spatial patterns of the studied
traits in Catalan forests were broadly similar when using
species means, regression kriging or the best-performing
MICE application, but some important discrepancies were
observed at the local level. Our results highlight the need to
assess imputation quality beyond just imputation accuracy
and show that including environmental information in sta-
tistical imputation approaches yields more plausible imputa-
tions in spatially explicit plant trait datasets.

1 Introduction

Trait-based ecology has emerged in recent years as one of
the most active ecological sub-disciplines, specially in plant
ecology (Westoby and Wright, 2006; Violle et al., 2007).
The move from a taxonomic perspective of biodiversity to-
wards a focus on continuous axes of functional variation
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holds promise for greater generalisation, synthesis and pre-
dictive ability in ecology (Funk et al., 2016; Shipley et al.,
2016). As a result, plant ecologists have increasingly em-
braced trait-based approaches because they may be specially
suited to study plant strategies (Reich, 2014), community as-
sembly and dynamics (McGill et al., 2006), or ecosystem
functioning, particularly in the context of global environmen-
tal change (Reichstein et al., 2014). But trait-based ecology is
also unquestionably thriving because of the increasing avail-
ability and reliability of plant trait data (Kattge et al., 2011).

Plant trait databases compiled from multiple individual
contributions lack a common design and inevitably result
in sparse data matrices (e.g. Jetz et al., 2016). Complete-
case analyses (i.e. data analyses using only sampling units
with complete data availability) entail a reduced sampling
size, which complicates community-level studies (Pakeman,
2014) and limits the spatial coverage of trait maps usable in
trait-based models of ecosystem function. Data deletion may
also bias parameter estimates (e.g. in trait relationships) if the
data are not missing completely at random (MCAR; Little
and Rubin, 2002; Nakagawa and Freckleton, 2008). Impu-
tation (i.e. gap-filling) of missing data with plausible values
has the potential to overcome some of these limitations, but
has only relatively recently started to be widely advocated
in ecology (Nakagawa and Freckleton, 2008). It should be
noted, however, that imputation may not be recommended in
certain studies (Blonder, 2016).

Single imputation methods replace a missing datum by
one value and proceed with the analysis as if the imputed
data had been observed (Nakagawa and Freckleton, 2008).
Within these approaches, species mean or median imputa-
tion are probably the most widely used methods in ecol-
ogy, but they ignore the variance of the imputed variables.
Model-based imputation methods use other variables in the
dataset to impute missing data, but they substantially alter
the univariate trait distributions and the covariance structure
of the dataset (Gelman and Hill, 2007). Approaches such
as k nearest neighbour (kNN) or machine-learning methods
(Stekhoven and Bühlmann, 2012) may be more appropri-
ate to impute multivariate datasets, preserving their covari-
ance structure (Eskelson et al., 2009; Penone et al., 2014).
In a multiple imputation framework, m imputed datasets are
obtained through simulation and may be jointly analysed to
provide parameter estimates that take into account the uncer-
tainty introduced by the imputations themselves (e.g. Fisher
et al., 2003). Some multiple imputation techniques, such
as multivariate imputation using chained equations (MICE)
may be specially well suited to preserve the original struc-
ture and distribution of multivariate datasets (van Buuren and
Groothuis-Oudshoorn, 2011; van Buuren, 2012).

While forest inventories have adopted statistical imputa-
tion methods for some time, as for example the kNN meth-
ods (Eskelson et al., 2009, and references therein), imputa-
tion methods have only recently started to be used in trait-
based ecology (Baraloto et al., 2010; Pyšek et al., 2015).

Complex imputation methods such as kNN, MICE or random
forests generally outperform overall mean or species mean
imputations (Penone et al., 2014; Taugourdeau et al., 2014).
In earlier applications of these methods, it has been com-
mon to assume that interspecific trait variability was domi-
nant, compared to intraspecific variability. The strong phy-
logenetic signal may then be sufficient to impute species-
averaged trait values using taxonomic information (Swenson,
2014). However, intraspecific variability in plant traits may
be substantial (Siefert et al., 2015; Vilà-Cabrera et al., 2015)
and imputation methods that use environmental information
may be more appropriate when assessing trait relationships
and trait–environment covariance in a spatially explicit con-
text. Biotic or abiotic variables other than the trait matrix of
interest can be included in imputation algorithms as auxiliary
variables to reduce imputation bias (Azur et al., 2011; Rez-
van et al., 2015). Geostatistical methods of spatial interpola-
tion can also be used with (e.g. regression kriging) or without
(e.g. ordinary kriging) auxiliary variables (e.g. Hengl et al.,
2007).

Additional challenges occur in the imputation of traits in
large databases. The expected declining performance of im-
putation methods with increasing missingness levels may be
trait and dataset dependent (Penone et al., 2014; Taugourdeau
et al., 2014). Moreover, the impact of imputations on altering
bivariate trait relationships has only been assessed for single
relationships (Penone et al., 2014; Schrodt et al., 2015) and
not for the multiple relevant relationships within a plant trait
dataset. Likewise, there are few studies quantifying how dif-
ferent imputation methods alter the multivariate covariance
structure of plant trait datasets (Schrodt et al., 2015).

Our overarching aim here is to assess the performance of
different imputation methods to fill simulated gaps at differ-
ent missingness levels in a spatially explicit plant trait dataset
(IEFC, Ecological and Forest Inventory of Catalonia, north-
east Iberian Peninsula). We imputed these missing data using
single imputation (kNN), multiple imputation (MICE) and
geostatistical approaches (ordinary and regression kriging,
OrdKrig and RegKrig, respectively) and compared the impu-
tations with baseline scenarios of overall mean and species
mean imputation. Imputation performance was assessed in
terms of accuracy, univariate trait distributions, multivariate
trait structure and deviations in trait relationships. Our spe-
cific objectives are (i) to test which imputation method (over-
all mean imputation, kNN, MICE, OrdKrig) performed best
when relying only on plant trait data; (ii) to assess the im-
pact of including additional predictors (i.e. environmental in-
formation such as species identity, climate, forest structure,
topography, lithology and sampling date) in MICE and kNN
imputations; (iii) to compare the performance of kNN, MICE
and RegKrig using optimum levels of environmental infor-
mation (i.e. the best set of predictors in objective ii); and,
finally, (iv) to apply the best-performing method to fill the
gaps in a major subset of the IEFC database to obtain contin-
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uous maps of plant traits for the main forest species across
a relatively large Mediterranean region.

2 Methods

2.1 Study area

The study area is the entire territory of Catalonia
(31 900 km2), in the north-east Iberian peninsula. Catalonia
has 38 % forest cover (1.2× 106 ha) and forests are largely
dominated by species belonging to the Pinaceae and Fa-
gaceae families. We selected 13 tree species, including six
Pinus spp., five deciduous and evergreen Quercus spp., Abies
alba and Fagus sylvatica, which altogether cover> 90 % of
the forested area in Catalonia (see Sect. S1, Fig. S1 in the
Supplement).

2.2 Data

Plant trait and forest data were retrieved from the Ecolog-
ical and Forest Inventory of Catalonia (IEFC), carried out
between 1988 and 1998 (Gracia et al., 2000). A complete de-
scription of the sampling scheme and methods used to mea-
sure plant traits in the IEFC can be found in Sect. S1. The
subset of the IEFC limited to the 13 study species, hereby
called the IEFC incomplete dataset, included 5495 plots. For-
est structure, lithology and sampling information for each
plot were retrieved from the IEFC database, whereas climate
data were obtained from the Climatic Digital Atlas of Cat-
alonia, with a spatial resolution of 180 m (Ninyerola et al.,
2000).

We selected five plant traits (leaf mass per area,
LMA, mgcm−2; leaf nitrogen per unit mass, Nmass, %mass;
maximum tree height, Hmax, m; wood density,
WD, gmcm−3; leaf biomass to sapwood area ratio,
BL :AS, tm−2) that are used to describe major plant
functional strategies (Westoby et al., 2002; Wright et al.,
2004; Chave et al., 2009; Laforest-Lapointe et al., 2014).
In Catalan forests, four of these traits (LMA, Nmass, Hmax
WD) mostly vary between families (Pinaceae and Fagaceae)
and within species (Vilà-Cabrera et al., 2015). The missing
data patterns in this trait data matrix shows a much higher
percentage of missing data (hereafter, missingness) for foliar
traits, corresponding to a less intense sampling of these
traits (Fig. 1). These intentional missing data (van Buuren,
2012) would correspond to a planned missing data design,
where missingness at random (MAR) is deliberately applied
(Nagakawa, 2015).

2.3 Experimental design

All data manipulations, imputations and statistical analyses
were performed with the R programming language (R Core
Team, 2015). We created a subset of the IEFC incomplete
dataset only including those plots (N = 630) where all five

traits had been measured on the dominant species (IEFC
complete dataset). In this dataset, we randomly deleted mea-
sured values at different probability levels (10, 20, 30, 50
and 80 %) and independently for each trait; thus, the miss-
ing data artificially introduced are missing completely at ran-
dom. This data deletion was replicated to yield 30 simu-
lated datasets for each missingness level (Fig. 1). Hence, the
different imputation methods were assessed on 150 datasets
(5 missingness levels× 30 replicates).

We ran different single and multiple imputation algorithms
(see Sect. 2.4) to fill the gaps in the trait data of the simu-
lated incomplete datasets. Single imputation methods yield
m= 1 imputed dataset per simulated dataset and here we set
the multiple imputation methods to yield m= 5 datasets per
simulated dataset to incorporate imputation uncertainty. Prior
to the calculation of different performance metrics for each
dataset, trait values in multiply-imputed datasets were aver-
aged (Penone et al., 2014). Performance metrics were as-
sessed using the measured values of each trait in the IEFC
complete dataset (see Sect. 2.6). Note that each imputed
dataset contains both measured and gap-filled data, but the
expression imputed values refers only to gap-filled data.

2.4 Imputation methods

We compared imputation methods with different degrees of
complexity. We used two simple approaches to provide base-
line imputations; mean imputation (“Mean”) filled missing
data using the overall mean value for each trait and species
mean imputation (Spmean) replaced missing values with trait
means computed for each species. Because of the spatial
nature of the dataset, we also tested two geostatistical ap-
proaches – ordinary kriging (OrdKrig) and regression krig-
ing (RegKrig). Lastly, we also used two methods designed to
handle multivariate datasets: k nearest neighbour imputation
and MICE.

Ordinary kriging calculates a weighted average of nearby
observations to predict values of a target variable in an un-
measured location, with weights that minimise prediction
error and depend on spatial structure of the target variable
via a variogram model (Hengl et al., 2007). Regression krig-
ing combines a deterministic model of the target variable as
a function of auxiliary variables with kriging applied to fit the
residuals (Hengl et al., 2007). We included climate and forest
structure variables in the model used for regression kriging
imputations (see Sect. 2.5), but not species identity, because
there were not enough data to generate the experimental var-
iograms for some of the less common species for all the sim-
ulations. We performed all kriging imputations with the “au-
toKrige” function in the automap R package. This function
tests different variogram models and applies the best-fit var-
iogram model for kriging (Hiemstra et al., 2009).

The kNN method calculates a multivariate distance using
only non-missing variables, selects the k nearest plots with
measured values for the target missing trait and aggregates
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Figure 1. Description of the experimental design. A subset was obtained from the incomplete IEFC trait dataset containing only plots where
all functional traits had been measured (complete dataset) to perform the gap simulations and the imputations. Imputation methods are
described in terms of the input information used. The selected methods for the final application of imputation methods to obtain a gap-filled
IEFC trait dataset are also shown.

these k neighbouring values to replace the missing value
(R package VIM; Templ et al., 2013). We selected k= 7 and
median aggregation after some preliminary tests (Sect. S2,
Fig. S2 in the Supplement). We also analysed how the inclu-
sion of auxiliary variables in the distance calculation affected
imputation performance (see Sect. 2.5).

The MICE algorithm (van Buuren and Groothuis-
Oudshoorn, 2011; van Buuren, 2012) sequentially and iter-
atively imputes incomplete data, variable by variable, using
individual imputation models conditionally specified by the
user. One cycle through all the imputed variables is one iter-
ation, and MICE performs t iterations in m parallel streams,
generating m multiple imputations (Sect. S3). We set t = 20
to ensure convergence and to minimise the effects of imputa-
tion order (van Buuren, 2012). Stochasticity is introduced in
the imputation process because the parameters of the univari-
ate imputation models are drawn from their posterior distri-

butions, obtained using a Gibbs sampler (van Buuren, 2012).
Assessments of imputation methods in the ecological liter-
ature have not tested the impact of the choice of univariate
imputation models within MICE (Penone et al., 2014; Tau-
gourdeau et al., 2014). Here we showed that predictive mean
matching (PMM), the default algorithm in the mice package,
performed well compared to alternative methods (Sect. S3,
Figs. S3 and S4). Therefore, we used MICE with PMM as
the univariate imputation model, also because it is robust
to non-normality and preserves non-linear relationships be-
tween variables (Morris et al., 2014). Several parameters
must be tuned to specify the imputation models in the R im-
plementation of MICE (mice package) to yield reliable im-
putations (van Buuren and Groothuis-Oudshoorn, 2011). The
specific settings used in this study are assessed in Sect. S3
(Figs. S3 and S4). Please note that we will use the uppercase
acronym “MICE” to refer to the technique in general and the
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lowercase acronym “mice” to refer to a particular application
in this study.

2.5 Comparative assessment of imputation methods

We conducted three methodological comparisons of imputa-
tion performance. A first exercise compared Mean, OrdKrig,
kNN and mice imputations. “Mean” imputations used only
the information on the target trait, OrdKrig additionally used
the spatial coordinates, and mice and kNN included only the
information in the trait matrix.

A second exercise assessed in detail the impact on trait im-
putation of including additional environmental information
as auxiliary variables in MICE and kNN. We focused our de-
tailed analysis on MICE only but we also made a simplified
comparison between kNN and MICE (see next paragraph).
The auxiliary variables we considered were species identity,
a set of climatic variables (mean annual temperature, annual
thermal amplitude, both in ◦C), a set of forest structure vari-
ables (total aboveground biomass [Tha−1] and stem density
[stemsha−1]), a set of topographical variables (county, ele-
vation [ma.s.l.], slope [ ◦] and aspect), lithology (calcareous,
non-calcareous or undetermined) and sampling month. These
predictors were complete and they did not need to be imputed
themselves. The selection of the specific variables describing
climate and forest structure was based on a recent analysis of
trait variation in the same IEFC dataset (Vilà-Cabrera et al.,
2015). We further added topographical variables, lithology
and sampling month given that they may influence some trait
values (Niinemets, 2015; Simpson et al., 2016). Species iden-
tity (s), climate (c) and forest structure (t) were introduced
in a factorial design to identify those combinations of vari-
ables leading to improved imputations. Because we expected
them to play a secondary role in explaining trait variability,
topography (p), lithology (l) and sampling month (m) were
sequentially added to MICE and kNN imputations using
species, climate and forest structure. Topography included
spatial structure through the “county” variable; preliminary
tests using coordinates instead of county did not show better
results. Thus, mice_ctsplm was the MICE application with
the highest level of environmental information (Fig. 1).

The third exercise compared species mean imputations
(Spmean) with MICE and kNN using two different levels
of auxiliary variables: (i) only species identity (mice_s and
kNN_s) and (ii) the level of auxiliary variables which per-
formed best overall in the second exercise. In this same ex-
ercise, we also compared the previous approaches with Or-
dKrig and regression kriging (RegKrig) imputations. This
third exercise thus compares a baseline scenario of Spmean
with imputation approaches informed either by species iden-
tity only or by an optimum level of environmental informa-
tion.

2.6 Statistical evaluation of the imputations

Imputation performance was evaluated by comparing the im-
puted datasets with the complete, original dataset. A first
set of metrics, normalised root mean square error (NRMSE)
and Kling–Gupta efficiency (KGE), was calculated only for
those values that had been randomly deleted and subse-
quently gap-filled. We tested whether the distribution of im-
puted and original trait values differed using a two-sample
Kolmogorov–Smirnov test, which tests the null hypothesis
that two samples are identically distributed.

For each simulated dataset and trait, we calculated the nor-
malised root mean square error as a measure of accuracy:

NRMSE =

√√√√mean
[(
yimp− yobs

)2]
var (yobs)

, (1)

where yimp and yobs represent the vectors of imputed and
observed values for a given trait, respectively. Values of
NRMSE approaching zero denote a better performance of the
imputation method. We also calculated a dataset-averaged
NRMSE by averaging the values of NRMSE for all the traits.

We further assessed imputation performance for each trait
by using KGE, a goodness-of-fit measure originally devel-
oped for hydrological models, as implemented in the R pack-
age hydroGOF (Zambrano-Bigiarini, 2014):

KGE = 1−
√
(r − 1)2+ (vr − 1)2+ (β − 1)2, (2)

where r is the Pearson correlation coefficient between ob-
served and imputed values, vr is the ratio of the standard
deviations between imputed and observed values, and β is
the ratio of imputed and observed means. The KGE range
is [−∞,1], with higher values indicating better imputation
performance. KGE jointly assesses correlation, bias and dif-
ference in variability between imputed and observed values,
and it is therefore a powerful, synthetic indicator of imputa-
tion quality in spatially explicit datasets.

A second set of metrics compared the whole complete trait
dataset Yobs with the whole imputed dataset Yimp (i.e. includ-
ing observed and gap-filled trait values). The deviations from
the original multi-trait correlation structure of the trait dataset
were quantified by comparing the correlation matrices of the
original and imputed datasets using the following index:

1 cormat =
∑
|L[cor (Yobs)] −L[cor (Yimp)]|, (3)

where L[cor (Yobs)] denotes the lower triangular part
of the correlation matrix of the observed dataset and
L[cor (Yimp)] denotes the lower triangular part of the correla-
tion matrix of the imputed dataset. 1 cormat is indicative of
the aggregated absolute difference between correlation ma-
trices. Note that some traits were log transformed before the
calculation of the corresponding correlation matrix, follow-
ing Vilà-Cabrera et al. (2015).
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Figure 2. Trait-specific NRMSE at increasing missingness levels (10–80 %) for different imputation methods: overall trait mean (Mean), mice
(using only the trait matrix in the predictor set), kNN (using only the trait matrix for the distance calculation) and ordinary kriging (OrdKrig).
Traits: leaf biomass to sapwood area ratio, BL :AS (tm−2); leaf nitrogen per unit mass, Nmass (%mass); maximum tree height, Hmax (m);
leaf mass per area, LMA (mgcm−2); wood density, WD (gmcm−3). Letters denote results of multiple comparisons, in alphabetical order
from highest to lowest performance.

We also tested the impact of the imputation algorithms on
selected bivariate trait relationships – Hmax–WD and Nmass–
LMA (log transformed when necessary) – as the correlation
coefficients (r) of these relationships were> 0.3 in absolute
value and were highly significant in the complete dataset. We
quantified the relative difference between the complete and
the imputed datasets by calculating

%1r = 100 · |robs− rimp|
/
|robs| . (4)

Throughout the paper, we show violin plots representing
the median and the distribution of each performance met-
ric as a function of missingness levels, but we only graph-
ically display the 10, 30, 50 and 80 % levels, for ease of
visualisation. We modelled imputation metrics in a linear
mixed-effects model (LME) as a function of the interaction
between imputation method and missingness, with dataset
replicate as the random effect. The LME model was fitted
using the nlme package in R (Pinheiro et al., 2018) and pair-
wise comparisons of model coefficients were performed us-
ing the lsmeans and lstrends functions in the lsmeans pack-
age (Lenth, 2016).

2.7 Imputing traits for the main forest species
in Catalonia

Finally, we applied three imputation methods to gap-fill
and map the five traits across all the plots in the IEFC in-
complete dataset. We chose Spmean as the most widely
used imputation method in trait-based studies, RegKrig as
a reference geostatistical approach including auxiliary vari-
ables and mice_ctsp as the best method overall, consider-
ing all traits and performance metrics (see Sect. 3). We ran
mice_ctsp setting m= 50 (i.e. 50 imputations per missing
value), a value closer to the missingness rate, as recom-
mended for final MICE applications (van Buuren, 2012).

3 Results and discussion

3.1 Mean imputations compared to MICE and kNN
imputations using only trait information

In general, mice and kNN imputations resulted in more accu-
rate imputations in terms of NRMSE than Mean at low miss-
ingness rates (10 %). However, at moderate and high miss-
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Figure 3. Errors in the correlation coefficient for two selected trait relationships at increasing missingness levels (10–80 %) and for different
imputation methods: overall trait mean (Mean), mice (using only the trait matrix in the predictor set), kNN (using only the trait matrix for
the distance calculation) and ordinary kriging (OrdKrig). Letters denote results of multiple comparisons, in alphabetical order from highest
to lowest performance. Traits involved in the relationships are leaf nitrogen per unit mass, Nmass (%mass); maximum tree height, Hmax (m);
leaf mass per area, LMA (mgcm−2); wood density, WD (gmcm−3).

ingness both mice and kNN were comparable to or outper-
formed by Mean, and specially by OrdKrig (Figs. 2, S5). Or-
dKrig was the best-performing method, in terms of NRMSE,
at missingness ≥ 50 % (P < 0.05), although for three traits
its performance was indistinguishable from that of Mean
imputations (Nmass, Hmax, LMA; P > 0.05). Even if Mean
imputations imply the rather naive assumption that species
identity may be unknown in a given dataset, it is nonethe-
less useful to compare Mean imputations against mice and
kNN, which use the full trait matrix for prediction. In this
case, trait covariation did not improve imputations at high
missingness; recent assessments also report that the per-
formance of MICE and kNN notably declines when miss-
ingness is≥ 30 % (Penone et al., 2014; Taugourdeau et al.,
2014). Therefore, our results for OrdKrig, compared to those
for mice and kNN, show that spatial structure, rather than
trait covariation, may provide more accurate trait imputations
when gaps are frequent (Fig. 2, Figs. S5 and S6).

As expected (Gelman and Hill, 2007), Mean imputation
severely altered trait distributions (Fig. S6) and introduced
larger errors in selected trait correlations (Fig. 3). Mean im-
putations also tended to cause larger deviations in the cor-

relation matrix (Fig. S5). kNN showed the lowest 1 cormat
below 50 % missingness (P > 0.05) but its performance de-
clined at high missingness (Fig. S5). In contrast, mice closely
tracked observed trait distributions (Fig. S6), introduced the
least error in trait correlations under high missingness levels
(Fig. 3; P < 0.05) and yielded low1 cormat at extreme miss-
ingness levels (Fig. S5). Recent results also show that kNN
tends to introduce larger bias in bivariate trait relationships
compared to MICE (Penone et al., 2014). OrdKrig impu-
tations altered distributions and trait correlations more than
mice (Fig. 3, Fig. S6), but they performed similarly in terms
of 1 cormat at all missingness levels (Fig. S5).

3.2 MICE imputations using different levels of
environmental information

Introducing auxiliary variables as predictors improved MICE
performance substantially but these improvements were de-
pendent on the specific predictor set and trait (Fig. 4). Species
identity increased KGE for all traits (Fig. 4) and it was the
major predictor for Nmass, LMA and WD, as all MICE appli-
cations with species identity performed significantly better
than those not including it (Fig. 4; P < 0.05). Forest struc-
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Figure 4. Trait-specific KGE at increasing missingness levels (10–80 %) and for different MICE imputations using different combinations
of additional predictor sets: species identity (s), climate (c), forest structure (t), spatial structure (p), lithology (l) and sampling month (m).
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ture notably improved imputations for Hmax and for BL :AS
particularly at missingness≥ 50 % (P < 0.05). Climate only
produced significant increases in KGE (i.e. compare mice
with mice_c in Fig. 4) for Hmax and WD (P < 0.05). Our
results are in line with the distinct role of phylogeny and en-
vironmental variables as drivers of trait variability recently
observed for the same tree species using the IEFC (Laforest-
Lapointe et al., 2014; Vilà-Cabrera et al., 2015). One of these
studies shows that, after controlling for family (Pinaceae and
Fagaceae), environmental variables only explained a substan-
tial fraction of the variability for Hmax; they explained very
little variability for LMA and WD and played no role in ex-
plaining Nmass (Vilà-Cabrera et al., 2015).

Including topography in MICE imputations only substan-
tially improved BL :AS imputations (compare mice_cts with
mice_ctsp, P < 0.05), probably because the leaf area used in
BL :AS calculations are obtained from county-level allome-
tries, and county is one of the variables included in the topog-
raphy predictor set (see Sects. 2 and S1). Nevertheless, intro-
ducing sampling month in the predictor sets did not appre-
ciably improve MICE imputations in terms of KGE (Fig. 4),
despite the fact that phenological variation has been reported

for some foliar traits (Niinemets, 2015; but see Fajardo and
Siefert, 2016). Lithology did not appreciably improve MICE
imputations, in contrast to the reported influence of soil pH
on some foliar traits (Maire et al., 2015; Simpson et al.,
2016).

At high missingness (≥ 50 %), mice_ctsp (including cli-
mate, forest structure, species and topography) was al-
ways within the best-performing methods (P < 0.05), ex-
cept for LMA and WD at 80 % missingness, according to
KGE results (Fig. 4). In terms of dataset-averaged NRMSE,
1cormat (data not shown) and preservation of trait distribu-
tions (Fig. S7), the inclusion of topography only produced
a significant improvement for dataset NRMSE at 50 % miss-
ingness (P < 0.05).

Including auxiliary variables as predictors also decreased
%1r for selected trait relationships (Fig. 5). The best-
performing MICE applications (lower %1r) always in-
cluded species identity and forest structure; including
other auxiliary variables did not lower %1r significantly
(P > 0.05).

Our results collectively suggest that, apart from species
identity, different types of environmental information, par-
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Figure 5. Errors in the correlation coefficient for two selected trait relationships at increasing missingness levels (10–80 %) and for different
MICE imputations using different combinations of additional predictor sets: species identity (s), climate (c), forest structure (t), topogra-
phy (p), lithology (l) and sampling month (m). See Fig. 1 for an overall view of the experimental design and the methods section for a detailed
description of the variables employed in each predictor set. Note that the y axis is in the logarithmic scale. Traits involved in the relationships
are leaf nitrogen per unit mass, Nmass (%mass); maximum tree height, Hmax (m); leaf mass per area, LMA (mgcm−2); wood density, WD
(gm cm−3).

ticularly forest structure and topography, may improve sta-
tistical imputation schemes. In contrast, the role of climate,
lithology and sampling month in improving imputations was
comparatively minor. However, we selected mice_ctsp as the
method that performed best for all traits, because adding
climate did not deteriorate imputation performance and not
including topography would worsen BL :AS imputations.
A negligible influence of climate and soil data on trait im-
putation in the TRY database was also recently reported
(Schrodt et al., 2015). It is unclear, however, to what extent
these results simply reflect the relatively poor quality of the
climate and soil data generally available at regional scales.

3.3 Comparing imputation methods using optimum
levels of environmental information

Adding auxiliary variables to calculate the distance ma-
trix also improved kNN imputations. Values of KGE for
kNN_ctsp were much higher than those observed for kNN
imputations (data not shown), which only included the trait
data in the distance matrix. This improvement was largely
driven by the inclusion of species identity; only for BL :AS

and Hmax did kNN_ctsp perform significantly better than
kNN_s (Fig. 6; P < 0.05). Likewise, adding climate and for-
est structure as auxiliary variables improved RegKrig perfor-
mance compared to OrdKrig (Fig. 6, P < 0.05), except for
Nmass. For both kNN and kriging methods, WD and Hmax
were the traits for which these improvements were largest.

In terms of KGE, mice_ctsp was the best-performing
method at 50 % missingness for all traits, together with
Spmean for Nmass and LMA and with RegKrig for Hmax
(P > 0.05 for comparisons between mice_ctsp, Spmean and
RegKrig for these traits). However, at 80 % missingness,
mice_ctsp only ranked first for BL :AS, whereas Spmean
showed the highest KGE for Nmass, LMA and WD and
RegKrig performed best for Hmax (Fig. 6). These results are
consistent with the prominent role of taxonomic identity in
explaining variability in foliar traits and WD and with the
higher predictive ability of environmental and spatial infor-
mation in explaining Hmax (Vilà-Cabrera et al., 2015). The
LME model showed that the rate of increase in KGE with
increasing missingness was lowest for ‘Spmean” in four out
of five traits (Table 1). Compared to Spmean and RegKrig,
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Table 1. Tukey pairwise comparisons of the LME model coefficients (and 95 % lower and upper confidence limits) relating trait-specific
KGE (higher values of KGE imply higher performance) to increasing missingness levels for different imputation methods: species mean
(Spmean); mice and kNN with species as predictor (mice_s and kNN_s, respectively); mice and kNN with species, climate, forest structure
and spatial variables as predictors (mice_ctsp and kNN_ctsp, respectively); ordinary kriging (OrdKrig); and regression kriging (RegKrig).
Traits: leaf biomass to sapwood area ratio, BL :AS (tm−2); leaf nitrogen per unit mass, Nmass (%mass); maximum tree height, Hmax (m);
leaf mass per area LMA (mgcm−2); wood density, WD (gmcm−3). Different letters, in alphabetical order following the increasing order of
the model coefficient, denote significant differences (P < 0.05) in the results of multiple comparisons.

Coefficient SE df Lower CL Upper CL

BL :AS
OrdKrig 5.27× 10−4 3.93× 10−4 148 2.50× 10−4 1.30× 10−3 a
RegKrig 9.25× 10−4 3.93× 10−4 148 1.49× 10−4 1.70× 10−3 ab
mice_s 1.16× 10−3 3.93× 10−4 148 3.79× 10−4 1.93× 10−3 ab
Spmean 1.29× 10−3 3.93× 10−4 148 5.17× 10−4 2.07× 10−3 ab
mice_ctsp 1.70× 10−3 3.93× 10−4 148 9.28× 10−4 2.48× 10−3 bc
kNN_s 2.29× 10−3 3.93× 10−4 148 1.52× 10−3 3.07× 10−3 c
kNN_ctsp 3.27× 10−3 3.93× 10−4 148 2.50× 10−3 4.05× 10−3 d

Nmass
OrdKrig 1.14× 10−3 2.80× 10−4 148 5.88× 10−4 1.69× 10−3 a
Spmean 1.41× 10−3 2.80× 10−4 148 8.54× 10−4 1.96× 10−3 a
RegKrig 1.49× 10−3 2.80× 10−4 148 9.40× 10−4 2.04× 10−3 a
mice_s 1.50× 10−3 2.80× 10−4 148 9.49× 10−4 2.05× 10−3 a
mice_ctsp 2.33× 10−3 2.80× 10−4 148 1.77× 10−3 2.88× 10−3 b
kNN_ctsp 2.38× 10−3 2.80× 10−4 148 1.82× 10−3 2.93× 10−3 b
kNN_s 2.70× 10−3 2.80× 10−4 148 2.15× 10−3 3.26× 10−3 b

Hmax
RegKrig 7.11× 10−4 2.32× 10−4 148 2.53× 10−4 1.17× 10−3 a
Spmean 7.23× 10−4 2.32× 10−4 148 2.65× 10−4 1.18× 10−3 a
mice_s 1.14× 10−3 2.32× 10−4 148 6.84× 10−4 1.60× 10−3 ab
OrdKrig 1.22× 10−3 2.32× 10−4 148 7.62× 10−4 1.68× 10−3 abc
mice_ctsp 1.64× 10−3 2.32× 10−4 148 1.19× 10−3 2.10× 10−3 bc
kNN_s 1.75× 10−3 2.32× 10−4 148 1.30× 10−3 2.21× 10−3 bc
kNN_ctsp 1.77× 10−3 2.32× 10−4 148 1.32× 10−3 2.23× 10−3 c

LMA
OrdKrig 7.36× 10−4 1.99× 10−4 148 3.43× 10−4 1.13× 10−3 a
RegKrig 8.36× 10−4 1.99× 10−4 148 4.43× 10−4 1.23× 10−3 a
Spmean 1.24× 10−3 1.99× 10−4 148 8.50× 10−4 1.64× 10−3 a
mice_s 1.82× 10−3 1.99× 10−4 148 1.43× 10−3 2.21× 10−3 b
kNN_ctsp 2.26× 10−3 1.99× 10−4 148 1.87× 10−3 2.65× 10−3 b
mice_ctsp 2.88× 10−3 1.99× 10−4 148 2.48× 10−3 3.27× 10−3 c
kNN_s 3.20× 10−3 1.99× 10−4 148 2.80× 10−3 3.59× 10−3 c

WD
OrdKrig −7.13× 10−4 1.41× 10−4 148 −9.92× 10−4

−4.35× 10−4 a
RegKrig 2.65× 10−5 1.41× 10−4 148 −2.52× 10−4 3.05× 10−4 b
Spmean 2.94× 10−4 1.41× 10−4 148 1.52× 10−5 5.72× 10−4 b
mice_s 7.70× 10−4 1.41× 10−4 148 4.91× 10−4 1.05× 10−3 c
kNN_s 1.08× 10−3 1.41× 10−4 148 8.05× 10−4 1.36× 10−3 c
kNN_ctsp 1.14× 10−3 1.41× 10−4 148 8.58× 10−4 1.41× 10−3 cd
mice_ctsp 1.56× 10−3 1.41× 10−4 148 1.28× 10−3 1.84× 10−3 d
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Figure 6. Trait-specific KGE at increasing missingness levels (10–80 %) for different imputation methods: species mean (Spmean); mice
and kNN with species as predictor (mice_s and kNN_s, respectively); mice and kNN with species, climate, forest structure and spatial
variables as predictors (mice_ctsp and kNN_ctsp, respectively); ordinary kriging (OrdKrig); and regression kriging (RegKrig). Higher values
of KGE imply higher performance. Traits: leaf biomass to sapwood area ratio, BL :AS (tm−2); leaf nitrogen per unit mass, Nmass (%mass);
maximum tree height, Hmax (m); leaf mass per area, LMA (mgcm−2); wood density, WD (gmcm−3). Higher values of KGE imply higher
performance. Letters denote results of multiple comparisons, in alphabetical order from highest to lowest performance.

performance of MICE and kNN declined more with increas-
ing missingness (Table 1, Fig. S8 and Table S1 in the Sup-
plement), but MICE generally outperformed kNN (Figs. 6
and 7), as already observed in a recent imputation assessment
of species-level, life-history traits (Penone et al., 2014). In
terms of dataset-averaged NRMSE, mice_ctsp and Spmean
were the best-performing methods at 50 and 80 % missing-
ness, respectively (P < 0.05).

Kernel density plots (Fig. S9) and Kolmogorov–Smirnov
tests (Fig. S10) showed that MICE produced imputations (es-
pecially mice_ctsp) most consistent with observed distribu-
tions at all missingness levels (Figs. S9 and S10). Spmean
and OrdKrig imputations modified trait distributions substan-
tially, while kNN_ctsp and RegKrig showed an intermedi-
ate performance, but generally far from that of mice_ctsp
(Table 1, Fig. S8, Table S1). Spmean and kriging imputa-
tions also yielded larger 1 cormat values compared to the
rest of the methods (P < 0.05), reflecting their lower ability
to maintain trait correlation structures.

For the selected trait relationships, mice_ctsp showed the
lowest values of %1r at≥ 50 % missingness (P < 0.05), al-
though for the Nmass–LMA relationship kNN_s and mice_s

performed equally well at 50 and 80 % missingness, re-
spectively (Fig. 7; P > 0.05). Spmean imputations showed
variable results, severely altering the Hmax–WD relationship
(P < 0.05, Fig. 7) but showing comparable performance to
mice_ctsp for the Nmass–LMA relationship at 80 % miss-
ingness (P > 0.05, Fig. 7). Kriging imputations did not suc-
ceed in minimising changes in reproducing trait correlations
(Fig. 7).

Using imputed or incomplete datasets did not lead to large
differences in the studied trait relationships when missing-
ness was< 50 % (Figs. S11 and S12). However, at high miss-
ingness, using imputed datasets led to comparatively larger
departures from the relationships obtained with the complete
dataset, especially for the Nmass–LMA relationship. No im-
putation method appeared to perform consistently better than
others in preserving trait relationships at high missingness
levels (Figs. S11 and S12) and, under these conditions, us-
ing incomplete datasets appeared to correctly reproduce the
observed trait relationships in the complete dataset.
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Figure 7. Errors in the correlation coefficient for two selected trait relationships at increasing missingness levels (10–80 %) and for different
imputation methods: species mean (Spmean); mice and kNN with species as predictor (mice_s and kNN_s, respectively); mice and kNN with
species, climate, forest structure and spatial variables as predictors (mice_ctsp and kNN_ctsp, respectively); ordinary kriging (OrdKrig); and
regression kriging (RegKrig). Letters denote results of multiple comparisons, in alphabetical order from highest to lowest performance.

3.4 Imputing traits for the main forest species in
Catalonia

The application of mice_ctsp allowed us to fill the gaps in the
IEFC incomplete dataset and quantify the variation among
the multiple imputations, providing an estimation of the level
of confidence in the imputed values for specific traits (Fig. 8).
Spmean and RegKrig show a broadly similar spatial pattern
of trait variation compared to mice_ctsp, although some im-
portant discrepancies between Spmean and mice_ctsp can be
observed in the north-eastern pre-coastal and coastal area for
LMA (Fig. S13). Here, Spmean imputations tend to predict
lower values compared to mice_ctsp. These areas are mostly
dominated by Quercus suber forests (Fig. S1), and LMA was
only measured in 5 out of the 149 plots of this species present
in the IEFC incomplete dataset. Therefore, as there is little
information on trait covariation for the imputation of LMA
in Q. suber plots, MICE imputations are largely based on the
auxiliary variables and they yield a distinct spatial pattern
of trait variation, compared to Spmean. Imputations obtained
using regression kriging result in more blurred spatial pat-
terns, relative to other imputation methods (Fig. S13).

4 Implications and conclusions

The problem of missing data is ubiquitous in plant trait
datasets of a regional to global scope. Recently, ecolo-
gists have made substantial progress in (i) the assessment
of the best imputation methods in trait-based applications,
(ii) how these methods perform with increasing missingness,
(iii) which ecological covariates aid to improve imputations
and (iv) how different imputation methods impact the results
of trait-based analyses (Pakeman, 2014; Taugourdeau et al.,
2014; Penone et al., 2014; Schrodt et al., 2015). Most effort
thus far, however, has been directed at imputing species-level
trait means and all the abovementioned questions have rarely
been assessed on the same dataset. Here we deal with all the
previous issues simultaneously and also deal with the spatial
component of trait variability, where the intra-specific com-
ponent cannot be neglected. We did not focus on differences
in imputation errors across species because this issue is, to
a large extent, related to the degree of trait variability ex-
plained by biotic and abiotic predictors across different taxa,
which was recently reported by Vilà-Cabrera et al. (2015).

One limitation of this study is that we simulate data miss-
ing completely at random, whereas a missing at random as-
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Figure 8. Maps with the distribution of functional traits across the selected plots in the IEFC. The first row shows the incomplete dataset, with
missing values in grey. The second row shows the mean of 50 multiple imputations for each missing value using the mice_ctsp approach
(MICE imputation using species identity, climate, forest structure and topography as predictors). The third row shows the corresponding
coefficient of variation (CV) for these multiple imputations. Note that, for the third row, only imputed values are shown and that the colour
scale varies across different traits. Traits: leaf biomass to sapwood area ratio, BL :AS (tm−2); leaf nitrogen per unit mass, Nmass (%mass);
maximum tree height, Hmax (m); leaf mass per area, LMA (mgcm−2); wood density, WD (gmcm−3). Higher values of KGE imply higher
performance.

sumption would have probably been more realistic given the
properties of the dataset (Nakagawa, 2015). However, a re-
cent study did not show differences in trait imputation perfor-
mance between these two missing data mechanisms (Penone
et al., 2014). Our study assesses different imputation meth-
ods in spatially explicit datasets with multivariate missing
data. Amongst the methods assessed here, MICE and kNN
are the most adequate to impute multivariate datasets, as they
can be used when predictors also include missing data. Krig-
ing methods may be more difficult to apply when predictors
are also missing, but we have shown that, at high missingness
levels and when environmental information is lacking, they
can outperform MICE and kNN. This implies that geostatis-
tical methods may sometimes provide more accurate impu-
tations than those using trait covariation.

Our results show that, in terms of trait prediction error,
no imputation method performs best consistently for the five
studied traits. However, when all performance metrics are
jointly considered (i.e. errors in trait prediction, multivariate
trait distribution and trait correlations), MICE informed by
relevant ecological variables outperforms approaches based
on trait averaging, geostatistical models and kNN methods,
albeit this superiority of MICE tends to vanish at very high
missingness levels. For kNN, MICE and kriging imputations
we have highlighted the key role of auxiliary variables as

necessary covariates to yield reliable imputations in spatially
explicit settings. This result calls for the inclusion of site-
specific environmental variables associated with trait data in
trait databases. The importance of covariates differed across
traits, but, in addition to the expected influence of species,
climate and topography in predicting trait values, we also
showed a prominent role of forest structure for some traits.
The ongoing development of global databases of vegetation
structure (e.g. Dengler et al., 2014) will likely enable the in-
corporation of stand variables in trait imputation approaches
using spatial and environmental information (Butler et al.,
2017).

Given the limited number of species in our study, reflect-
ing the relatively low richness of the studied communities,
taxonomic information introduced as species identity was
enough to improve imputations of all studied traits. How-
ever, in studies coping with a larger set of species, phy-
logeny may need to be considered in the imputation mod-
els (Schrodt et al., 2015; Swenson et al., 2017). For global
trait datasets, a combination of imputation with data aug-
mentation approaches (e.g. Nakagawa and Freckleton, 2008)
has been proposed to minimise potential errors in trait-driven
analyses caused by incomplete and biased species sampling
(Sandel et al., 2015).
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Compared to other imputation approaches, MICE is well
suited to deal with multivariate missing data (i.e. MICE pro-
duces imputations when some predictors are also missing)
and provides information to quantify the uncertainty associ-
ated with the imputed data (Fig. 8). MICE uses multivari-
ate relationships in the dataset to impute missing data, and
this may raise concerns about potential circularity in trait
or trait–environment correlations. Despite these concerns, it
has been argued that the full inference framework based on
multiply-imputed datasets would minimise circularity (van
Buuren, 2012). Because our comparative assessment of im-
putation methods is already complex, here we have focused
on the initial imputation stage, the first step of the full pro-
cess (e.g. Nakagawa and Freckleton, 2008). MICE produces
multiple datasets, with imputed values drawn from distribu-
tions, and these datasets can be combined in the analysis and
pooling steps. The analysis step refers to the estimation of
the parameters of scientific interest (e.g. a regression coeffi-
cient) for each dataset. In MICE, parameters can be pooled
across datasets to produce unbiased estimates and standard
errors, providing a natural way to take into account the addi-
tional uncertainty introduced in the analysis by the presence
of missing data, and to avoid circularity effects (van Buuren,
2012). However, ecological studies using multiple imputa-
tion approaches usually only apply the imputation step (Bar-
aloto et al., 2010; Paine et al., 2011; Pyšek et al., 2015; Díaz
et al., 2016) and do not take advantage of the multiple impu-
tation framework to quantify the uncertainty resulting from
the presence of missing data (but see Fisher et al., 2003).

Our results have important implications given that the de-
mand for spatially explicit datasets is increasing rapidly and
that species mean imputation and casewise data deletion are
still widespread practices in trait-based ecology. We show
that species mean imputation may result in substantial infor-
mation loss that may hinder research development on impor-
tant topics in functional biogeography, such as the ecolog-
ical drivers and implications of intraspecific trait variability
(e.g. Siefert et al., 2015). Gap-filled multivariate trait datasets
may increase the robustness of syntheses of plant form and
function (Díaz et al., 2016) and trait-driven modelling ap-
proaches (Yang et al., 2015). We also show that spatially dis-
tributed layers of environmental information may improve
trait mapping, increasing spatial resolution and/or sample
size in trait-driven ecosystem process models (Christoffersen
et al., 2016).
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