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Abstract. Marine phytoplankton stoichiometry links nutrient
supply to marine carbon export. Deviations of phytoplankton
stoichiometry from Redfield proportions (106C : 1P) could
therefore have a significant impact on carbon cycling, and
understanding which environmental factors drive these devi-
ations may reveal new mechanisms regulating the carbon cy-
cle. To explore the links between environmental conditions,
stoichiometry, and carbon cycling, we compared four differ-
ent models of phytoplankton C :P: a fixed Redfield model,
a model with C :P given as a function of surface phospho-
rus concentration (P), a model with C :P given as a func-
tion of temperature, and a new multi-environmental model
that predicts C :P as a function of light, temperature, and
P. These stoichiometric models were embedded into a five-
box ocean circulation model, which resolves the three major
ocean biomes (high-latitude, subtropical gyres, and tropical
upwelling regions). Contrary to the expectation of a mono-
tonic relationship between surface nutrient drawdown and
carbon export, we found that lateral nutrient transport from
lower C :P tropical waters to high C :P subtropical waters
could cause carbon export to decrease with increased tropical
nutrient utilization. It has been hypothesized that a positive
feedback between temperature and pCO2,atm will play an im-
portant role in anthropogenic climate change, with changes
in the biological pump playing at most a secondary role. Here
we show that environmentally driven shifts in stoichiome-
try make the biological pump more influential, and may re-
verse the expected positive relationship between temperature
and pCO2,atm. In the temperature-only model, changes in
tropical temperature have more impact on the 1 pCO2,atm

(∼ 41 ppm) compared to subtropical temperature changes
(∼ 4.5 ppm). Our multi-environmental model predicted a de-
cline in pCO2,atm of ∼ 46 ppm when temperature spanned a
change of 10 ◦C. Thus, we find that variation in marine phy-
toplankton stoichiometry and its environmental controlling
factors can lead to nonlinear controls on pCO2,atm, suggest-
ing the need for further studies of ocean C :P and the impact
on ocean carbon cycling.

1 Introduction

The discovery of large-scale deviations of phytoplankton sto-
ichiometry from the Redfield ratio in the past decade (We-
ber and Deutsch, 2010; Martiny et al., 2013a, b) has signif-
icant consequences for our understanding of the biological
carbon pump and global carbon cycling (Galbraith and Mar-
tiny, 2015; Moreno and Martiny, 2018). Traditionally, the bi-
ological pump is thought to be controlled by a combination
of the vertical nutrient flux and nutrient utilization efficiency
(Sarmiento and Toggweiler, 1984). Evidence that elemental
stoichiometry is variable thus adds a new dimension to the
biological pump, and may lead to higher than currently ex-
pected carbon export in subtropical regions (Emerson, 2014;
Teng et al., 2014; Tanioka and Matsumoto, 2017). Global
carbon export has been estimated to range between 5 and
12 Pg C yr−1 (Boyd and Trull, 2007; Henson et al., 2011),
but these projections have yet to incorporate the environmen-
tal controls on C :Pexport. Variation in C :Pexport from Red-

Published by Copernicus Publications on behalf of the European Geosciences Union.



2762 A. R. Moreno et al.: Marine phytoplankton stoichiometry

field proportions can be linked to environmental conditions.
There are two leading environmental parameters thought to
control C :Pexport: nutrients, predominantly phosphate con-
centrations, and temperature. Galbraith and Martiny used a
simple three-box model to show that variable stoichiometry
driven by phosphate availability could enhance the efficiency
of the biological pump in the low-latitude ocean (Galbraith
and Martiny, 2015). In contrast, Yvon-Durocher et al. (2015)
used a meta-analysis of global temperature and stoichiomet-
ric ratios to propose that C :P increased 2.6-fold from 0 to
30 ◦C. Thus, it is unclear if differences in nutrient supply or
temperature, or some combination of them, control the global
variation in C :P of plankton and exported material.

There are two important ingredients missing from pub-
lished studies that could alter the interactions among phy-
toplankton stoichiometry, carbon export, and atmospheric
pCO2 (pCO2,atm). The first is the presence of two distinct
low-latitude biomes, namely the equatorial upwelling regions
and the macronutrient-depleted subtropical gyres. In direct
observations and inverse model analyses, these two biome
types appear to have unique elemental compositions (Mar-
tiny et al., 2013a; DeVries and Deutsch, 2014; Teng et al.,
2014). Thus, in order to properly represent global variations
in surface plankton C :P and carbon export, it is essential
to separately model macronutrient-limited subtropical gyres
and equatorial upwelling zones.

The second missing ingredient is that environmental fac-
tors beyond nutrient availability may impact the elemental
composition of surface plankton and C :Pexport. Tempera-
ture, irradiance, and nutrient concentrations are all important
environmental factors, which influence the physiology and
stoichiometry of phytoplankton. However, surveys of phyto-
plankton C :P are insufficient to distinguish the separate ef-
fects of each factor on C :P due to strong environmental co-
variance. Cellular trait-based models use detailed studies of
phytoplankton physiology to determine how phytoplankton
cells should allocate their resources as a function of environ-
mental conditions, allowing us to model the interactive influ-
ence of temperature, nutrient concentrations, and irradiance
on C :P ratios (Shuter, 1979; Clark et al., 2011; Toseland et
al., 2013; Daines et al., 2014; Talmy et al., 2014). Numer-
ous physiological mechanisms have been proposed to explain
variation in phytoplankton stoichiometry, including growth
rate (Sterner and Elser, 2002), photoacclimation (Falkowski
and LaRoche, 1991; Geider et al., 1996; Leonardos and Gei-
der, 2004, 2005), nutrient-limitation responses (Rhee, 1978;
Goldman et al., 1979; Garcia et al., 2016), and temperature
acclimation (Rhee and Gotham, 1981; Toseland et al., 2013;
Yvon-Durocher et al., 2015). Through incorporation of such
physiological responses, a trait-based model has revealed
that differences in ribosomal content and cell size between
warm-water, oligotrophic environments and cold-water, eu-
trophic environments are important mechanisms driving sto-
ichiometric variation in the ocean (Daines et al., 2014). Thus,
linking biome-scale variations in environmental conditions

with a detailed trait-based model of phytoplankton resource
allocation and elemental composition may enable us to more
fully explore interactions among multiple ocean environmen-
tal factors, the biological pump, and pCO2,atm.

Here, we create a five-box ocean circulation model, incor-
porating the three major ocean biomes, to study the feed-
back effects of variable stoichiometry on carbon export and
pCO2,atm. We will explicitly address the following research
questions: (1) How does environmental variability influence
marine phytoplankton cellular allocation strategies and in
turn the elemental stoichiometric ratio? (2) What are the ef-
fects of changing environmental conditions on stoichiometric
ratios, carbon export, and pCO2,atm? (3) What is the influ-
ence of the environmental conditions among the three major
surface biomes on carbon export and pCO2,atm?

2 Methods

2.1 Box model design

To quantify the feedbacks between phytoplankton stoichiom-
etry, carbon export, and pCO2,atm, we formulated a five-box
ocean circulation model of the phosphorus and carbon cy-
cles in the ocean coupled to an atmospheric box. The foun-
dation of our model is based on the models introduced in
Ito and Follows (2003) and DeVries and Primeau (2009).
Phosphorus is used to represent the role of nutrient availabil-
ity in controlling stoichiometry and C export. We chose this
over N because, on long timescales, P is commonly consid-
ered the ultimate limiting nutrient, whereas N is only lim-
iting productivity and export on short timescales (Tyrrell,
1999). On long timescales, nitrogen fixation/denitrification
will presumably adjust the N inventory. Our modeling is fo-
cused on long-term steady-state outcomes and we would like
to avoid issues associated with modeling the N cycle (like
getting N-fixation and denitrification rates correct). Thus, we
chose to use P as a representative for nutrient availability
at long-term steady-state biogeochemical equilibrium. The
model includes three surface boxes, each corresponding to
one of the major biomes: the tropical equatorial upwelling
regions (labeled T), the subtropical gyres (labeled S), and
the high-latitude regions (labeled H) (Fig. 1). We define the
oligotrophic subtropical gyre regions where the mean an-
nual phosphate concentration is less than 0.3 µM (Teng et al.,
2014), with the remainder of the surface ocean assigned ei-
ther to box T or box H based on latitude. We use these assign-
ments to calculate the baseline physical properties of each
region, including mean annual averaged irradiance and tem-
perature. The subsurface ocean is divided into two regions:
the thermocline waters that underlies the subtropical gyres
and the equatorial upwelling regions (labeled M), and deep
waters (labeled D) (DeVries and Primeau, 2009).
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Figure 1. Box model design. (a) Sea surface breakdown by region. All peach-colored regions represent the tropical surface ocean box, the
cream-colored regions represent the subtropical surface ocean box, and grey regions represent the high-latitude surface ocean box. (b) The
model includes tropical (T), subtropical (S), and high-latitude (H) surface ocean boxes, a mixed thermocline (M) box, and a deep water (D)
box. The thermohaline circulation Tc is set to 20 Sv, while the wind driven shallow overturning circulation is set to 5 Sv. The high-latitude
mixing flux fhd is set to 45.6 Sv. The thickness of box H is 1000 m, and box M is 900 m. Box T has a temperature of 26 ◦C, box S has a
temperature of 24 ◦C, and box H has a temperature of 7 ◦C. Box S covers 39 % and box T covers 25 % of the ocean surface area.

To simulate the global transport of water between boxes,
our model includes a thermohaline circulation (Tc) that up-
wells water from the deep ocean into the tropics, laterally
transports water into the subtropics and high latitudes, and
downwells water from the high-latitude region to the deep
ocean. Surface winds produce a shallow overturning circu-
lation (Tw) that transports water from the thermocline to the
tropics and then laterally into the subtropics. These circu-
lations create teleconnections of nutrient supply in the sur-
face ocean boxes. A bidirectional mixing term that venti-
lates the deep box directly through the high-latitude surface
box (fhd) represents deep water formation in the North At-
lantic region and around Antarctica (Sarmiento and Togg-
weiler, 1984). The parameters Tc, Tw and fhd are considered
adjustable parameters, which we calibrate using phosphate
data from WOA13 (Garcia et al., 2014). In order to simulate
the movement of particles, we included export fluxes (Pt, Ps,
and Ph) of organic phosphorus out of each surface box. The
conservation equations of phosphorus are as follows:

dPT

dt
=
(PM−PT) · Tc+ (PM−PT) · Tw− (a+ b) ·P t

V T
, (1)

dPS
dt
=
(PT−PS) · Tc+ (PT−PS) · Tw− (a+ b) ·Ps

V S
, (2)

dPH
dt
=
(PS −PH ) · Tc+ (PD −PH ) · f hd −Ph

VH
, (3)

dPM

dt
=

(PD −PM) · Tc+ (PS − PM) · Tw+ a ·P t + a ·Ps

VM
, (4)

dPD
dt
=

(PH −PD) · Tc+ (PH −PD) · f hd +Ph+ b ·P t + b ·Ps

VD
, (5)

where P represents the concentration of phosphorus at a spe-
cific box, a represents 0.25 remineralization, b represents
0.75 remineralization, and V represents the volume of the
specified box.

Our box model simulates P, alkalinity, and various forms
of C; total carbon in the surface boxes is partitioned into car-
bonate, bicarbonate, and pCO2. The global mean P is pre-
scribed according to the observed mean value (Garcia et al.,
2014). The export of carbon is linked to phosphorus export
using the C :Pexport ratio. To quantify the breakdown of car-
bon into these components, we model the solubility pump,
using temperature and salinity to determine the partition-
ing of inorganic carbon among total carbon within a box.
The global mean alkalinity is prescribed according to the
observed mean ocean values but is also subject to transport
(Sarmiento and Toggweiler, 1984). Our box model simulates
alkalinity and total inorganic carbon, which are conserved
tracers from which the speciation of inorganic carbon in sea-
water can be calculated. Biome-specific salinity and temper-
ature are used to prescribe the solubility constants of CO2 in
seawater and the bromine concentration, which is taken to be
proportional to salinity. CO2 cycles through the atmosphere
via the air–sea gas exchange fluxes (fah, fas, fat). We use a
uniform piston velocity of 5.5× 10−5 m s−1 to drive air–sea
gas exchange (Follows et al., 2002; DeVries and Primeau,

www.biogeosciences.net/15/2761/2018/ Biogeosciences, 15, 2761–2779, 2018



2764 A. R. Moreno et al.: Marine phytoplankton stoichiometry

Table 1. High-latitude deep water exchange range.

Range of fhd (Sv) Source

38.1 Sarmiento and Toggweiler (1984)
3–300 Toggweiler (1999)
60 DeVries and Primeau (2009)
30–130 Galbraith and Martiny (2015)
18–108 This study
(default value 45.6)

2009). Quantifying the atmospheric concentration of carbon
satisfies:

dCA
dt
=

[
(CT−CA) ·SolT(temp, sal) · f at

+(CS −CA) ·SolS (temp, sal) · f as+
(CH −CA) ·SolH(temp, sal) · f ah

]
/VA, (6)

whereC represents the concentration of total carbon in a spe-
cific box and Sol is the solubility constant in a specified box,
calculated from temperature (temp) and salinity (sal).

We calibrated our model parameters (Tc, Tw, fhd) so that
the macronutrients were at similar average values compared
to World Ocean Atlas 2013 dataset for each location. We
tested the sensitivity of modeled pCO2,atm to the fluxes Tc,
Tw, and fhd and found that with Tc= 20 Sv and Tw= 5 Sv
(values that allowed the model to match P and alkalinity),
pCO2,atm was sensitive to the value of fhd (Sarmiento and
Toggweiler, 1984). Guided by values previously used in the
literature, we set fhd to 45.6 Sv (Table 1) but we also present
results for the nutrient-only stoichiometry model at two ex-
treme values of fhd (18 and 108 Sv) (Fig. 2). The functional
dependence of pCO2,atm with changing subtropical and trop-
ical P for each extreme value of fhd was quite similar, though
the value of pCO2,atm for the high-fhd simulation was ap-
proximately twice that of the low-fhd simulation (Fig. 2). We
found that our value of 45.6 Sv provides a modern pCO2,atm
value. Although the focus of this study is to determine the im-
pact of low-latitude biogeochemistry on pCO2,atm, we point
out that at Redfield stoichiometry, pCO2,atm increases by
100 ppm when fhd increased from its default value 45.6 to
108 Sv. For certain values of the parameters, the model pro-
duced excessive nutrient trapping in the thermocline. In order
to dampen the nutrient trapping, we tuned the remineraliza-
tion depth. As such, 25 % of the total export is respired in
the thermocline, with the remaining 75 % exported into the
deep ocean, leading to a better match between the modeled
and observed P in the thermocline box.

2.2 Stoichiometric models

To quantify and understand the feedbacks between car-
bon export and pCO2,atm, we embedded four stoichiomet-
ric models into our five-box ocean circulation model. Each

model differs according to its complexity and how much en-
vironmental information they utilize. These are a static Red-
field model that assumes that C :Pexport is constant across
environmental conditions, a nutrient-only model that uses
surface P to predict C :Pexport (from Galbraith and Mar-
tiny, 2015) a temperature-only model that uses T to predict
C :Pexport (modified from Yvon-Durocher et al., 2015) and a
multi-environmental model that uses light, T , and P to pre-
dict C :Pexport.

2.2.1 Static Redfield model

Our control model uses a static Redfield stoichiometry. The
Redfield ratio is based on an average value of organic carbon
to phosphorus of 106 : 1.

2.2.2 Nutrient-only model

The nutrient-only stoichiometric model expresses phyto-
plankton C :P as a function of the ambient phosphate con-
centration:

C : P=
1

κ [P ]+ [P]0
, (7)

where the parameters κ = 6.9× 10−3 µM−1 and
[P]0 = 6.0× 10−3 were obtained by regressing the re-
ciprocal of C :P onto P (Galbraith and Martiny, 2015).

2.2.3 Temperature-only model

The temperature-only stoichiometric model expresses phyto-
plankton C :P as a function of temperature:

ln(C : P)=5
(
T − 15 ◦C

)
+ b, (8)

where the parameters 5= 0.037 ◦C−1 and b = 5.5938
(Yvon-Durocher et al., 2015). The temperature-only model
was created to determine the temperature responses of log-
transformed C :P ratios centered at 15 ◦C.

2.2.4 Multi-environmental model

We created a multi-environmental model, which predicts
how cell size, biomass allocations to biosynthesis and pho-
tosynthesis, and C :P ratios vary with temperature, light
levels, temperature, and phosphorus concentrations. The
multi-environmental factor model was derived from a non-
dynamic physiological trait-based model. We used a theo-
retical cellular-allocation trait model based on phytoplank-
ton physiological properties that divides the “cell” into
several functional pools which represent cellular invest-
ments in biosynthesis, photosynthesis, and structure, and
a storage pool, which represents variations in the level
of P-rich molecules such as polyphosphates (full model
equations can be found on GitHub: https://github.com/
georgehagstrom/-bg-2017-367-/blob/master/CP.m, last ac-
cess: 12 April 2018). The functional pools are composed of
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fhd = 18 Sv
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Figure 2. pCO2,atm (ppm) sensitivity to extreme fhd values under changing surface phosphate concentrations. (a) Range of pCO2,atm (ppm)
using an fhd value of 18 Sv. (b) Range of pCO2,atm (ppm) using an fhd value of 108 Sv.

Figure 3. Diagram of physiological model. Phytoplankton strategies are represented in a two-dimensional strategy space (E,r). Each strategy
is assigned a fitness in each environment using physiological principles, and the strategy with the highest fitness is selected to represent the
local population. The stoichiometry of cellular components is used to calculate the stoichiometry of the functional pools in the cell.

biological macromolecules such as ribosomes, proteins, car-
bohydrates, and lipids. The model predicts the size of each
pool as a function of light, T , and P. The size of each func-
tional pool is modeled by using subcellular resource com-
partments, which connect the fitness of a hypothetical phy-
toplankton cell in a given environment to its cellular radius
and the relative allocation of cellular material to photosyn-
thetic proteins, ribosomes, and biosynthetic proteins. We as-
sume that real phytoplankton populations have physiologi-
cal behaviors that cluster around the strategy that produces
the fastest growth rate in each environment (Norberg et al.,
2001), and use the stoichiometry of this optimal strategy to
model the elemental composition of cellular material (Fig. 1).

Phytoplankton can accumulate large reserves of nutrients
that are not immediately incorporated into the functional
components of the cell (Mino et al., 1998; Van Mooy and
Devol, 2008; Mouginot et al., 2015; Diaz et al., 2016). This
storage capability varies among phytoplankton species, and
depends on the particular nutrient under consideration: the
cost for storing physiologically relevant quantities of nutri-
ents is low for nutrients with low quotas such as phosphorus,
in comparison to nitrogen and carbon. Thus, the phosphorus
storage is assumed highly plastic in comparison to carbon
storage (Moore et al., 2013). Further, we assume that each
cell dedicates a fixed fraction of its biomass to carbon re-

serves, and focus our modeling efforts on the variability of
the stored phosphorus pool. To predict the size of the storage
pool, we assume a linear relationship between stored phos-
phorus and ambient environmental phosphorus levels and
used statistical modeling of an oceanic C :P dataset (Martiny
et al., 2014) to calculate the constant of proportionality. The
result is a relatively simple model that both qualitatively and
quantitatively predicts the variation of C :P in phytoplankton.

Phytoplankton physiology is modeled through allocations
of cell dry mass to three distinct pools: structure (S(r)),
biosynthesis (E), and photosynthesis (L) (Fig. 3). Alloca-
tions satisfy

1= S(r)+E+L, (9)

where the variables S, E, and L represent the specific alloca-
tions of cellular biomass.

The specific allocation of biomass to the cell membrane
is inversely proportional to the cell radius

(
α
r

)
(Clark et

al., 2011), which accounts for the changing relative volume
of the cell membrane with radius. The structure pool in-
cludes the cell membrane plus wall and other components
(γ ), which are not related to photosynthesis or biosynthesis
and is given by

S (r)=
α

r
+ γ. (10)

www.biogeosciences.net/15/2761/2018/ Biogeosciences, 15, 2761–2779, 2018



2766 A. R. Moreno et al.: Marine phytoplankton stoichiometry

In an environment specified by T , [P], and light level (I ), the
growth rate of a cell using a given strategy is the minimum
of the following growth rates:

µ=min(µE,µL,µP) . (11)

Here µE is determined by the specific rate of protein syn-
thesis, µL is determined by the specific rate of carbon fixa-
tion, and µP is determined by the specific rate of phosphorus
uptake, or

µE = kE (T ) ; EµL =
fP (L,I )−8M (T )

1+8S
;

µP =
1

QP (r,E)

Vm (r) [P]
KP (r)+ [P]

. (12)

We assume that part of the energy captured by a cell via pho-
tosynthesis is used for maintenance (8M), whereas the rest is
used to drive the synthesis of new macromolecules (8S), so
that a cell growing at rate µL is in energy balance. The effi-
ciency of biosynthesis kE and the carbon cost of maintenance
8M are functions of T , whose dependence is modeled using
Q10 = 2.0 (Broeze et al., 1978; Shuter, 1979; Van Bogelen
and Neidhardt, 1990). Uptake is regulated by a Monod func-
tion with kinetic parameters depending on the radius through
the allometric scaling relationships derived from measure-
ments of phytoplankton populations (Edwards et al., 2012):

Vm (r)= aPr
bP; KP (r)= aKr

bK . (13)

This use of allometric scaling relationships departs from
the conventions adopted by Shuter (1979) or Daines et
al. (2014), who assume that uptake rates are diffusion-
limited.

The phosphorus quota for functional elements of the cell
(thus not including any storage) is determined by the alloca-
tion to biosynthesis E and the percentage pDNA of cellular
dry mass allocated to DNA:

Qp,biosynthesis (E,r)=
4
3
πr3ρcellpdry

(αEEPrib+pDNAPDNA)

31
. (14)

Here, we assume that there is no contribution to the
functional-apparatus P quota from phospholipids, which in-
stead are merged with storage molecules. This differs from
Daines et al. (2014), who assumes that phospholipids occupy
10 % of the cell by mass. Phytoplankton can substitute sulfo-
quinovosdiaglycerol (SQDG) for phospholipids in their cell
membranes under low P conditions (Van Mooy et al., 2009).
Similarly, P storage molecules are also regulated by P avail-
ability. Thus, we treat phospholipids and P storage as one
pool.

The function fP is the cellular response to light levels and
is chosen to capture the effects of both electron transport and
carbon fixation on photosynthesis; it is also closely related

to a previous model (Talmy et al., 2013). This prior model
included four compartments: electron transport, carbon fix-
ation, photoprotection, and biosynthesis. It was found that
photoprotection allocation was not a large or greatly chang-
ing component of their allocations. We therefore do not in-
clude this within our model due to its high complexity with
little qualitative results. Our biosynthesis was also separately
parametrized.

The decomposition of photosynthesis into light harvest-
ing and carbon fixation components is critical and makes our
model predictions agree much better with experiments study-
ing the variations of C :P or N :P ratios with irradiance. Mod-
els that do not have this decomposition predict too large a de-
crease in cellular allocations to photosynthesis at high light
levels. In a two-compartment model, increases in allocations
to carbon fixation cause the overall allocation to light har-
vesting to have a more mild decrease. The two-compartment
treatment also seems more physiologically realistic than a
one-compartment treatment, which only models photosyn-
thetic pigments. Thus, we used the functional forms and pa-
rameters that were derived (experimentally) previously for
carbon fixation and light harvesting (Talmy et al., 2013).

Our model interprets light harvesting allocation, L, as be-
ing composed of proteins dedicated to carbon fixation (F1),
such as RuBisCO, and proteins dedicated to light harvesting
(F2), such as photosynthetic pigments. The rate of photosyn-
thetic carbon fixation is a function of the allocations to each
of these, which satisfy F1+F2 = L. The relative allocations
together determine the overall photosynthetic rate:

Pmax = min
(
k1F1,k2F2

)
;

fp = Pmax

(
1− exp

(
−αphφMF2I

Pmax

))
. (15)

For a given I andL, there is a pair of values
(
F1,opt,F2,opt

)
that maximize the photosynthetic rate fp. We estimate the
photosynthetic rate fp (L,I ) under the assumption that cells
assume the optimal allocations to carbon fixation and elec-
tron transport. Our model departs from the models developed
by Shuter (1979) and Daines et al. (2014), which assume that
energy acquisition is a linear function of light levels leading
to functional responses linearly proportional to the cellular
investment in light harvesting proteins.

We model photosynthesis as having a Q10 = 1, which
is consistent with physiological studies going back to
Shuter (1979) that suggest that photosynthetic efficiency
does not depend on temperature over physiologically rele-
vant ranges. The discrepancy between photosynthetic and
biosynthetic temperature dependence has traditionally been
explained by referring to the differences in the chemistry and
physics of the two processes. The electron transport chain
relies on quantum mechanical processes, which are unaf-
fected by variations in temperature in a physiologically rel-
evant range (Devault, 1980). Required maintenance respira-
tion rates are also modeled as having a Q10 = 2.0 (Devault,
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Figure 4. Diagram of strategy space. The (r,E) plane is divided
into a region in the first quadrant where L > 0 corresponds to the
set of allowable strategies. The optimal strategy occurs at the point(
ropt,Eopt

)
, denoted by the red rectangle, where µ= µL = µP =

µE .

1980). We model the phytoplankton community residing in a
given environment by assuming it consists solely of the phy-
toplankton type using the highest growth rate strategy in that
environment. This strategy is found by solving for the values
of r and E and that make

µ= µL = µP = µE . (16)

We will now show that under two assumptions that will be
true in nearly any realistic situation, a strategy maximizing
µ always exists, is unique, and satisfies µ= µL = µP = µE
(Fig. 4). The function µL is a function of the chosen strat-
egy (r,E), and it is an increasing function of r and decreas-
ing function of E. The first assumption is that light levels
are sufficiently high that there exists some rmin such that
µL (rmin,0) > 0, which means that light is sufficient for some
phytoplankton to be able to overcome maintenance costs.
The function µP is a monotonically decreasing function of
both r and E. As there is a non-zero amount of P contained
in the structure pool, and because uptake rates decline to zero
with r , there will be some rmax at whichµP (rmax,0) > 0. The
second assumption is that rmin < rmax, which will be true for
most realistic values of the light level. We note that for fixed
r , µE is a monotonically decreasing function of E. Since
none ofµE ,µL, orµP have critical points, the functionµ can
only have a maximum at places where two or more ofµL,µP,
and µE are equal, or at the boundaries of the strategy space.
On the boundaries of strategy space, E = 0 or L= 0 so that
µ≤ 0. We can exclude the boundary and focus on places
where two or more of µL, µP, and µE are equal. We define
two curves: one on which µL = µE , and the other on which

µP = µE . The curve for which µL = µE begins at the point
r = rmin and can be described by a monotonically increasing
function E = g (r) on the interval [rmin,∞]. This curve ex-
ists because µE = 0 when E = 0, µL > 0 when E = 0 and
rmin < r , and µL < 0 when L= 1− S (r)−E = 0, so that
there is always a solution to µL = µE for fixed r > rmin. To
see that the curve is an increasing function of r , consider
the function V (E,r)= µL−µE and apply the chain rule
to the equation V (g (r) ,r)= 0 to find that along the curve
E = g(r):

dE
dr
= g′ (r)=

−
∂V
∂r
∂V
∂E

. (17)

We consider the terms in Eq. (17) carefully. The func-
tion V is an increasing function of r because µE is inde-
pendent of r and because µL is an increasing function of r
(for a fixed investment in biosynthesis, a larger radius leads
to a greater investment in photosynthesis and greater pho-
tosynthetic growth rate). Thus, the numerator of Eq. (17) is
negative. The function V is a decreasing function of E be-
cause µL is a decreasing function of E (greater investments
in biosynthesis at fixed radius lead to smaller investments in
photosynthesis) and µE is an increasing function of E. Thus
the denominator of Eq. (17) is negative, and the quotient on
the right-hand side is positive, so g′ (r)is positive and de-
scribes an increasing curve.

By similar logic, we can define a curve h(r) that solves
the equation µP (h,r)= µE (h,r). This curve exists on
the finite interval [rI , rmax], where rI solves the equation
µP (1− S (rI ) ,rI )= µE (1− S (rI ) ,rI ). Thus, h(r) repre-
sents a decreasing curve from the point (1− S (rI ) ,rI ) to
(0, rmax). We can see that h(r) is always decreasing by us-
ing the chain rule on µP (h,r)−µE (h,r)= 0, just as in the
previous argument.

The growth maximizing strategy must occur somewhere
on the curves described by (g (r) ,r) and (h(r) ,r). The func-
tions µ1 (r)= µ(g (r) ,r) and µ2 (r)= µ(h(r) ,r) are con-
tinuously differentiable functions of r except where g (r)=
h(r) (which must exist by the intermediate value theorem).
Therefore, the only place where µ can have a maximum is
at the place where g (r) and h(r) intersect. This is the strat-
egy that leads to equality of all the growth rates. We refer to
this strategy, as a function of environmental conditions, as
(rm (P,I,T ),Em (P,I,T ),Lm (P,I,T )). Using this strat-
egy, we can predict the stoichiometry of the functional com-
ponents of the phytoplankton population in a given environ-
ment.

We assume that real phytoplankton populations cluster
near the optimal strategy in the local environment (Norberg
et al., 2001):

(Em, rm)= argmax(E,r)µ. (18)

For all values of environmental parameters used in this study,
the unique maximum of the growth rate occurs for the set of
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parameter values that lead to co-limitation by nutrients, pho-
tosynthesis, and biosynthesis, analogously to the predictions
of Klausmeier et al. (2004). The optimal strategy determines
the model prediction of the C :P of functional components in
a given environment by taking the quotient of the carbon and
phosphorus quotas. The carbon quota is calculated as

QC = (19)(
mlipα

r
plipClip +pcarbCcarb +αEECrib +

(
(1−αE )E+L+

mprotα

r

)
Cprot +pDNACDNA

)
4
3 πr

3ρcellpdry
.

Here we see the contributions of carbon contained in both
functional and storage pools, the latter of which are assumed
to occupy a fixed fraction of the cell independent of the envi-
ronment (but linked to cell size).

Measurements of cellular P partitioning indicate that the
ribosomal RNA can sometimes contribute only 33 % of the
total P quota (Garcia et al., 2016). The additional phos-
phorus includes membrane phospholipids and storage com-
pounds, each of which can be up- or down-regulated in re-
sponse to phosphorus availability in the environment. To
model this phenomenon, we assume the existence of an ad-
ditional stored P pool, whose size is a linear function of en-
vironmental P, or

(P : C)storage = ε [P] , (20)

where ε is determined by the best fit to the Martiny et
al. (2014) data. Our model then predicts C :P as

C : P=
1

(P : C)(Em,rm)+ ε [P]
. (21)

The model parameter ε is calculated by minimizing the
residuals of the P :C ratio predicted by Eq. (19) in com-
parison to the global dataset on particulate organic matter
stoichiometry compiled by Martiny et al. (2014). To main-
tain consistency with the linear regression model of Gal-
braith and Martiny (2015), we restrict the dataset to obser-
vations from the upper 30 m of the water column containing
particulate organic phosphorus and carbon concentrations of
greater than 5 nM. Observations from the same station and
the same day, but at different depths in the water column,
are averaged together. The P :C ratio of the functional ap-
paratus is calculated using irradiance, T , and P data from
the World Ocean Atlas (Garcia et al., 2014; Locarnini et al.,
2013; https://oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/
MODIS/L3B/PAR/2014/, last access: 12 April 2018.), which
are used to estimate environmental conditions at the loca-
tion and date of particulate organic matter measurements.
Light levels are computed by averaging irradiance over the
top 50 m of the water column, assuming an e-folding depth
of 20 m. Linear regression determines ε = 2500 M−1, which
fits the data with an R2

= 0.28. All parameters for the model
are listed in Table 2.

2.3 Experimental design

To address how changing environmental conditions affected
stoichiometric ratios, carbon export, and pCO2,atm we per-
formed two tests: a change in nutrients and a change in sea
surface temperature. These tests allowed us to observe how
the relationships between environmental conditions, carbon
export and pCO2,atm depend on the mechanisms responsi-
ble for stoichiometric variation in the ocean. In order to ac-
count for the effects of particulate inorganic carbon (PIC)
export, we multiply model-predicted C :Pexport by 1.2, con-
sistent with previous studies (Broecker, 1982; Sarmiento and
Toggweiler, 1984).

The first set of numerical experiments examined the sensi-
tivity of pCO2,atm to nutrient availability in the tropical and
subtropical boxes for each of the three stoichiometric mod-
els. We varied tropical P from 0.15 to 1.5 µM and subtropical
P from 1× 10−3 to 0.5 µM by adjusting the implied biologi-
cal export and determined the equilibrium pCO2,atm values.

The second set of experimental tests was done to quantify
how temperature modifies carbon export and pCO2,atm for
each stoichiometric model. Temperature influences carbon
cycling in two ways within our model: through the solubility
of inorganic carbon in seawater and through changes in phy-
toplankton stoichiometry within the temperature-only and
multi-environmental models. Due to the well-known effects
of temperature on CO2 solubility, it is generally predicted
that there is to be a positive feedback between pCO2,atm
and temperature mediated by declining CO2 solubility at
high temperatures. To study the relative strengths of the tem-
perature solubility feedback and the temperature regulation
of C :P feedback, we performed a numerical experiment in
which we varied the sea surface temperature by 5 ◦C in ei-
ther direction of modern sea surface temperature. This rep-
resents a plausible range of variation under both ice-age and
anthropogenic climate change scenarios. We varied tropical
temperature from 21 to 31 ◦C and subtropical temperature
from 19 to 29 ◦C, determining equilibrium pCO2,atm values
for combinations of temperature conditions.

3 Results

To quantify the linkages between phytoplankton physiology,
elemental stoichiometry, and ocean carbon cycling, we di-
vide our results into two parts. The first is a direct study of the
stoichiometric models, comparing their predictions about the
relationship between stoichiometry and environmental con-
ditions, and in the case of the trait-based model, illustrating
how cellular physiology is predicted to vary across these con-
ditions. In the second part, we show how variable stoichiom-
etry influences carbon export and pCO2,atm, under chang-
ing phosphorus concentrations and temperature. Within these
results, we distinguish the influence or lack thereof off the
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Table 2. Physiological model constants.

Parameter Description Value Units Source

α Proportionality coefficient for
radius

0.12 – Toseland et al. (2013)

γ Percent dry mass devoted to
structure other than membrane

0.2 – Toseland et al. (2013)

kE0 Synthesis rate of biosynthesis
apparatus at T0 = 25

0.168 h−1 Shuter (1979)

Q10,E Q10 of biosynthetic apparatus 2.0 Shuter (1979)
8M0 Specific carbon cost of maintenance

at T0 = 25
10−3 h−1 Shuter (1979)

Q10,M Q10 of maintenance 2.0 – Shuter (1979)
Q10,P Q10 of photosynthesis 1.0 Shuter (1979)
8S Carbon cost of synthesis 0.67 – Shuter (1979)
aP Allometric scaling constant for

VMP

1.04× 10−16 (mol P) (h)−1 Edwards et al. (2012)

bP Allometric scaling exponent for
VMP

3.0 – Edwards et al. (2012)

aK Allometric scaling constant for KP 6.4× 10−8 (mol P) (L)−1 Edwards et al. (2012)
bK Allometric scaling exponent forKP 1.23 – Edwards et al. (2012)
ρcell Cell density 106 g m−3 Shuter (1979)
pdry Fraction of dry mass in cell 0.47 – Toseland et al. (2013)
αE Fraction of dry mass in biosynthetic

apparatus devoted to ribosomes
0.55 – Toseland et al. (2013)

Prib Fraction of ribosomal mass in
phosphorus

0.047 – Sterner and Elser (2002)

pDNA Fraction of cell dry mass in DNA 0.01 – Toseland et al. (2013)
PDNA Fraction of DNA mass in

phosphorus
0.095 – Sterner and Elser (2002)

k1 Specific efficiency of carbon
fixation apparatus

0.373 h−1 Talmy et al. (2013)

k2 Specific efficiency of electron
transport apparatus

0.857 h−1 Talmy et al. (2013)

αPh Light absorption 1.97 m2 gC−1 Morel and Bricaud (1981)
φM Maximum quantum efficiency 10−6 gC µmol photons−1 Falkowski and Raven (1997)
mlip Fraction of cell membrane

composed of lipids
0.3 – Toseland et al. (2013)

mprot Fraction of cell membrane
composed of protein

0.7 – Toseland et al. (2013)

plip Fraction of cell dry mass in storage
lipids

0.1 – Sterner and Elser (2002)

pcarb Fraction of cell dry mass in storage
carbohydrates

0.04 – Sterner and Elser (2002)

CDNA Fraction of DNA mass in carbon 0.36 – Sterner and Elser (2002)
Crib Fraction of ribosomal mass in

carbon
0.42 – Sterner and Elser (2002)

Cprot Fraction of protein mass in carbon 0.53 – Sterner and Elser (2002)
Clip Fraction of lipid mass in carbon 0.76 – Sterner and Elser (2002)
Ccarb Fraction of carbohydrate mass in

carbon
0.4 – Sterner and Elser (2002)

www.biogeosciences.net/15/2761/2018/ Biogeosciences, 15, 2761–2779, 2018



2770 A. R. Moreno et al.: Marine phytoplankton stoichiometry

Cell radius (r)

50 100 150 200 250

Irradiance ( I E m-2 s-1)

10-2

100

Ph
os

ph
at

e 
([
P]

, 
M

)

(a) P storage allocation

50 100 150 200 250

Irradiance ( I E m-2 s-1)

10-2

100
(b) Biosynthesis (E) allocation

50 100 150 200 250

Irradiance ( I E m-2 s-1)

10-2

100
(c) Photosynthesis (L) allocation

50 100 150 200 250

Irradiance ( I E m-2 s-1)

10-2

100
(d) C : P ratio

50 100 150 200 250

Irradiance ( I E m-2 s-1)

10-2

100
(e)

30 20
10

5

0.15

0.05

0.3

0.325
0.3 0.25

0.20

0.15
0.5

0.55

0.65

0.45

120
150

175

200

250

0.1

Figure 5. Influence of phosphate concentration and irradiance on cellular stoichiometry and cellular traits, at a constant T = 25 ◦C. (a) Cell
radius (r). (b) P storage allocation. (c) Biosynthesis allocation. (d) Photosynthesis (L) allocation. (e) The C :P ratio. As irradiance increases,
there is a tendency towards greater allocation to biosynthesis and lesser allocation to photosynthesis, which leads to lower C :P ratios. When
phosphorus is very low, there is a large decrease in both biosynthesis and photosynthesis allocations due to the large relative allocation to
the cell membrane. C :P ratios are inversely proportional to phosphorus concentration, driven by an increase in luxury storage and ribosomal
content as P increases.

three distinct biomes; in particular the equatorial upwelling
regions and the macronutrient depleted subtropical gyres.

3.1 Multi-environmental and physiological controls on
plankton stoichiometry

Our multi-environmental model captured several major
mechanisms hypothesized to be environmental drivers of
C :P ratios, including a temperature dependence of many
cellular processes, a link between growth rate and ribosome
abundance, and storage drawdown during nutrient limitation.
The predicted relationship between environmental conditions
and C :P can be understood through the environmental reg-
ulation of three factors: (i) the balance between photosyn-
thetic proteins and ribosomes, (ii) the cell radius and asso-
ciated allocation to structural material, and (iii) the degree
of phosphorus storage. Our model predicted that for an opti-
mal strategy, specific protein synthesis rates will match spe-
cific rates of carbon fixation. Thus, the ratio of photosyn-
thetic machinery to biosynthetic machinery is primarily con-
trolled by irradiance and temperature. Increases in light lev-
els lead to higher photosynthetic efficiency, higher ribosome
content, smaller cells (due to a lower requirement for pho-
tosynthetic machinery), and lower C :P ratios (Fig. 5). The
response of C :P to light levels predicted by our model was
muted in comparison to other subcellular compartment mod-
els because we separately modeled electron transport and
carbon fixation (Talmy et al., 2013), and our predictions were
consistent with the weak relationship between irradiance and
C :P (Thrane et al., 2016) (Fig. 5a).

Increases in temperature increase the efficiency of biosyn-
thesis, but not photosynthesis. Therefore elevated tempera-
ture lead to a reduced ribosome content relative to photosyn-
thetic proteins and higher C :P ratios (Fig. 6a). This leads to
a non-monotonic, concave relationship between temperature
and cell size, which is due to a subtle interaction between
biosynthesis efficiency (which varies greatly with tempera-
ture), maintenance costs, and size-dependent uptake rates.

Nutrient concentrations do not affect the ratio of biosyn-
thetic to photosynthetic machinery but positively relate to
both P storage and cell radius. Cell radius directly influences
the specific rate of nutrient uptake and indirectly influences
biosynthesis and photosynthesis as the cell membrane and
wall affects the space available for other investments. This
effect is pronounced in oligotrophic conditions (P < 100 nM).
Here, cell radius declines below 1 µm, resulting in decreas-
ing allocations to both photosynthesis and biosynthesis and
elevated C :P ratios. Higher values of the cell radius are ob-
served in nutrient-rich conditions.

P concentrations also influenced C :P through the direct
control of P storage. We plotted the relative contribution of
the storage compartment and the functional compartment to
the P quota, as a function of environmental conditions. The
impact of the residual pool on the overall size of the P pool
is heavily dependent on environmental conditions, varying
from a minimum of close to 0 % to a maximum of just un-
der 50 %. In the vast majority of the parameter range con-
sidered here, the contribution of the residual pool is much
more modest (10–20 %). High values occur when phospho-
rus is available and the temperature is high. In these con-
ditions, ribosomal contributions are decreased but the resid-
ual contribution is high. In cold water, high P ecosystems,
the residual contribution is approximately 25 %, and in olig-
otrophic ecosystems it is close to 0. Thus, C :P was predicted
to be a decreasing function of P with two distinct regimes: a
moderate-sensitivity regime for P above 100 nM, and a high-
sensitivity regime for P below 100 nM.

We next used the outcome of the trait model as a multi-
environmental model to predict C :P ratios in the modern
ocean based on annual mean light, T , and P. Our predictions
reproduced the global pattern (Martiny et al., 2013b) with
C :P ratios above the Redfield ratio in subtropical gyres and
C :P ratios below the Redfield ratio in equatorial and coastal
upwelling regions and subpolar gyres (Fig. 7a). Additionally,
our model also reproduced basin-scale stoichiometric gra-
dients among similar biomes in each ocean, predicting the
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Figure 6. Influence of phosphate concentration and temperature on cellular stoichiometry and cellular traits, at a constant irradiance
I = 50 µE m−2 s−1. (a) Cell radius (r). (b) P storage allocation. (c) Biosynthesis allocation. (d) Photosynthesis (L) allocation. (e) The
C :P ratio. Consistent with the translation compensation hypothesis, increases in T led to a reduction in the allocation to biosynthesis and an
increase in C :P.

Figure 7. Predicted C :P ratios in the global ocean in differing climatic regimes. (a) C :P ratio under modern ocean conditions. Large
differences in C :P are predicted between distinct types of ocean biome, with low C :P in equatorial upwelling regions and subpolar gyres,
and high C :P in subtropical gyres. Regional differences between biomes of similar type are observed as well, with the low-phosphorus
Atlantic having a higher C :P than the Pacific. (b) C :P ratio under cooling temperature conditions (−5 ◦C from the modern ocean). (c) C :P
ratio under warming temperature conditions (+5 ◦C from the modern ocean). Each 5 ◦C change leads to a shift of 15 % in the mean C :P
ratio of organic matter.

highest C :P ratios in the western Mediterranean Sea and the
western North Atlantic Subtropical Gyre, and somewhat el-
evated C :P ratios in the South Atlantic Subtropical Gyre as
well as the North and South Pacific subtropical gyres.

To study the potential impact of sea surface tempera-
ture on phytoplankton resource allocation and stoichiome-
try, we used our multi-environmental model to predict C :P
in ocean conditions both 5 ◦C colder (cooling environments)
and warmer (warming environments) than the modern ocean.
According to our model, a 5 ◦C increase (or decrease) in sea
surface temperature would cause a 15 % rise (or fall) in C :P
ratios (Fig. 7). This sensitivity suggested that the relative ef-
fect of T on biochemical processes could have large implica-
tions for biogeochemical cycles, making it important to de-
termine the relative importance of physiological mechanisms
regulating C :P ratios.

We compared the multi-environmental model to the pre-
dictions made by two other models: the nutrient-only model
used by the Galbraith and Martiny model (2015), and our
temperature-only model modified from Yvon-Durocher et
al. (2015). These two models also successfully predicted

the qualitative pattern of stoichiometric variation in the
ocean, but they were unable to replicate the full range of
variation observed in the data (Fig. 8). In particular, there
were mismatches in the North Atlantic Subtropical Gyre
and the Southern Ocean, where the C :P ratio is at the ex-
treme (Fig. 8a, b). The nutrient-only model had a tendency
to predict lower C :P ratios than the multi-environmental
model in warm tropical and subtropical waters, and pre-
dict higher C :P ratios in cold waters (Fig. 8a). This dif-
ference is driven by the T sensitivity of biosynthesis in the
multi-environmental model, leading to increasing C :P in all
warm-water regions and decreasing C :P in cold-water re-
gions (Fig. 8c). The multi-environmental model predicted
a wider range of C :P in the ocean. The temperature-only
model overall had higher C :P ratios globally compared with
the multi-environmental model (Fig. 8b) but suggested lower
C :P in the gyres and higher C :P in high latitudes, especially
in the Southern Ocean (Fig. 8d).
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Figure 8. Comparison of C :P between the multi-environmental model and the nutrient-only model and temperature-only model. The upper
panels show predicted C :P for the global ocean under the nutrient-only (a) and temperature-only (b) models, and the lower panels show the
normalized difference, i.e., C :Psubcell−C :Pother

C :Psubcell
, between the C :P in the subcellular model (c, d).

3.2 Impact of nutrient availability on carbon export
and atmospheric pCO2

We next quantified the impact of nutrient availability in the
tropics and subtropics on stoichiometry, carbon export, and
pCO2,atm (Fig. 9a–l). Using a constant Redfield model (or
the temperature-only model), we replicated the previously
observed approximately linear relationship between surface
P and pCO2,atm (equivalent to how pre-formed P will in-
fluence pCO2,atm) (Sigman and Boyle, 2000; Ito and Fol-
lows, 2003). We found that P drawdown in the subtropical
box had a greater impact on carbon export, since export from
the high-latitude box was not enhanced by the P supply from
the subtropical box (Fig. 9a, d, g). In the Redfield model,
pCO2,atm appeared to be much more sensitive to subtropi-
cal P than tropical P, which was partially due to enhanced
carbon export in the subtropical box and partially due to the
larger surface area of the subtropical box (implying a greater
potential for CO2 exchange) (Fig. 9j).

In contrast to the predictions made using Redfield stoi-
chiometry, when we used the nutrient-only model for phyto-
plankton stoichiometry, we observed a nonlinear relationship

between surface P and pCO2,atm (Fig. 9b, e, h, k). At fixed
tropical P, there was a strong relationship between subtrop-
ical P drawdown, export, and pCO2,atm in accordance with
the findings of Galbraith and Martiny (2015) (Fig. 9b, e, h).
The total decline in pCO2,atm as subtropical P declined from
0.4 to 1× 10−3 µM could be more than 60 ppm, which was
more than twice the decline that occurred in the fixed stoi-
chiometry experiment (Fig. 9k). We found a nonlinear mono-
tonic relationship between tropical P and pCO2,atm: when
tropical P was high, declines in tropical P led to lower car-
bon export and increased pCO2,atm. However, this trend re-
versed when tropical P was further drawn down (Fig. 9k).
The counter-intuitive decline in pCO2,atm with higher ex-
port from the tropics was driven by a teleconnection in nu-
trient delivery between the subtropical and tropical boxes.
Increases in export in the tropical box due to P drawdown
decreased the supply of P to the subtropics, which led to a de-
crease in the more efficient (higher C :P) subtropical export.
Thus, the nutrient-only model predicted a greater decrease in
subtropical export than the increase in tropical export.

The multi-environmental model also predicted a nonlin-
ear relationship between P drawdown, carbon export, and
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Figure 9. Carbon export (Tmol C yr−1) and pCO2,atm (ppm) in changing surface phosphate concentrations. Columns correspond to type of
stoichiometry: Redfield (a, d, g, j), nutrient-only (b, e, h, k), and multi-environmental model (c, f, i, l). Rows correspond to either tropical
carbon export (a–c), subtropical carbon export (d–f), total carbon export (g–i), or atmospheric pCO2 (j–l). The grey points represent where
pCO2,atm was calculated, between spaces are interpolated.

pCO2,atm. However, the pattern was somewhat distinct from
that of the nutrient-only model results (Fig. 9c, f, i, l). First,
subtropical P drawdown had a nonlinear relationship with

pCO2,atm: when subtropical P was high, declines in tropi-
cal P led to slight declines in pCO2,atm, and when subtrop-
ical P is low, small declines in tropical P lead to large de-
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Figure 10. pCO2,atm (ppm) as a function of changing surface temperature concentrations. Based on (a) Redfield (fixed) stoichiometry model,
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clines in pCO2,atm. This intensification of the relationship
between subtropical P and pCO2,atm was due to the nonlin-
ear relationship between P and C :P predicted by the trait-
based model (Fig. 9i). The multi-environmental model pre-
dicted extremely high tropical export, but only when P was
lower than 0.05 µM (Fig. 9c, f, i). Second, the effect of tropi-
cal P levels on pCO2,atm was strongly modulated by subtrop-
ical P, reversing from a negative to a positive relationship as
subtropical P declines (Fig. 9i, l). The difference between
the nutrient-only model and the multi-environmental model
arose because the multi-environmental model incorporated
a temperature impact on resource allocation and elemental
ratios. Although we were not varying temperature in these
experiments, we did represent regional temperatures differ-
ences between the different boxes. The result is that a large
stoichiometric contrast between the tropical and subtropical
regions only arose when there was a large difference in nutri-
ent levels between the two regions (Fig. 9l). However, both
the nutrient-only model and the multi-environmental model
predicted that carbon export and pCO2,atm were sensitive
to the interaction between regional nutrient availability and
C :Pexport.

3.3 Interactive effect of temperature on stoichiometry,
carbon export, and atmospheric pCO2

We next quantified the impact of sea surface tempera-
ture (SST) in the tropics and subtropics on C :Pexport,
carbon export, and pCO2,atm (Fig. 10a–d). The Redfield
model predicts that increases in temperature lead to a de-
cline in the solubility of CO2 in seawater and conse-
quently an increase in pCO2,atm from 288 to 300 ppm (1
pCO2,atm = 12) (Fig. 10a). This feedback was present with
the same strength in the nutrient-only model (with no T de-
pendence on C :P), in which pCO2,atm ranged from 268 to
280 ppm (1 pCO2,atm = 12) (Fig. 10b).

In contrast to the Redfield and nutrient-only models, the
temperature-only model predicted a negative linear relation-

ship between pCO2,atm and tropical sea surface T and a
positive linear relationship between pCO2,atm and subtrop-
ical sea surface T (Fig. 10c). The decline in pCO2,atm with
tropical SST was driven by an enhancement of export due
to increased C :P at higher temperatures (Fig. 11). At 5 ◦C
below modern ocean temperature, the model predicted C :P
in the tropics was 131 and subtropical was 121, resulting in
a pCO2,atm of 305 ppm. At 5 ◦C above modern ocean tem-
perature, the model predicts a C :P ratio in the tropics of
189 and C :P ratio of 175 in the subtropics, resulting in a
pCO2,atm of 263 ppm. Tropical SST had more impact with
1pCO2,atm = 41 ppm compared to subtropical SST, with a
1pCO2,atm ranging from 4 to 5 ppm (Fig. 11).

Similar to the temperature-only model, the multi-
environmental model predicted a negative linear relationship
between pCO2,atm and tropical SST and a positive linear re-
lationship between pCO2,atm and subtropical SST (Fig. 10d).
The decline in pCO2,atm with tropical SST was driven by an
enhancement of export due to increased C :P at higher tem-
peratures (Fig. 11). In the subtropical region, the expected
increase in export was mitigated by a decline in solubility.
At 5 ◦C below modern ocean temperature, the trait-based
model predicted that C :P in the tropics was 147 and that
C :P in the subtropics was 155, resulting in an increase in
pCO2,atm to 279 ppm (Fig. 11). Variation in tropical SST
over a 10 ◦C span led to a significant decline in pCO2,atm,
with a 1pCO2,atm of approximately 46, and tropical C :P
ranging from 147 to 210 (Fig. 11). Because the subtropical
box has a large surface area, the decrease in surface CO2
solubility at high temperatures is sufficient to overcome the
increase in export due to higher C :P leading to a positive re-
lationship between pCO2,atm and subtropical temperatures.

4 Discussion

Here, we found that variable stoichiometry of exported
organic material moderates the interaction between low-
latitude nutrient fluxes and ocean carbon cycling. A full con-
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Figure 11. The effect of changing sea surface temperature (◦C)
on pCO2,atm and total carbon export (Tmol C yr−1) in the
temperature-only and multi-environmental model. Phosphate con-
centrations are 0.3 µM in the tropical and 0.05 µM in the subtropi-
cal box. Multi-environmental model total carbon export is the solid
grey line, and pCO2,atm is the dashed grey line. Temperature-only
model total carbon export is the solid black line, and pCO2,atm is
the dashed black line.

necting circulation allows for complete movement of nutri-
ents between ocean regions resulting in strong linkages be-
tween nutrient supply ratios and cellular stoichiometric ra-
tios (Deutsch and Weber, 2012). It has been shown that the
inclusion of an oceanic circulation connecting high- and low-
latitude regions results in a feedback effect between high-
latitude nutrient export and relative nutrient supply in low-
latitudes (Sarmiento et al., 2004; Weber and Deutsch, 2010).
Together, the inclusion of lateral transport between ocean re-
gions and of deviations from Redfield stoichiometry within
our model led us to predict the existence of strong telecon-
nections between the tropics and the macronutrient-limited
subtropics. The degree of nutrient drawdown in the tropics
had a strongly non-monotonic relationship with pCO2,atm
because this drawdown influenced both nutrient supply to
the subtropics and tropical C :P. The idea of biogeochemical
teleconnections has been proposed before, but we found that
variations in stoichiometry greatly enhance the importance
and strength of such linkages (Sarmiento and Toggweiler,
1984). Thus biome-scale variations in phytoplankton ele-
mental stoichiometry may change the sensitivity of the car-
bon pump to other phenomena that regulate patterns of nutri-
ent drawdown. We also see that the degree of nutrient draw-
down had a strong impact on predicted (and observed) C :P
leading to highly nonlinear controls on pCO2,atm, whereby
increased export in the tropics counter-intuitively leads to

increasing pCO2,atm. Large-scale gradients in stoichiome-
try can alter the regional efficiency of the biological pump:
P supplied to high C :P regions leads to a larger export of
carbon than P supplied to low C :P regions. This lends an
important role to details of ocean circulation and other pro-
cesses that alter nutrient supply and phytoplankton physio-
logical responses in different surface ocean regions. There-
fore, biome-scale variations in phytoplankton elemental stoi-
chiometry can lead to a fundamental change in the partition-
ing of carbon between the atmosphere and the ocean.

We have created a box model to simulate the impact of the
low-latitude stoichiometric ratios, its environmental control-
ling factors, and the relationships to pCO2,atm. Low-latitude
phosphorus concentrations can be set in one of two fash-
ions; through iron limitation and through nutrient supply.
Here we will briefly discussion how iron limitation would
play a significant role on phosphorus concentrations and as-
sociated C :P. The biogeochemical functioning of tropical re-
gions are commonly influenced by iron availability in such a
way that macronutrients cannot be fully drawn down by phy-
toplankton (Coale et al., 1996; Raven et al., 1999; Moore,
2004). The degree of nutrient drawdown has a strong im-
pact on predicted (and observed) C :P. This environmental
control on C :P could lead to highly nonlinear controls on
pCO2,atm, whereby increased iron availability lead to in-
creased P drawdown and export in the tropics. However,
as we have shown this may lead to increasing rather than
commonly assumed decreasing pCO2,atm. This link between
iron and export would differ in the subtropics, where iron
is thought to stimulate nitrogen levels through nitrogen fix-
ation. This would result in elevated phosphate drawdown,
higher C :P, and higher export. Thus, iron availability may
play a complex role depending on whether there is an in-
creased delivery in upwelling zones (leading to a potential
declining global C export) or in the subtropical gyres (lead-
ing to a potential increase in global C export).

Past studies using box models have found pCO2,atm to
be insensitive to low-latitude nutrients (Sarmiento and Tog-
gweiler, 1984; Toggweiler, 1999; Follows et al., 2002; Ito
and Follows, 2003). This phenomenon was explored by De-
Vries and Primeau (2009), who showed that the strength
of the thermohaline circulation is the strongest control on
pCO2,atm, and that changes in low-latitude export have a
minor impact. Unlike our study, such earlier work relied
on a uniform Redfield stoichiometry. However, we find that
when stoichiometric variation is included, carbon export and
pCO2,atm become dependent on details of low-latitude pro-
cesses.

It is important to recognize that a five-box model is an in-
complete description of ocean circulation and that it is here
used to illustrate important mechanisms, not to make pre-
cise quantitative predictions. In order for our model to ad-
equately reflect important features of the carbon and phos-
phorus nutrient distributions, we had to carefully select the
values of the thermohaline and wind-driven upper ocean cir-
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culations that lead to reasonable nutrient fluxes and stand-
ing stocks. The value of thermocline circulation, Tc, has
been calibrated in different box models to range from 12 to
30 Sv (Sarmiento and Toggweiler, 1984; Toggweiler, 1999;
DeVries and Primeau, 2009; Galbraith and Martiny, 2015).
Variations in the thermohaline circulation influence the abun-
dance of nutrients in different boxes. Depending on the
strength of this circulation, our model accumulated nutri-
ents in the thermocline box and we tuned this parameter to
most accurately mimic nutrient variation across ocean re-
gions. Other caveats relates to our choice of the wind driven
overturning circulation and the two-way flux values. Similar
to the circulation values, a wide range of two-way flux values
have been used in the literature. We therefore performed sen-
sitivity experiments to find the best value for our full model
setup, but the qualitative trends observed are insensitive to
the choice of such fluxes.

Nutrient availability and temperature have been alterna-
tively proposed as drivers of variation in stoichiometric ra-
tios in the global ocean, and the strong statistical correlation
between temperature and nutrients throughout the ocean has
prevented identification of the relative importance of each
factor (Martiny et al., 2013b; Moreno and Martiny, 2018).
We see that although temperature regulation of C :Pexport
can influence pCO2,atm, this regulation is strongly depen-
dent on the detailed physiological control mechanism and
also generally diverge from expectations based on the sol-
ubility pump. The decrease in surface CO2 solubility at el-
evated temperature is sufficient to overcome the increase in
export due to higher C :P leading to a positive relationship
between pCO2,atm and subtropical temperatures. It is impor-
tant to point out that the relative importance of the two com-
peting effect depends critically on the physical circulation of
the ocean. Predicted increases in stratification are often in-
voked as a mechanism that would decrease the vertical sup-
ply of nutrients, which one might think would further com-
pensate for the effect of higher C :P. However, the strength
of the biological pump in the subtropics is also influenced by
lateral transport of nutrients (Letscher et al., 2015) as such
we argue that it is unclear if you should expect increasing,
unchanged, or decreasing C export in low-latitude regions
with ocean warming and stratification. Similarly, it is unclear
how increases in stratification might affect the strength of
the solubility pump. The sensitivity of pCO2,atm to changes
in subtropical surface temperatures depends critically on the
volume of the ocean ventilated from the subtropics, i.e., on
the volume of the thermocline box in our model. How this
volume might change in response to a warming world is a
complicated dynamical problem that is beyond the scope of
the present work.

Our results do not identify whether temperature or nu-
trient concentrations is the most important driver of phy-
toplankton C :P, but they do suggest that the physiological
effect of temperature could be important for ocean carbon
cycling. Both the temperature-only and multi-environmental

models predict that temperature increases enhance tropical
export, causing substantial decreases in pCO2,atm with tem-
perature. This relationship is the reverse of that predicted
by the nutrient-only and Redfield models and represents a
sizable potential negative feedback on carbon cycling. The
multi-environmental model also predicted that C :P responds
in a nonlinear fashion to P, with significantly increased sen-
sitivity in highly oligotrophic conditions. Thus, a deeper un-
derstanding of the physiological mechanisms regulating phy-
toplankton C :P ratios is key to understanding the carbon cy-
cle.

Our derivation of the multi-environmental model relies on
several important assumptions. The growth rate in the multi-
environmental model is determined by a set of environmen-
tal conditions and quantified by the specific rate of protein
synthesis, carbon fixation, and phosphorus uptake. The ef-
fect of growth rate on stoichiometry will likely be dependent
on whether light, a specific nutrient, or temperature controls
growth (Moreno and Martiny, 2018). The magnitude of Q10
leads to uncertainty in our multi-environmental model be-
cause the range of possible values is highly dependent on the
cell or organism being tested. In a study examining Q10 of
various processes within the cell, it was found that the Q10
of photochemical processes ranged from 1.0 to 2.08, and for
carboxylase activity of RuBisCO to be 2.66 (Raven and Gei-
der, 1988). In addition to the high uncertainty between Q10
values, there is high ambiguity associated with cellular inor-
ganic P stores (e.g., polyphosphates and phospholipids) (Ko-
rnberg et al., 1999). P storage, such as polyphosphates, can
serve as both energy and nutrient storage that may be reg-
ulated by unique environmental factors. Thus, we recognize
multiple caveats within the trait-based model but expect that
it improves our ability to link environmental and phytoplank-
ton stoichiometry variation.

5 Conclusions

We find that processes that affect nutrient supply in olig-
otrophic gyres, such as the strength of the thermohaline cir-
culation, are particularly important in setting pCO2,atm but
via a complex link with C :Pexport. By explicitly modeling the
shallow overturning circulation, we showed that increased
export in the tropics, which might be influenced by increased
atmospheric iron dust deposition, may lead to increases,
rather than decreases, in pCO2,atm. Increased P drawdown in
the tropics shifts export away from the subtropical gyres and
changes the mean export C :P in the low-latitude ocean. Ad-
ditionally, we find that it is difficult to separate nutrient sup-
ply and temperature controls on marine phytoplankton stoi-
chiometry, carbon export, and pCO2,atm and we need better
physiological experiments and field data to fully understand
the relative impact of the two factors. Nevertheless, it is likely
that both play a key role in regulating phytoplankton stoi-
chiometry, C :Pexport, and ultimately ocean carbon cycling.
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