
Biogeosciences, 15, 2909–2930, 2018
https://doi.org/10.5194/bg-15-2909-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

A Bayesian ensemble data assimilation to constrain model
parameters and land-use carbon emissions
Sebastian Lienert1,2 and Fortunat Joos1,2

1Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
2Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

Correspondence: Sebastian Lienert (lienert@climate.unibe.ch)

Received: 31 January 2018 – Discussion started: 2 February 2018
Revised: 13 April 2018 – Accepted: 25 April 2018 – Published: 16 May 2018

Abstract. A dynamic global vegetation model (DGVM) is
applied in a probabilistic framework and benchmarking sys-
tem to constrain uncertain model parameters by observations
and to quantify carbon emissions from land-use and land-
cover change (LULCC). Processes featured in DGVMs in-
clude parameters which are prone to substantial uncertainty.
To cope with these uncertainties Latin hypercube sampling
(LHS) is used to create a 1000-member perturbed param-
eter ensemble, which is then evaluated with a diverse set
of global and spatiotemporally resolved observational con-
straints. We discuss the performance of the constrained en-
semble and use it to formulate a new best-guess version of
the model (LPX-Bern v1.4). The observationally constrained
ensemble is used to investigate historical emissions due to
LULCC (ELUC) and their sensitivity to model parametriza-
tion. We find a global ELUC estimate of 158 (108, 211) PgC
(median and 90 % confidence interval) between 1800 and
2016. We compare ELUC to other estimates both globally
and regionally. Spatial patterns are investigated and estimates
of ELUC of the 10 countries with the largest contribution to
the flux over the historical period are reported. We consider
model versions with and without additional land-use pro-
cesses (shifting cultivation and wood harvest) and find that
the difference in global ELUC is on the same order of mag-
nitude as parameter-induced uncertainty and in some cases
could potentially even be offset with appropriate parameter
choice.

1 Introduction

Due to constraining atmospheric CO2 concentrations and the
relatively well known CO2 sink in the ocean it follows that
about a fifth of anthropogenic CO2 emissions is stored in the
terrestrial biosphere (Ciais et al., 2013). However, the parti-
tioning of this land–atmosphere flux to effects from human-
induced land-use and land-cover change (LULCC) and the
transient change in the residual terrestrial sink remains highly
debated (Schimel et al., 2015). It is estimated that approx-
imately a third of the cumulative anthropogenic CO2 emis-
sions in the industrial period stem from the effects of LULCC
(Arneth et al., 2017; Brovkin et al., 2013; Gerber et al., 2013;
Houghton and Nassikas, 2017; McGuire et al., 2001; Ma-
howald et al., 2017; Pongratz and Caldeira, 2012; Sitch et al.,
2015; Strassmann et al., 2008; Stocker et al., 2017, 2014;
Peng et al., 2017). A better understanding of the mechanisms
of the historical terrestrial carbon cycle is vital for more accu-
rate future projections of the global carbon cycle and climate.
In addition, a better understanding of the residual terrestrial
sink can also help to improve our understanding of the ter-
restrial carbon cycle of the past, unperturbed by human in-
fluence.

Amongst others, dynamic global vegetation models
(DGVMs) are used to quantify the contribution of LULCC
to the terrestrial carbon budget (Le Quéré et al., 2016). The
assessment of the performance of a given model using ob-
servational benchmarks is actively discussed in the literature
(Hoffman et al., 2017; Peng et al., 2014; Kelley et al., 2013;
Luo et al., 2012; Blyth et al., 2011; Randerson et al., 2009)
and different frameworks have been proposed. In addition to
uncertainties in the prescribed LULCC forcings and the rep-
resentation of LULCC and other processes in DGVMs, the
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values of the applied parameters are subject to substantial
uncertainties. We use a Monte-Carlo-like data assimilation
approach (Steinacher et al., 2013; Steinacher and Joos, 2016;
Battaglia and Joos, 2018) to sample 15 key model parameters
and construct a 1000-member model ensemble to investigate
this parameter-related uncertainty in the DGVM LPX-Bern
and establish a new reference version of the model. A to-
tal of 14 data products are used as observational constraints.
These range from global inventories of carbon (Ciais et al.,
2013) to spatially resolved satellite estimates of photosyn-
thetically absorbed radiation (Gobron et al., 2006). The goal
of the data set selection process is to have observations cap-
turing the magnitudes of fluxes and inventories in the carbon
cycle, as well as its transient response to the anthropogenic
perturbation.

The assimilation of observations should be an integral part
of model development. Various approaches to incorporate
constraining data exist, such as variational approaches mini-
mizing a cost function using the adjoint of the model (Kato
et al., 2013; Kaminski et al., 2013) or the use of ensemble
Kalman filters (Lorenc, 2003; Gerber and Joos, 2013; Stöckli
et al., 2011; Ma et al., 2017). A drawback of these meth-
ods is that the sampling process is dependent on the choice
of the cost function, the design of which is not trivial when
assimilating multiple observations simultaneously. Other ap-
proaches have also been investigated, such as using gener-
alized likelihood function for model calibration and uncer-
tainty estimation (Beven and Binley, 1992). Here we em-
ploy the Latin hypercube sampling (LHS) (McKay et al.,
1979) approach, as used successfully in previous studies
(Steinacher et al., 2013; Battaglia et al., 2016; Steinacher and
Joos, 2016; Battaglia and Joos, 2018; Zaehle et al., 2005).
It allows simultaneous stratified sampling of a range of pa-
rameters, given an appropriate prior parameter distribution,
while offering the opportunity to change evaluation metrics a
posteriori, thus enabling a sensible incorporation of multiple
observational constraints. By improving the prior distribu-
tion iteratively it is possible to reasonably capture observa-
tions while considering trade-offs between the different tar-
gets. Additionally, this approach not only yields a best-guess
of parameter values but also contains information about the
associated uncertainties. A drawback of this technique is that
it is not possible to increase the size of the ensemble after
the initial sampling and, if the range of the prior distribution
is too large, the algorithm has decreased computational effi-
ciency.

While the land–atmosphere carbon flux can to some extent
be constrained by the other components of the global carbon
cycle, the contribution of LULCC and, in turn, the implied
residual terrestrial carbon sink are highly uncertain. Efforts
to fill this knowledge gap have been made using bookkeep-
ing approaches (Houghton et al., 2012; Hansis et al., 2015;
Houghton and Nassikas, 2017) and bottom-up modeling ap-
proaches using DGVMs (McGuire et al., 2001; Stocker et al.,
2014; Wilkenskjeld et al., 2014; Sitch et al., 2015). Book-

keeping models can offer valuable information on the mag-
nitude of regional and global LULCC emissions (ELUC), but
they typically rely on time-invariant estimates of carbon den-
sities and thus neglect the direct impact of climate change
on vegetation. Observational data on carbon densities and re-
sponse of the vegetation to LULCC effects can be directly
incorporated in bookkeeping models. In contrast, DGVM
model studies are able to produce highly resolved spatial re-
sults and consider changes to vegetation structure due to an-
thropogenic perturbance, but DGVMs have large uncertain-
ties due to differences in process modeling and parametriza-
tion. Additionally, a number of LULCC processes are of-
ten neglected, such as the effect of gross land-cover transi-
tions (shifting cultivation), management (wood harvest) or
erosion. Studies investigating these processes generally have
found that the inclusion of those processes leads to an in-
crease in ELUC (Arneth et al., 2017; Wilkenskjeld et al.,
2014; Stocker et al., 2014). On the other hand, neglected pro-
cesses such as human-induced erosion can have the opposite
effect and reduce net ELUC (Kosmas et al., 2007; Billings
et al., 2010; Hoffmann et al., 2013; Wang et al., 2017). The
effect of parameter uncertainty on these estimates is often
only considered indirectly in the intercomparison of mod-
els. Here we investigate a parameter ensemble of a single
DGVM, constrained by observation, and provide direct es-
timates of parameter-induced uncertainties in LULCC esti-
mates. These uncertainties are put into context by investigat-
ing the effect of additional LULCC processes, such as shift-
ing cultivation and wood harvest, as already investigated in
previous studies (Stocker et al., 2014; Wilkenskjeld et al.,
2014; Shevliakova et al., 2009). We rely here on the LUH2
v2h (Hurtt et al., 2018) land-cover data to force the DGVM
LPX-Bern v1.4.

2 Methods

2.1 LPX-Bern

The Land surface Processes and eXchanges (LPX-Bern)
model (Spahni et al., 2013; Stocker et al., 2013; Keller et al.,
2017) is a dynamic global vegetation model based on the
Lund–Potsdam–Jena (LPJ) model (Sitch et al., 2003). It fea-
tures coupled nitrogen, water and carbon cycles and dis-
tinguishes between different types of prescribed land-use
classes: natural vegetation, peatland, cropland, pasture and
urban land. The vegetation composition for a given land-use
class is determined dynamically. Different plant functional
types (PFTs), with given bioclimatic limits, compete for re-
sources. Here, eight tree PFTs and two herbaceous PFTs are
used to describe natural vegetation; the same two generic
herbaceous PFTs grow on pasture and cropland, and two
moss PFTs, two flood-tolerant tropical PFTs and a flood-
tolerant herbaceous PFT grow on peatlands.
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Two different configurations are used to treat the transi-
tion between different classes of land use. The simpler imple-
mentation adjusts the fractional land-use cover at the end of
each year such that the prescribed area fractions are achieved;
this computationally efficient configuration is referred to as
net land use. The more advanced gross land-use implemen-
tation also includes effects of shifting cultivation and wood
management by prescribing all the transitions between dif-
ferent land-use classes and harvested wood (Stocker et al.,
2014; Strassmann et al., 2008). Furthermore, it includes an
additional land-use class, the so-called secondary forest –
natural vegetation growing on abandoned pasture or crop-
land. A major drawback of this scheme is the significantly
increased computational cost. Additionally, the implementa-
tion of gross land use in LPX-Bern in the current version
does not allow for the simultaneous simulation of peatlands.
For both schemes a fraction oxfrac of the crops above-ground
biomass is directly oxidized to the atmosphere, simulating
crop harvest. A total of 75 % of heartwood and sapwood
biomass production from forest conversion is assigned to de-
caying product pools; the remaining 25 % are respired di-
rectly to the atmosphere as assumed harvest losses. Associ-
ated root and leaf mass are transferred to a below- and above-
ground litter pool respectively. The biomass in the product
pools is evenly split in a long-lived (mean lifetime 20 years)
and a short-lived (mean lifetime 2 years) pool. In the gross
LULCC setup, biomass is harvested according to the pre-
scribed forcing and the resulting heartwood is assigned to
product pools using the same allocation rules as before.

2.2 Model setup and spin-up

The model is run on a 1◦× 1◦ global grid and forced with
CRU TS3.25 climate data (Harris et al., 2014) and global at-
mospheric CO2 concentration from ice core reconstructions
(Meure et al., 2006; Joos and Spahni, 2007) and direct atmo-
spheric measurements after 1958 (Tans and Keeling, 2017).
The land-use harmonization LUH2 v2h (Hurtt et al., 2018)
estimates for land-use patterns and transitions are prescribed
to the model. Additionally, nitrogen deposition (Lamarque
et al., 2013) and fertilization (Zaehle et al., 2011) and the
extent of Northern Hemisphere peatlands (Tarnocai et al.,
2009) are prescribed. As described in Sect. 2.3 we use an
ensemble approach featuring 1000 simulations with different
parameters. All ensemble members share a 1500-year spin-
up run to pre-industrial conditions, using the median param-
eter values. To ensure the equilibration of each member an
additional 300-year individual spin-up run, featuring an ana-
lytical equilibration of the soil carbon pools after 100 years,
is performed. The model is then run transiently from 1800
to 2016 with recycled climate data (years 1901–1930) in the
19th century.

2.3 Sampling and constraining

The model parameter space is sampled using Latin hyper-
cube sampling (McKay et al., 1979) to create an ensemble
of model configurations and assess model uncertainty. LHS
is a stratified sampling method using chosen prior parameter
distribution to generate an uncorrelated parameter ensemble
of a given size. In contrast to most Monte Carlo data assimi-
lation techniques, the sampling is independent of the metrics
used to assess model performance, allowing us to modify the
metrics after the sampling without substantial computational
effort. A drawback of this sampling strategy is that it is not
possible to increase the size of the ensemble after the ini-
tial sampling. The generated ensemble is then constrained
using an hierarchical weighting scheme of deviations to ob-
servational data sets to obtain a global skill score, rating each
model member.

2.3.1 Description of the sampling parameters

Table 1 lists the selected sampling parameters as well as their
old values in LPX v1.2 and new best-guess values (LPX
v1.4). The parameters were selected for their importance in
various aspects of the model; 10 of the 15 parameters were
also used by Steinacher et al. (2013). The fraction of photo-
synthetically active radiation assimilated at ecosystem level
relative to leaf level, αa; the intrinsic quantum efficiency of
CO2 uptake in C3 plants, αC3 ; and θ the rubisco co-limitation
shape parameter are of primary importance for the photo-
synthetic carbon assimilation. gm and αm are parameters in
the empiric water demand calculation and have a direct im-
pact on the hydrological cycle and consequently also the
carbon assimilation. The sapwood–heartwood turnover time,
τsapwood; the maximum mortality parameter, mortmax; and the
ratio between leaf area and sapwood area, kla : sa, are vital for
the allocation of the carbon to the different vegetation pools
and thus also the overall vegetation carbon pool size. The
fractions of the flux leaving the litter pools that is respired
to the atmosphere directly and entering the slow soil pool,
fatm and fslow, influence soil and litter carbon inventories.
These pools are further controlled by the temperature sensi-
tivity of heterotrophic respiration E0,hr, which is of special
significance under changing climate, and a scaling factor for
soil decomposition ksoil,tune, affecting the residence time of
both the fast and the slow soil carbon pool. By using factorial
simulations two important parameters for the nitrogen cycle
were identified: the maximum nitrification rate, nitrmax, and
the fraction governing immobilization of mineral nitrogen in
the soil, fimob,soil. Finally, the oxidation rate of crops oxcrop,
representing the harvest of biomass on croplands, is directly
linked to emissions from human land use.
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Table 1. Description of sampling parameters with values for LPX v1.2 and the new best-guess version 1.4. If not otherwise indicated
parameters are unitless.

Parameter Description LPX v1.2 LPX v1.4

αa Fraction of PAR assimilated at ecosystem level relative to leaf level 0.5 0.6175
αC3 Intrinsic quantum efficiency of CO_2 uptake in C3 plants 0.07 0.07660
θ Co-limitation shape parameter 0.7 0.6937
gm Canopy conductance scaling parameter for water demand calculation 3.24 3.120
αm Priestley–Taylor coefficient in water demand calculation 1.394 1.786
τsapwood Sapwood–heartwood turnover time (yr) 20 15.33
kla : sa Allometric scaling parameter: leaf area to sapwood area 1.0 1.310
mortmax Asymptotic maximum in mortality equation (yr−1) 0.01 0.01016
E0,hr Temperature sensitivity of heterotrophic respiration (K) 308.56 190.16
fatm Fraction of litter entering atmosphere directly 0.6 0.6503
fslow Fraction of litter entering slow soil pool 0.015 0.009512
ksoil,tune Tuning factor for soil decay 0.7 0.7965
nitrmax Maximum nitrification rate 0.1 0.09096
fimob,soil Nitrogen immobilization in soil 0.0 0.2639
1− oxcrop Fraction of direct oxidation of leaf turnover on cropland 0.1 0.09920

2.3.2 Selection of the prior distribution

The prior distribution used for LHS was derived in multiple
steps following partly an explorative approach. An initial ver-
sion of the ensemble with 1000 members was run using the
10 LPX parameters and distribution used by Steinacher et al.
(2013) and four additional parameters relating to the nitrogen
cycle and oxidation rates in areas with anthropogenic land
use. The ensemble is sampled using normal and log-normal
distributions with distribution parameters chosen such that
the median matches the parameter value of LPX-Bern v1.2
and the 90 % confidence interval matches plausible ranges or
literature-based ranges where available. Normal distributions
are used by default; log-normal distributions are used for pa-
rameters with asymmetric parameter ranges and parameters
with values close to zero. This initial ensemble was evaluated
against a subset of the observational constraints presented
in Sect. 2.4 and it was found that ensemble performance
is poor, especially with respect to global atmosphere–land
fluxes. Sensitivity of model outcomes to individual parame-
ter values was explored by 76 factorial simulations where ad-
ditional parameters were varied. The information from these
sensitivity simulations and the results on parameter sensitiv-
ity of an earlier study (Zaehle et al., 2005) are used to identify
key model parameters. In addition, six ensembles of reduced
size (four 200 members and two 300 members), featuring
slightly different parameter combinations, were used to re-
fine the median parameter values and their ranges. By evalu-
ating these simulations the final set of parameters presented
in Sect. 2.3.1 was selected. The final iteration included the
sequential computation of three observation-constrained en-
sembles with 1000 members each. The first of these three en-
sembles was calculated with prior distributions based on the
refined median parameter values. The median and 95 % con-

fidence of the posterior distribution after observation assimi-
lation as described in Sect. 2.3.3 is then used as the prior dis-
tributions of a new 1000-member parameter ensemble. This
procedure is repeated one more time to arrive at the prior dis-
tributions used in the final ensemble and displayed in Fig. 1.
No formal convergence criterion is employed, since the com-
putation and evaluation of a single ensemble represents a
considerable computational and analytical effort. The near
convergence of the posterior (Sect. 2.3.3) and prior distribu-
tion of the final ensemble (Fig. 1) indicates a near-optimal so-
lution for the parameter distribution in the context of the ob-
servational constraints and the associated skill score metric
(Sect. 2.3.3). In addition, this convergence of prior and poste-
rior distribution also indicates that the final prior distribution
is suited to adequately sample the parameter space for our se-
lection of observational constraints. The differences between
the parameter value used in the older LPX-Bern v1.2 and the
best-guess parameter values of the final ensemble (Fig. 1; see
also Table 1) provide a measure of how much individual pa-
rameters were revised during our iterative data assimilation.
For completeness, we report that individual forcing data sets,
such as the land-use data, were updated and the set of obser-
vational constraints expanded during the course of the work.

2.3.3 Skill scores and the posterior distribution

The performance of the final 1000-member model ensemble
is evaluated using the set of observational constraints listed
in Table 2. The model-data discrepancy for a given observa-
tional data set i and model run is estimated by the relative
mean squared error (MSEirel)

MSEirel =
∑
j

wj
(X

mod,i
j −X

obs,i
j )2

σ 2 , (1)
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Figure 1. Kernel density estimations of the prior probability distribution (blue) and the posterior probability distribution (red) of the con-
strained ensemble with net land use (Mnet,net). The prior distribution was improved iteratively, resulting in near convergence of prior and
posterior distribution. Vertical black bars indicate the parameter values used in LPX-Bern v1.2.

where wj are the normalized weights of the data points j ,
which in the case of gridded data sets correspond to the grid
cell area. Xmod,i

j and Xsim,i
j correspond to the modeled and

observed data points for constraint i respectively. In accor-
dance with Schmittner et al. (2009) and Steinacher et al.
(2013) the combined error σ 2 is approximated by the model-
data variance of the model member with the smallest MSEirel
of the ensemble. As a consequence, the smallest possible
MSEirel using this approximation is 1. If the observational
error is known and larger than the variance, it is instead used
as an estimate for the combined error, allowing a minimum
MSEirel of zero.

The MSEirel of all individual observational constraints is
aggregated to a total error MSEtot

rel with a hierarchical weight-
ing scheme shown in Fig. 2 and translated to a skill score
Sm for each ensemble member m. We require that MSErel
is lower than 5 for each of the individual observational data
sets; otherwise Sm is set to 0.

Sm =

{
0 ∃i :MSEirel > 5

exp(− 1
2 MSEtot

rel) else
(2)

The size of the ensemble is further reduced by excluding runs
with low skill scores, such that the remaining 667 runs have
99 % of the cumulative skill score

∑
mSm of all runs, which

we term the constrained ensemble. The maximum achievable

skill score is not 1 for spatially resolved data since it would
correspond to a MSEtot

rel of 0, which is not achievable due
to the approximation for the combined error, used in the spa-
tially resolved constraints. We did not renormalize skill score
to a scale between 0 and 1.

The so-called posterior distribution of a parameter or
quantity of interest is obtained by using the skill score
weighted normalized histogram, which can be interpreted as
a probability density function, of the constrained ensemble.
The skill weighted median and confidence interval of a given
quantity is then determined by transforming the histogram
to a discrete cumulative density function using a cumula-
tive sum and approximating the desired quantiles by a first-
order interpolation. Throughout this paper we report the skill
weighted median of numerical results along with the 5 and
95 % quantiles, corresponding to the 90 % confidence inter-
val, in parentheses.

2.4 Observational constraints

The calculation of the MSErel requires the model and obser-
vational data to conform to the same structure. In the fol-
lowing, the required pre-processing will be outlined briefly.
The seasonality of the fraction of absorbed photosyntheti-
cally active radiation (FAPAR) as simulated in the model is
compared to a satellite-derived product (Gobron et al., 2006),
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Figure 2. Hierarchical weighting scheme to aggregate the relative mean squared error of individual observational constraints to a total error
which is then mapped to a total skill score.

Table 2. Observations used to constrain the model ensemble.

Category Variable Description Reference

Fluxes Seasonal atm. CO2 Seasonal cycle at nine sites GLOBALVIEW-CO2 (2013)
Fluxes NPP Estimates of the 81 multi-biome class A field

measurements
Olson et al. (2013)

Fluxes NPP Estimates of NPP at ∼ 140 FLUXNET sites Luyssaert et al. (2009, 2007)
Fluxes FAPAR SeaWiFS satellite product, regridded to model

resolution
Gobron et al. (2006)

Fluxes Evapotranspiration Merged evapotranspiration synthesis product
from the LandFlux-EVAL

Mueller et al. (2013)

Inventory Total carbon Global distribution of total ecosystem carbon Carvalhais et al. (2014)
Inventory Soil carbon Global distribution of total soil carbon Carvalhais et al. (2014)
Inventory Vegetation carbon Biomass estimates at ∼ 140 FLUXNET sites Luyssaert et al. (2009, 2007)
Inventory Vegetation carbon Biomass estimates at 136 sites Keith et al. (2009)
Inventory Global soil carbon Global inventory 1950± 450 PgC Ciais et al. (2013)
Inventory Global vegetation carbon Global inventory 550± 100 PgC Ciais et al. (2013)
Transient Growth of CO2 amplitude Growth of seasonal atmospheric CO2 amplitude

at four sites
GLOBALVIEW-CO2 (2013)

Transient Land uptake (deconvolution) Global land uptake from atmospheric deconvo-
lution

(this study)

Transient Land uptake (IPCC) Global land uptake in five periods Ciais et al. (2013)

which was regridded to the model grid, and the MSE is cal-
culated from the averaged monthly fields in the measurement
period.

The modeled total and soil carbon distribution between
1982 and 2005 are compared to a data set based on obser-
vations (Carvalhais et al., 2014), regridded to the model res-
olution. The soil carbon map is divided into low- and high-
latitude regions in order to avoid potential biases from peat
areas with very high soil carbon content.

For site level observed NPP (multi-biome NPP; Olson
et al., 2013, and FLUXNET v3.1; Luyssaert et al., 2009,
2007), the site measurements are compared to the averaged
modeled NPP of natural vegetation between 1931 and 1997
of the corresponding model grid cell. If multiple measure-

ments are contained in the same grid cell they are averaged.
Similarly, the site level measurements of biomass carbon
(Keith et al., 2009; Luyssaert et al., 2009, 2007) are com-
pared to the modeled natural vegetation carbon, averaged be-
tween the periods 1950–2000 and 1931–1997 respectively.
The biomass carbon of Luyssaert et al. (2009) is obtained by
using a carbon to organic matter conversion factor of 0.475.

The TM2 (Kaminski et al., 1999), a global atmospheric
tracer model, was used to translate the gridded land–
atmosphere flux to local anomalies in atmospheric CO2. This
method does not include the interannual variability of the
transport. Nine sites from the GLOBALVIEW-CO2 database
(GLOBALVIEW-CO2, 2013) were selected and the annual
offset-corrected seasonality of CO2 in the period of 1980–
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2013 was compared. The influence of sea–air carbon ex-
change on the seasonal cycle and trend in atmospheric CO2
are taken into account. This is done by prescribing net sea-to-
air fluxes as simulated by the Bern3D model (standard setup)
(Battaglia and Joos, 2018; Roth et al., 2014; Ritz et al., 2011).
The growth of the seasonal amplitude at a subset of four sites
with high seasonality was used as a further constraint.

The modeled mean annual evapotranspiration between
1989 and 2005 was compared to the LandFlux-EVAL evap-
otranspiration data product (Mueller et al., 2013).

The global terrestrial carbon flux is constrained by a de-
convolution, for which the global atmospheric CO2 con-
centration; the median of an ensemble of simulated ocean–
atmosphere fluxes (Battaglia and Joos, 2018), consistent with
other estimates (Khatiwala et al., 2013; DeVries, 2014); and
an inventory of anthropogenic CO2 emissions (Boden et al.,
2017) were used. The combined error in Eq. (1) is esti-
mated by propagating the 90 % confidence interval of ocean–
atmosphere fluxes and assuming a 5 % uncertainty for the
anthropogenic emissions (Ballantyne et al., 2015).

The estimates of global soil and vegetation carbon as
given by IPCC (Ciais et al., 2013) are used as a global
constraint. The observation-based estimates are compared
to the average soil and vegetation carbon over the whole
industrial period. Additionally, the estimates for the global
land–atmosphere flux in the periods 1970–1979, 1980–1989,
1990–1999, 2000–2009 and 2002–2011 are compared to
the simulated land–atmosphere fluxes over the same period.
Since the model simulation starts only in the year 1800, the
estimated land–atmosphere flux over the industrial period
from 1750–2011 is compared with the model by approxi-
mating the flux of the period 1750–1800 with 1801–1850.
For all global constraints, the uncertainties reported by IPCC
are used as an estimate for the combined error in Eq. (1).

2.5 Definition of land-use emissions and the setup of
the model ensembles

To quantify emissions from LULCC, a second simulation
featuring a time-invariant pre-industrial land-cover distribu-
tion and nitrogen fertilization is run for every ensemble mem-
ber. In accordance with the TRENDY model intercomparison
(Sitch et al., 2015), we define the emissions from LULCC as
the difference of the change in carbon in the reference and
fixed LULCC simulation. The change in carbon in the land
system is calculated from the cumulative net biome produc-
tion (NBP), including emissions from product pools. Since
the additional simulations with fixed LULCC feature tran-
sient CO2 and climate forcing, the direct impact of climate
change and increasing CO2 on ELUC are considered; how-
ever, unlike in coupled models (Strassmann et al., 2008)
physical and biogeochemical feedbacks of LULCC on the
climate are neglected. We refer to the literature (Strassmann
et al., 2008; Pongratz et al., 2014; Stocker and Joos, 2015) for

further discussion of differences in the definition of land-use
fluxes.

For each of the parameter sets four transient simulations
over the industrial period are performed: (i) a simulation
with prescribed net transitions (Mnet,net and Mgross,net), (ii) a
simulation with prescribed gross transitions (Mgross,net and
Mgross,gross), (iii) a run with land-use area fixed at preindus-
trial levels and (iv) a run with land use including shifting
cultivation held at preindustrial levels. The last two simu-
lations are used purely diagnostically to determine ELUC.
ELUC is investigated using three different ensemble configu-
rations. Mnet,net labels the standard model version featuring
only net LULCC transitions. Mgross,net and Mgross,gross fea-
ture modules for shifting cultivation and wood harvest (gross
land use) but lack northern peatlands due to technical limita-
tions. Mgross,net reuses the skill scores calculated for Mnet,net
and Mgross,gross features skill scores calculated on the basis
of the gross land-use configuration.

For the Mnet,net ensemble and the Mgross,net ensemble, the
prior distributions of the model parameters were improved
iteratively during the development of our benchmark sys-
tem. Consequently, the solutions for the model parameters
and associated model outcomes converge. For example, the
prior and the posterior probability distribution of the sam-
pled parameters are nearly identical (Fig. 1). This provides
strong support that an optimal solution for the sampled pa-
rameters has been found for the applied model structure and
observational constraints. In contrast, the parameters of the
Mgross,gross ensemble were not improved iteratively, given the
computational cost, and prior and posterior solutions do not
converge.

3 Results

3.1 Land-use emissions

The use of the ensemble framework allows us to quantify
both the magnitude and the uncertainty of land-use emissions
in a model due to parameter spread. Following the procedure
outlined in the method section, ELUC is computed for every
ensemble member. In this section, we first present ELUC, to-
tal land–atmosphere fluxes and the residual land carbon sink
on a global scale for the three ensemble configurations and
then further analyze spatial patterns and regionally aggre-
gated estimates.

3.1.1 Global fluxes

Global aggregates of skill weighted median NBP, ELUC,
residual terrestrial sink and their respective cumulative
fluxes, including a 90 % confidence interval as an estimate
for model parameter uncertainty, are shown in Fig. 3. For the
standard model configurationMnet,net, featuring net land use,
the total change in land carbon (i.e., cumulative NBP) is a
release of 24.4 (4.5, 44.0) PgC from 1860 to 1960 and an up-
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Figure 3. Skill weighted median net biome production (NBP) (a), emissions due to LULCC ELUC (c), and the residual terrestrial sink
flux (e) and their respective cumulative fluxes (b, d, f) for the constrained ensemble with net land use Mnet,net (blue), additional gross land-
use processes Mgross,net (red) and gross land use with skill scores recalculated Mgross,gross (green). The shading corresponds to the 90 %
confidence interval.

take of 25.4 (8.4, 47.0) PgC from 1961 to 2016. The standard
deviation of NBP increases from 0.82 (0.65, 0.97) PgC yr−1

between 1860 and 1960 to 1.18 (0.97, 1.38) PgC yr−1 in the
latter period. The change in total carbon is discussed in more
detail in Sect. 3.3. ELUC is positive throughout the whole in-
dustrial period, i.e., a source of carbon to the atmosphere. A
temporary maximum of emissions is reached in the 1950s
followed by relatively constant emissions until the 2000s,
where the emissions increase with enhanced variability. The
cumulative emissions from 1860 to 2016 amount to 96.9 (59,
138) PgC. The residual terrestrial sink, computed as the dif-
ference between NBP and ELUC, shows a similar pattern of
variability as NBP. While the residual terrestrial sink flux
is negative in some years, the cumulative residual terrestrial
sink generally increases steadily and amounts to 98.1 (71.0,
132.3) PgC between 1860 and 2016.

In addition to the standard model configuration a second
ensemble of a model configuration Mgross,net featuring mod-
ules for shifting cultivation and wood harvest (gross land
use) is employed. By using the skill scores Mnet,net, the
parametrization remains identical, allowing us to compare
the pure mechanistic difference between the two versions.
The difference in median ELUC between the net and gross
land-use configuration is most pronounced in the second half

of the 20th century and amounts to 44.5 PgC between 1860
and 2016. The gross land-use ensemble simulates on average
0.40 PgC yr−1 more emissions due to LULCC between 1950
and 2016. This result is compatible with the earlier study by
Stocker et al. (2014), which investigated land-use change us-
ing an earlier version of LPX-Bern with a single parameter
configuration. The residual terrestrial sink shows as expected
a near identical behavior in the two versions. The resulting
total change in land carbon is negative, with a slight uptake
of carbon at the end of the century, amounting to 9.3 (−0.9,
22.2) PgC between 1990 and 2016.

A third model configuration Mgross,gross is obtained by
recalculating the skill scores from the gross land-use re-
sults. As described in Sect. 2.5, the prior distributions of
the Mgross,gross were not improved iteratively to yield con-
vergence between prior and posterior solutions. This leaves
only 200 runs in Mgross,gross in contrast to the 667 runs in
Mnet,net and consequently Mgross,net. In addition, several im-
portant benchmarks such as vegetation carbon density are
not simulated as well inMgross,gross compared toMnet,net and
Mgross,net. Since NBP is constrained by observations, median
cumulative NBP from 1860 to 2016 is only 18.6 PgC lower
in the Mgross,gross than in the Mnet,net ensemble. Surprisingly
ELUC is only 21.4 PgC higher over the period from 1860 to
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Table 3. Comparison of the skill weighted median emissions due to land-use change in the two constrained LPX parameter ensembles (90 %
confidence intervals in brackets) to the bookkeeping method and DGVM model ensemble of Le Quéré et al. (2016). The uncertainty in the
DGVM multi-model ensemble is given by the standard deviation across model members; for the bookkeeping method a best-value judgement
on the uncertainty of ±0.5 PgC yr−1 is provided.

Mean ELUC (PgC yr−1)

1960–1969 1970–1979 1980–1989 1990–1999 2000–2009

LPX-Bern Mnet,net 0.70 (0.33, 1.04) 0.69 (0.30, 1.06) 0.75 (0.40, 1.07) 0.55 (0.22, 0.83) 0.52 (0.21, 0.78)
LPX-Bern Mgross,net 1.22 (0.78, 1.64) 1.25 (0.77, 1.71) 1.19 (0.77, 1.57) 0.93 (0.54, 1.28) 0.74 (0.41, 1.05)
LPX-Bern Mgross,gross 1.02 (0.65, 1.32) 1.04 (0.65, 1.37) 0.99 (0.66, 1.27) 0.74 (0.37, 1.05) 0.59 (0.26, 0.87)
GCP2016 bookkeeping 1.5± 0.5 1.3± 0.5 1.4± 0.5 1.6± 0.5 1.0± 0.5
GCP2016 DGVMs 1.2± 0.3 1.2± 0.3 1.2± 0.2 1.1± 0.2 1.3± 0.3

2016 for Mgross,gross than for the standard version Mnet,net.
Why are ELUC emissions so similar between these two en-
semble versions with net and gross transitions? The resid-
ual sink is relatively insensitive to parametrization in LPX
and the version with gross skill scores only has a moderately
larger residual sink uptake of 7.8 PgC in the considered pe-
riod, largely caused by a downward adjustment of the pa-
rameter E0,hr governing the temperature dependency in het-
erotrophic respiration to a median value of 151 K (190 K in
Mnet,net; Table 1). InMgross,gross, global vegetation carbon in-
ventory is only 417 (341, 506) PgC (average over the indus-
trial period) compared to 468 (358, 590) PgC in the Mnet,net
ensemble. The observational constraints for the net land car-
bon sink (Fig. 2, Table 2) are apparently better approximated
for a smaller vegetation carbon stock in Mgross,gross. Vegeta-
tion carbon inventory is underestimated by about 20 % com-
pared to the observational benchmarks. The smaller vegeta-
tion carbon stock in Mgross,gross leads to smaller ELUC all
else being equal. In addition, the amount of carbon harvested
(oxcrop) is reduced from 90 % in the standardMnet,net ensem-
ble to 83 % in the Mgross,gross ensemble. As a result of these
two adjustments, ELUC is smaller in the Mgross,gross than
in the Mgross,net ensemble. If the relative importance of the
land–atmosphere observational constraints is increased, the
difference in ELUC of Mgross,gross and Mnet,net is decreased
even further.
ELUC as simulated by LPX-Bern is compared in Table 3 to

a bookkeeping method and a DGVM model ensemble aver-
age from the Global Carbon Project (GCP, Le Quéré et al.,
2016). ELUC in the net land-use configuration Mnet,net is
considerably smaller than the estimates of the GCP with an
average annual emission of 0.64 (0.29, 0.95) PgC yr−1 be-
tween 1960 and 2009, compared to the 1.4 PgC yr−1 of the
bookkeeping approach and the 1.2 PgC yr−1 of the multi-
model DGVM approach. The emissions of the gross land-
use configuration with gross skill scores are higher but still
fairly low at 0.88 (0.51, 1.17) PgC yr−1. The version featur-
ing gross land use with net skill scores yields higher land-
use emissions at 1.07 (0.66, 1.46) PgC yr−1, which is within
the uncertainties of both estimates. The largest discrepancy

between LPX and GCP is found in the 1990s and 2000s.
The uncertainty in the parameter ensembles is comparable
to the uncertainty in the multi-model ensemble of the GCP.
The tendency towards low emissions is a consequence of the
ensemble favoring low emissions to match the observational
total land–atmosphere flux, combined with a relatively weak
residual terrestrial sink in LPX-Bern.

In the following the ensemble version with gross land use
and skill scores from the net land-use ensemble Mgross,net
is used to investigate the spatial structure of ELUC. This is
motivated by the much better representation of the vegeta-
tion carbon benchmark in the Mgross,net ensemble than in the
Mgross,gross ensemble and a higher confidence in the overall
benchmark performance of the Mnet,net ensemble. A caveat
of this choice is that the net land–atmosphere flux is under-
estimated in Mgross,net because the residual land sink only
responds to the lower ELUC of Mnet,net. However, if only
considering ELUC we expect the magnitude of the residual
land-sink and net land–atmosphere flux to be less important
than model performance with respect to vegetation carbon
(Li et al., 2017) and other benchmarks.

3.1.2 Spatial patterns and regional aggregates

The land–atmosphere fluxes show large regional differences
(Fig. 4). The most pronounced feature of net atmosphere–
land fluxes is the release of carbon due to deforestation in the
Amazon rainforest and the regions close to the equator and a
tendency towards a net uptake of carbon at higher latitudes,
such as central Europe. The calculated land-use emissions
ELUC are positive everywhere except central Europe and the
west coast of North America, resulting in the expected over-
all emission of carbon due to land-use change. The residual
carbon uptake, that is the total atmosphere–land flux minus
the contribution of land-use change, shows a consistent up-
take of carbon between 1901 and 2016, with the exception of
some areas with high ensemble uncertainty. There are large
regions where the 90 % confidence interval in the ensemble
does not agree on the sign; however, most of these areas fea-
ture low NBP.

www.biogeosciences.net/15/2909/2018/ Biogeosciences, 15, 2909–2930, 2018



2918 S. Lienert and F. Joos: Data assimilation: model parameters and land-use emissions

(a)

(b)

(c)

45

35

25

15

5

5

15

25

35

45

N
BP

 [g
C

 m
−

2
 y

r−
1
]

45

35

25

15

5

5

15

25

35

45

E
L
U

C
 [g

C
 m

−
2
 y

r−
1
]

12.5

7.5

2.5

2.5

7.5

12.5

17.5

22.5

27.5

32.5

R
es

id
ua

l t
er

. s
in

k 
[g

C
 m

−
2
 y

r−
1
]

Figure 4. Skill weighted median annual net biome production (NBP) (a), emissions due to land-use change ELUC (b) and the residual
terrestrial sink flux (c) from 1901 to 2016 for the ensembleMgross,net. Areas where the lower and upper limit of the 90 % confidence interval
have different signs are hatched.

The ELUC estimates of Mgross,net are aggregated to re-
gions and compared to estimates of Houghton and Nassikas
(2017) (Fig. 5). Since spatial output in LPX is only avail-
able after 1901 in LPX, the period 1850 to 2015 in Houghton
and Nassikas (2017) is approximated by the interval 1901 to
2015. The global skill weighted median ELUC from 1850 to
1900 amounts to 24.5 (16.9, 33.6) PgC. Overall, the global
median emissions between 1850 and 2015 in LPX amount
to 144.5 (97.5, 192.7) PgC, which is very close to the esti-
mate in Houghton and Nassikas (2017) of 145.5± 16.0 PgC.
The largest discrepancy in the individual regions is found in
South and Southeast Asia, where LPX yields lower emission
estimates, which might be a consequence of the lack of tropi-
cal peatlands in the ensemble. In the recent decade from 2005
to 2015, the agreement is less pronounced. While the global
annual flux simulated by LPX of 866 (552, 1181) TgC yr−1

is within the uncertainty of the independent estimate of
1113± 345 TgC yr−1, the distribution of this flux to the re-
gions shows some divergence. In LPX the tropical regions

yield lower emissions, which is somewhat offset by a weaker
sink effect in the temperate regions of North America, Eu-
rope, China and the former Soviet Union.

By using the Natural Earth Data administrative borders
the ELUC estimates of Mgross,net are aggregated to individ-
ual countries. The ELUC estimates of the 10 countries with
the largest contribution to total ELUC from 1901 to 2016 are
shown in Fig. 6. Brazil emitted the most carbon due to land-
use change, because of the size of the country combined with
the high emissions per unit area. The United States of Amer-
ica, China and Russia have moderate per-unit-area emissions
but are a large contributor due to their sheer size. These three
countries show a decrease in emissions in the 21st century,
with the USA and Russia having negative emissions in the
2000s. Indonesia shows the largest per-area emissions of the
considered countries and emissions increase in the 2000s.
The emissions in Indonesia are likely underestimated due to
a lack of tropical peatlands in the ensemble.
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Figure 6. Overview of 10 countries with the highest overall contribution to emissions due to land-use change from 1901 to 2016 in the model
ensembleMgross,net. The three columns of the bar plot of each country show the total land-use change flux from 1900 to 2016, 1960 to 2016
and 2000 to 2016 respectively. The color of the bar plot corresponds to the land-use change flux per unit area from the respective country
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3.2 Evaluation of ensemble performance with respect
to observational targets

In this section, the performance of the net land-use ensem-
ble members (Mnet,net;Mgross,net performance is nearly iden-
tical) in the different observational metrics is discussed. In
Fig. 7 a mapping of the MSErel to an individual skill score is
displayed for the observational data sets with a spatial struc-
ture to demonstrate how well the median of the ensemble

and the new version LPX v1.4 are able to simulate individ-
ual observations. The figure also demonstrates the success of
the assimilation process: the skill scores for many individ-
ual targets are improved in the ensemble median and LPX
v1.4 compared to LPX v1.2, the starting point of our work.
As a consequence of our iterative prior selection (Sect. 2.3.2)
the median skill for an individual constraint is similar in the
constrained ensemble compared to the unconstrained ensem-
ble. In all but the FAPAR benchmark the skill is consistently
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higher than the minimum skill criterion. With the exception
of the biomass measurements by Keith et al. (2009) and the
FAPAR benchmark, the maximum skill in the constrained en-
semble is identical to the full ensemble. The reduced maxi-
mum skill in those benchmarks is due to an exclusion of sin-
gular runs excelling at this benchmark but performing badly
in others. LPX v1.4, indicative of the Mnet,net ensemble per-
formance, is compared to the observational targets in more
detail in Figs. S1–S14 in the Supplement.

As an illustration of the observational constraints, we con-
sider the seasonal cycle of atmospheric CO2 and the growth
in the amplitude of the seasonal cycle of atmospheric CO2. In
Fig. 8 the median simulated values, as well as the 90 % con-
fidence interval, of theMnet,net ensemble are compared to the
atmospheric measurements (GLOBALVIEW-CO2, 2013) for
a subset of two measurement sites, Alert (Nunavut, Canada)
and Terceira Island (Azores, Portugal). The model ensemble
is able to reproduce the seasonality pattern, as well as the
increase in seasonal amplitude. As expected, the interannual
variability in seasonal amplitude of CO2 is not captured as
the atmospheric transport model TM2 does not represent in-
terannual variability in mass transport.

For the scalar targets, the median values and range of the
full and constrained ensemble are compared in Fig. 9. The
constrained ensemble shows a consistently improved per-
formance for the uptake targets. In general, the targets are
matched well for the 20th century but net land carbon uptake
is underestimated in the model ensemble compared to the

observational estimates in the beginning of the 21st century.
Soil carbon and vegetation carbon inventory are matched
well in the model, with a considerable decrease in model
spread in the constrained ensemble. The median vegetation
carbon of the constrained ensemble is lower than the full en-
semble. This is due to a trade-off in the skill of land carbon
uptake; increased vegetation carbon leads to a higher release
of carbon due to deforestation.

Vegetation carbon inventory and spatial distribution are
highly relevant for ELUC estimates (Li et al., 2017). The sum
of the vegetation carbon estimate and soil carbon estimate
by Carvalhais et al. (2014) is used as a constraint for the to-
tal carbon; however, the individual vegetation carbon data is
not used as a constraint. Nevertheless, the global vegetation
carbon inventories of the two products are compatible with
422 (328, 523) PgC for the vegetation carbon as simulated by
LPX and 449 PgC for the Carvalhais et al. (2014) estimate.
The spatial patterns (Fig. 10) between simulated vegetation
and the Carvalhais et al. (2014) estimates are fairly consistent
with a correlation between the two products of r2

= 0.83.
LPX simulates somewhat more carbon in vegetation in the
high latitude. The extent of areas with high vegetation den-
sity in tropical Africa is larger in LPX, but peak vegetation
density in this area is lower than in the observational prod-
uct. The vegetation carbon density in the model is somewhat
lower in Southeast Asia.

We compare the total land–atmosphere exchange flux to
the results of the atmospheric CO2 deconvolution in Fig. 11.
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Figure 8. (a, b) Seasonal cycle averaged from 1980 to 2013 at two measurement sites (GLOBALVIEW-CO2, 2013) (blue) compared to
the median values of the Mnet,net ensemble, with 90 % confidence interval shaded in red. The standard deviations of the seasonal average
are indicated with error bars for the measurements and green shading for the simulations. In panels (c, d) the growth in the amplitude of
atmospheric CO2 for the same two measurement sites (GLOBALVIEW-CO2, 2013) (blue) is compared to the median of the model ensemble,
with the 90 % confidence interval shaded in red. A linear fit indicated by dashed lines is included. The CO2 concentration at a given site
and time is computed with the TM2 transport model using simulated net land–atmosphere fluxes for each ensemble member and ocean–
atmosphere fluxes from the Bern3D ocean model (Battaglia and Joos, 2018). The seasonal cycle of CO2 is dominated by fluxes from the land
– in particular, the Northern Hemisphere.

The model ensemble shows lower emissions in the early 20th
century and slightly underestimates NBP in the latter half of
the 20th century compared to the deconvolution. The overall
exchange of carbon over the industrial period is within the
uncertainty of the estimate.

We investigate the dependency of the constrained ensem-
ble on the choice of the observational constraints by reeval-
uating the ensemble for a subset of observations. We cre-
ated 19 weighting schemes, each missing one of the indi-
vidual observational constraints (Fig. 2 and Table 2) and
otherwise identical to the default scheme. Then the me-
dian skill weighted parameter values of these ensembles are
compared to the best-guess values of Mnet,net (Sect. 3.3).
The relative change in parametrization is less than 1 % for
15 out of the 19 considered alternative weighting schemes.
Leaving away the global vegetation and soil carbon con-
straints lead to moderate changes, notably to a change in
the parameter for mortality (mortmax) of 4 and 2 % respec-
tively. Not including the soil carbon distribution in high
latitudes lead to an increase in the parameter for the de-
pendency of soil respiration on temperature (E0,hr) of 2 %.
The largest changes in parametrization were observed when
not considering the atmospheric deconvolution; most notably
the sapwood–heartwood turnover time τsapwood decreased by
5 %. When omitting entire categories in the benchmarking
scheme, the changes in parametrization are larger than for
omitting individual constraints, with parameter changes of

up to 1 % for the fluxes, 5 % for the inventory and 6 % for the
transient category. This shows that the final parametrization
is not overly sensitive to the inclusion or omission of a single
observational product.

The unweighted kernel density estimates of the prior (full
ensemble) and posterior (constrained ensemble) parameter
distributions are shown in Fig. 1. The iterative procedure dis-
cussed in Sect. 2.3.2 results in only slight changes in the pos-
terior distribution with respect to the prior distribution. The
median of the distributions is, however, substantially differ-
ent from the initial parameter value used in LPX v1.2, the
version used as a starting point for this study.

3.3 Parameters of the new reference model version

We use the constrained ensemble to establish a new reference
model version, featuring a set of optimized parameters. The
reference version will be used for model simulations where
the use of an ensemble is not appropriate or required.

The skill weighted median parameter values of the con-
strained ensemble are used as a reference model and its pa-
rameter values are shown in Table 1. In Fig. 11 cumulative
NBP is displayed for an older model version, the mean val-
ues of constrained and unconstrained model ensemble and a
run with the new best-guess parameters. The best-guess ver-
sion is similar to the mean behavior of the constrained en-
semble, showing a net uptake of carbon in the latter half of
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Figure 9. The value and uncertainty of the scalar targets (red) compared to an unweighted histogram of the full (blue) and constrained
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Figure 10. The skill weighted median Mnet,net vegetation carbon
distribution averaged between 1982 and 2005 (a), compared to the
Carvalhais et al. (2014) vegetation carbon estimate (b). The correla-
tion of the estimates is r2

= 0.83. The absolute difference is shown
in panel (c).

the 20th century, consistent with observations (Ciais et al.,
2013). We note that the intermediate version 1.3 used in
Keller et al. (2017) features similar parameter settings as de-
termined here. This version simulated 20th century changes
in carbon isotope discrimination and intrinsic water use ef-
ficiency in good agreement with tree-ring data. The severe
underestimation of the land-carbon sink in older versions of
LPX-Bern was a consequence of the introduction of new fea-
tures and improvements in the code of LPX-Bern, without
subsequent retuning of the parametrization. The parameter
changes are most pronounced in the temperature dependence
of heterotrophic respiration E0,hr and αm, a parameter asso-
ciated with plant water demand. Both of these changes are
not unexpected, as they increase the land carbon sink. In the
case of heterotrophic respiration, less carbon is lost due to in-
creasing surface temperature and the increased water demand
amplifies the CO2 fertilization effect.

Overall, the updated parametrization shows a well-
balanced performance in the spatial benchmarks shown in
Fig. 7. The older LPX version excels at singular metrics,
namely the amplitude growth of CO2 and the FLUXNET
measurements, but breaks down at others, such as the spatial
distribution of carbon and evapotranspiration. Furthermore,
it also performs considerably worse in the scalar and decon-
volution targets.

The choice of using the skill weighted median parameters
of the constrained ensemble instead of simply using the best-
performing parameter set for the reference version is moti-
vated by its robustness and representativeness of the ensem-
ble. While the best-performing model member certainly pos-
sesses a higher skill score, its parameter values can depend
strongly on the choice and weighting of the observational tar-

Biogeosciences, 15, 2909–2930, 2018 www.biogeosciences.net/15/2909/2018/



S. Lienert and F. Joos: Data assimilation: model parameters and land-use emissions 2923

1900 1920 1940 1960 1980 2000

Year

60

40

20

0

20

40

60

C
um

ul
at

iv
e 

N
B

P
 [P

gC
]

Full ensemble
Constrained ensemble
Inversion
LPX v1.2
LPX v1.4
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simulations with the Bern3D model.

gets, whereas the median parameter values depend less on
individual metrics.

4 Discussion

4.1 Land–atmosphere fluxes and ELUC

The simultaneous assimilation of multiple observational con-
straints yields soil and vegetation stocks and distributions
which are consistent with observations. The total land–
atmosphere carbon flux is reproduced relatively well in the
model configuration using net land-use Mnet,net. Comparing
the land–atmosphere carbon flux to the independent flux es-
timates by Schimel et al. (2015) in the period 1990–2007,
the tropical and southern fluxes are in good agreement to the
atmospheric deconvolution results with airborne constraint
with a flux of 0.24 (−0.02, 0.57) in LPX-Bern. The flux in
the northern extratropical areas of 0.50 (0.37, 0.63) is on the
lower end but easily fulfills the mass balance.

The observed uncertainties of ELUC due to parameter un-
certainty in the DGVM LPX are on the same order of mag-
nitude as structural uncertainties, such as including or not
including modules for shifting cultivation and wood harvest.
The effect of the inclusion of additional land-use processes
can even be compensated by a change in parametrization,
while still conforming to the observational benchmarks, in-
dicating that it might be possible to capture the magnitude of
ELUC, while neglecting second-order processes. The com-
pensation of ELUC occurs because the residual sink is less
sensitive to parametrization changes than the ELUC in LPX-
Bern. This behavior has also lead to an ELUC that is on the

lower end of independent estimates (Le Quéré et al., 2016).
A lack of large difference in ELUC from model setups fea-
turing gross and net land use might seem in contrast with the
result of other studies investigating these processes (Arneth
et al., 2017; Wilkenskjeld et al., 2014; Stocker et al., 2014;
Shevliakova et al., 2009); however, if we keep parametriza-
tion constant (Mgross,net) we find the expected lower ELUC
for net land use.

We investigated the magnitude and spatial distribution of
ELUC in the model configuration using the skill scores and
parametrization from the standard net land-use configuration
with additional processes of shifting cultivation and wood
harvest (Mgross,net). This choice is motivated by the good per-
formance of the net land-use ensemble in the observational
benchmarks (Sect. 3.2 and Figs. S1–S14).

A good correspondence between simulated fluxes and the
estimates of Houghton and Nassikas (2017) in 10 regions
during the industrial period is found. When comparing re-
cent decades, LPX-Bern generally seems to simulate lower
ELUC than both the bookkeeping-approach-based estimate
and the aggregated estimates in the GCP. The biggest dis-
parity is comparatively low fluxes in the South and Southeast
Asia regions in LPX-Bern, which are at least partially ex-
plained by the lack of tropical peatlands in this model config-
uration. The burning and draining of tropical peatlands is an
important contribution to ELUC in tropical regions (Roman-
Cuesta et al., 2016; Koh et al., 2011; Hooijer et al., 2010).
The annual emissions estimate from draining peatlands used
in Houghton and Nassikas (2017) increase from almost no
emissions in 1980 to roughly 0.2 PgC yr−1 in 2015. The lack
of tropical peatlands is also consistent with the underesti-
mated soil carbon density in these regions when compared
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to Carvalhais et al. (2014). Other studies suggest higher his-
torical ELUC, such as the bookkeeping approach by Hansis
et al. (2015), including shifting cultivation, with an estimate
of 261 PgC between 1850 and 2005. Some of the difference
between DGVM model results and bookkeeping approaches
can be attributed to different definitions of LULCC emission
(Pongratz et al., 2014; Stocker and Joos, 2015).

A recent study by Li et al. (2017) constrained ELUC
by using biomass observations. They derived a relation-
ship between ELUC and biomass in nine regions using
the nine DGVMs in the TRENDY v2 model intercom-
parison (Sitch et al., 2015) and applied empirical estimates
for biomass carbon to arrive at a constrained ELUC of
155± 50 PgC between 1901 and 2012. The result of 116
(77, 156) PgC as in this study is compatible, albeit somewhat
lower. By neglecting all other constraints and exclusively us-
ing the global vegetation carbon by IPCC (Ciais et al., 2013)
and the biomass map by Carvalhais et al. (2014) (also used
as one of the constraints in Li et al., 2017) as constraints, we
arrive at a higher ELUC of 130 (87, 179) PgC. This illustrates
the importance of the biomass inventory for the magnitude
of ELUC.
ELUC is not only influenced by uncertain model processes

and parametrizations but also the underlying LULCC forc-
ings (Goll et al., 2015). Peng et al. (2017) have shown that
the choice of transition rules, governing how new land-use
areas are allocated from previous areas, has a considerable
effect on ELUC. The effects of these uncertainties are not ac-
counted for in this study since we only use one land-cover
forcing product and one set of transition rules is used.

Overall, the ensemble approach produces ELUC estimates
consistent with other independent estimates, albeit somewhat
on the lower end of the range of estimates. This is a conse-
quence of the constraining process favoring parametrization
with low ELUC over a high residual sink, which is discussed
further in the next section.

4.2 Benchmark performance and best-guess version

A hierarchical weighting scheme to compare a diverse
set of constraints was employed, following earlier work
(Steinacher et al., 2013). A set of 14 data sets (Fig. 2, Ta-
ble 2) was selected to constrain the model’s performance
with regard to steady state carbon and water fluxes and car-
bon inventories as well as with regard to transient changes.
Globally aggregated as well as spatially resolved informa-
tion is used to constrain simulated spatial patterns and to ro-
bustly model global mean properties. The temporal focus is
on the decadal-to-century timescales most relevant for pro-
jections of anthropogenic climate–carbon cycle changes and
on the seasonal cycle of photosynthesis and the decadal am-
plification of the seasonal cycle in land–atmosphere fluxes
(McGuire et al., 2001; Graven et al., 2013) which provide in-
formation on underlying processes. The iterative procedure
for choosing the prior parameter distribution yielded an en-

semble which performs well with respect to the selected met-
rics.

In addition to the weighting of model results with the
global skill score, we employed a minimum skill criterion,
discarding runs with very bad performance in a singular met-
ric. This approach is somewhat comparable to pre-calibration
methods, where implausible parameter spaces are also ruled
out (Williamson et al., 2017; Holden et al., 2010; Edwards
et al., 2011), and aims to sensibly reduce the size of the pa-
rameter space.

While the uptake of carbon by the terrestrial biosphere in
the model ensemble is significantly larger than earlier ver-
sions of LPX, it is still in the lower range of estimates. A
direct way of increasing the magnitude of change in land car-
bon is to change pool sizes, which is here restricted by other
observational constraints. The inclusion of more processes,
such as natural and human-induced erosion (Wang et al.,
2017), could also increase the strength of the terrestrial sink;
however, other processes such as shifting cultivation lead to
a decrease in the land carbon sink. A further possibility is
the revising of established processes in the model. The cli-
matic dependence of the auto- and heterotrophic respiration
is an important component, mitigating the CO2 fertilization
effect. The implementation of a more refined module might
decrease this negative feedback, thus increasing carbon stor-
age and sink sensitivity. The sink strength could potentially
also be enhanced by including so far not included param-
eters and including additional constraints that discriminate
between the different components of the land sink.

Fossil carbon emissions and thus the net biome production
and the carbon sink inferred from the deconvolution may be
biased high for the most recent decades. The fossil emissions
are estimated from fossil-fuel production data, which include
the fraction used for non-combustion purposes such as the
production of plastics and asphalt. Boden et al. (2017) as-
sume non-fuel uses equal to zero (Andres et al., 2012) since
the products will eventually be oxidized as well. Geyer et al.
(2017) estimate that 8.3 Pg of plastics were produced be-
tween 1950 and 2015, of which 2.6 Pg were in use in 2015,
0.8 Gt incinerated and 4.9 Gt discarded. This implies that be-
tween 2.6 and 7.5 Pg plastic may still be left unoxidized. This
is relatively small compared to the residual terrestrial sink,
estimated to be around 69 (51, 93) PgC for the period from
1950 to 2015 (Mnet,net in Fig. 3). However, about half of the
plastic was produced since 2000 and estimated production is
about 0.4 Pg yr−1 in 2015. In addition, about 0.1 Pg of bitu-
men asphalt is produced annually. Considering that most of
the molecular weight of plastics is from carbon, fossil CO2
emissions and in turn the terrestrial sink are biased high by up
to 0.5 PgC yr−1 in 2015. This potential bias may be compared
to the residual terrestrial sink flux of 1.2 (0.8, 1.7) PgC yr−1

during 2005 to 2015. Interestingly the deconvolution of the
atmospheric and fossil CO2 records suggests a recent accel-
eration in the trend of the net biome production (Fig. 11);
this acceleration may also be biased high. In conclusion, con-
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sidering plastic and asphalt products brings the most recent
trends in the net biome production from the deconvolution
versus the LPX model in better agreement, while estimates
of net biome production and the terrestrial sinks are hardly
affected before 2000 CE.

The release of both spatially and temporally resolved car-
bon flux observations by using remote sensing, such as the
Carbon Monitoring System Flux Pilot (CMS) project, featur-
ing not only net fluxes but also gross production and respi-
ration, which is a very promising candidate for constraining
the parameter space further. The spatial structure might re-
strict the apparent degree of freedom in partitioning the ter-
restrial sink in ELUC and residual land carbon sink. δ13C iso-
tope measurements in vegetation also have the potential to
be a useful additional constraint in land biosphere models
(Keller et al., 2017).

Another avenue of increasing model performance is to in-
troduce spatially explicit parametrization, as used in multi-
model averaging studies (Exbrayat et al., 2018; Schwalm
et al., 2015). A caveat of using this approach with a single
model is a potential overfitting of the parameters.

The simultaneous assimilation of multiple observational
constraints allowed us to formulate a well-rounded best-
guess version of the model. While this parameter version
does not necessarily excel at every single benchmark, it
shows a consistent performance amongst all different targets.
This behavior leads us to believe that the best-guess version
is well suited for simulations spanning long time spans, both
for paleo- and future research questions, where the use of a
full parameter ensemble is not feasible. Furthermore, it can
also be used in model intercomparison studies, where single
realizations of different models are compared.

5 Conclusions

We successfully applied a multi-purpose model benchmark
to a perturbed parameter ensemble of a dynamic global veg-
etation model (DGVM). Specifically, we developed a best-
guess model version and constrained the residual carbon
sink flux and carbon emissions from anthropogenic land use
(ELUC) over the industrial period. The general characteristics
of the framework are as follows. (i) The framework permits
a standardized model benchmarking (Hoffman et al., 2017;
Kelley et al., 2013; Luo et al., 2012; Blyth et al., 2011) by
comparing different models or model versions graphically
and using statistical metrics (Stow et al., 2009) to a broad
and diverse range of observations. (ii) The efficient Latin hy-
percube sampling method (McKay et al., 1979) is used to
explore the model parameter space and to set up and run
perturbed parameter ensembles for a large set of model pa-
rameters. The advantage of the Latin hypercube sampling is
the representative sampling of different parameter combina-
tions, whereas a shortcoming is that the sampling size has to
be determined in advance. (iii) A hierarchical model weight-

ing scheme is used to assimilate diverse observations. These
may differ with respect to spatial and temporal resolution and
quality and include observations from the local scale, such
as data from individual biomass measurements or the sea-
sonal CO2 cycle at individual atmospheric sampling sites, up
to global-scale gridded data products such as satellite mea-
surements of absorbed radiation by plants. A major advan-
tage of this scheme compared to sequential assimilation tech-
niques such as ensemble Kalman filters is that the influence
of necessarily subjective choices (Rougier, 2007) on the re-
sults can be investigated a posteriori – in other words with-
out performing costly additional simulations. The subjective
choices may be of scientific nature such as whether an obser-
vational data set is considered or not or of a more technical
nature such as whether gridded data values are weighted by
grid cell area or not. (iv) The applied modular framework
is easily extendable to incorporate different or more obser-
vational constraints and to different mechanistic models in-
cluding other DGVMs, ocean models (Battaglia et al., 2016)
or Earth system models (Steinacher et al., 2013; Steinacher
and Joos, 2016)). (v) The Bayesian, skill score weighted en-
semble is able to constrain the median and uncertainty ranges
of unknown or uncertain quantities such as carbon emissions
from anthropogenic land use, marine nitrous oxide produc-
tion (Battaglia and Joos, 2018) or climate sensitivity met-
rics (Steinacher and Joos, 2016). (vi) Finally, the skill score
weighted ensemble is suitable for probabilistic projections
including both likely and less likely model configurations
and assumptions.

A new reference version of the LPX-Bern (v1.4) DGVM
was established. We were able to show that the constrained
ensemble, as well as a resulting best-guess version, performs
consistently well under a range of benchmarks (Table 2)
while satisfying a minimum skill criterion in every single
benchmark. The new model version LPX-Bern v1.4 success-
fully simulates observation-based estimates of the cumula-
tive net land uptake and release over the industrial period.

Many previous studies have investigated inherent uncer-
tainties in ELUC estimates (Houghton et al., 2012; Goll et al.,
2015; Peng et al., 2017). Our study aims to contribute to
this ongoing discussion by providing DGVM ELUC uncer-
tainty estimates purely due to parameter uncertainty in an
observationally constrained model ensemble using the LUH2
v2h (Hurtt et al., 2018) product. Overall, the benchmarking
scheme favors runs with low emissions due to a relatively
low residual sink sensitivity in the model and constraining
total land–atmosphere fluxes. We consider model ensembles
with and without additional land-use processes (shifting cul-
tivation and wood harvest) and find that the difference in
globalELUC is on the same order of magnitude as parameter-
induced uncertainty. The inclusion of shifting cultivation and
wood harvesting increases emissions similar in magnitude to
earlier studies (Stocker et al., 2014; Shevliakova et al., 2009)
when applying the same model parameters, while in some
cases these additional emissions could potentially even be
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offset with appropriate parameter choice. We attributed the
fluxes to different countries and more closely investigated the
10 countries with the most emissions in the industrial period
due to land-use and land-use change. Our land-use carbon
emission estimates are similar to those of Houghton and Nas-
sikas (2017) on the country level and overall consistent with
other independent estimates on regional to global levels (Li
et al., 2017; Le Quéré et al., 2016).

The observation-constrained DGVM ensemble and best-
guess version established in this work are ready for
use in model intercomparison studies (Tian et al., 2018;
Sitch et al., 2015) and longer time span paleo-simulations.
It may also be applied to quantify future terrestrial carbon
fluxes and ELUC for different shared socio-economic path-
ways. Additional new observational data streams may be im-
plemented in our modular framework to further refine results.

Data availability. Model output is available upon request to the
corresponding author (lienert@climate.unibe.ch).

The Supplement related to this article is available online
at https://doi.org/10.5194/bg-15-2909-2018-supplement.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue
“The 10th International Carbon Dioxide Conference (ICDC10) and
the 19th WMO/IAEA Meeting on Carbon Dioxide, other Green-
house Gases and Related Measurement Techniques (GGMT-2017)
(AMT/ACP/BG/CP/ESD inter-journal SI)”. It is a result of the 10th
International Carbon Dioxide Conference, Interlaken, Switzerland,
21–25 August 2017.

Acknowledgements. We thank Gianna Battaglia for supplying
the Bern3D model output and Marko Scholze for providing
the TM2 transport matrices. We would like to thank the data
community for their efforts in providing high-quality data sets. This
work was supported by the Swiss National Science Foundation
(#200020_172476).

Edited by: Christoph Heinze
Reviewed by: Sönke Zaehle and Jean-François Exbrayat

References

Andres, R. J., Boden, T. A., Bréon, F.-M., Ciais, P., Davis, S.,
Erickson, D., Gregg, J. S., Jacobson, A., Marland, G., Miller,
J., Oda, T., Olivier, J. G. J., Raupach, M. R., Rayner, P.,

and Treanton, K.: A synthesis of carbon dioxide emissions
from fossil-fuel combustion, Biogeosciences, 9, 1845–1871,
https://doi.org/10.5194/bg-9-1845-2012, 2012.

Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter,
B., Bayer, A., Bondeau, A., Calle, L., Chini, L., Gasser, T., Fader,
M., Friedlingstein, P., Kato, E., Li, W., Lindeskog, M., Nabel, J.
E. M. S., Pugh, T. A. M., Robertson, E., Viovy, N., Yue, C., and
Zaehle, S.: Historical carbon dioxide emissions due to land use
changes possibly larger than assumed, Nat. Geosci., 10, 79–84,
https://doi.org/10.1038/ngeo2882, 2017.

Ballantyne, A. P., Andres, R., Houghton, R., Stocker, B. D., Wan-
ninkhof, R., Anderegg, W., Cooper, L. A., DeGrandpre, M.,
Tans, P. P., Miller, J. B., Alden, C., and White, J. W. C.: Au-
dit of the global carbon budget: estimate errors and their im-
pact on uptake uncertainty, Biogeosciences, 12, 2565–2584,
https://doi.org/10.5194/bg-12-2565-2015, 2015.

Battaglia, G. and Joos, F.: Marine N2O Emissions From Ni-
trification and Denitrification Constrained by Modern Ob-
servations and Projected in Multimillennial Global Warm-
ing Simulations, Global Biogeochem. Cy., 32, 92–121,
https://doi.org/10.1002/2017GB005671, 2018.

Battaglia, G., Steinacher, M., and Joos, F.: A probabilis-
tic assessment of calcium carbonate export and dissolu-
tion in the modern ocean, Biogeosciences, 13, 2823–2848,
https://doi.org/10.5194/bg-13-2823-2016, 2016.

Beven, K. and Binley, A.: The future of distributed models: Model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–
298, https://doi.org/10.1002/hyp.3360060305, 1992.

Billings, S. A., Buddemeier, R. W., De, D., Van Oost, K., and
Bohling, G.: A simple method for estimating the influence of
eroding soil profiles on atmospheric CO2, Global Biogeochem.
Cy., 24, 1–14, https://doi.org/10.1029/2009GB003560, 2010.

Blyth, E., Clark, D. B., Ellis, R., Huntingford, C., Los, S., Pryor,
M., Best, M., and Sitch, S.: A comprehensive set of benchmark
tests for a land surface model of simultaneous fluxes of water and
carbon at both the global and seasonal scale, Geosci. Model Dev.,
4, 255–269, https://doi.org/10.5194/gmd-4-255-2011, 2011.

Boden, T., Marland, G., and Andres, R.: Global, Regional,
and National Fossil-Fuel CO2 Emissions, Carbon Dioxide
Information Analysis Center, Oak Ridge National Labora-
tory, U.S. Department of Energy, Oak Ridge, Tenn., USA,
https://doi.org/10.3334/CDIAC/00001_V2017, 2017.

Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cad-
ule, P., Chini, L., Claussen, M., Friedlingstein, P., Gayler,
V., Van den hurk, B. J., Hurtt, G. C., Jones, C. D., Kato,
E., De noblet ducoudre, N., Pacifico, F., Pongratz, J., and
Weiss, M.: Effect of anthropogenic land-use and land-cover
changes on climate and land carbon storage in CMIP5 projec-
tions for the twenty-first century, J. Climate, 26, 6859–6881,
https://doi.org/10.1175/JCLI-D-12-00623.1, 2013.

Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M.,
Migliavacca, M., Mgru, M., Saatchi, S., Santoro, M., Thurner,
M., Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson,
J. T., and Reichstein, M.: Global covariation of carbon turnover
times with climate in terrestrial ecosystems, Nature, 514, 213–
217, https://doi.org/10.1038/nature13731, 2014.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell,
J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M.,
Jones, C., Quéré, C. L., Myneni, R. B., Piao, S., and

Biogeosciences, 15, 2909–2930, 2018 www.biogeosciences.net/15/2909/2018/

https://doi.org/10.5194/bg-15-2909-2018-supplement
https://doi.org/10.5194/bg-9-1845-2012
https://doi.org/10.1038/ngeo2882
https://doi.org/10.5194/bg-12-2565-2015
https://doi.org/10.1002/2017GB005671
https://doi.org/10.5194/bg-13-2823-2016
https://doi.org/10.1002/hyp.3360060305
https://doi.org/10.1029/2009GB003560
https://doi.org/10.5194/gmd-4-255-2011
https://doi.org/10.3334/CDIAC/00001_V2017
https://doi.org/10.1175/JCLI-D-12-00623.1
https://doi.org/10.1038/nature13731


S. Lienert and F. Joos: Data assimilation: model parameters and land-use emissions 2927

Thornton, P.: Carbon and Other Biogeochemical Cycles, Cli-
mate Change 2013 – The Physical Science Basis, 465–570,
https://doi.org/10.1017/CBO9781107415324.015, 2013.

DeVries, T.: The oceanic anthropogenic CO2 sink: Stor-
age, air–sea fluxes, and transports over the indus-
trial era, Global Biogeochem. Cycles, 28, 631–647,
https://doi.org/10.1002/2013GB004739, 2014.

Edwards, N. R., Cameron, D., and Rougier, J.: Precalibrating an in-
termediate complexity climate model, Clim. Dynam., 37, 1469–
1482, https://doi.org/10.1007/s00382-010-0921-0, 2011.

Exbrayat, J.-F., Bloom, A. A., Falloon, P., Ito, A., Smallman, T. L.,
and Williams, M.: Reliability ensemble averaging of 21st cen-
tury projections of terrestrial net primary productivity reduces
global and regional uncertainties, Earth Syst. Dynam., 9, 153–
165, https://doi.org/10.5194/esd-9-153-2018, 2018.

Gerber, M. and Joos, F.: An Ensemble Kalman Filter multi-tracer
assimilation: Determining uncertain ocean model parameters for
improved climate-carbon cycle projections, Ocean Model., 64,
29–45, https://doi.org/10.1016/j.ocemod.2012.12.012, 2013.

Gerber, S., Hedin, L. O., Keel, S. G., Pacala, S. W., and Shevliakova,
E.: Land use change and nitrogen feedbacks constrain the trajec-
tory of the land carbon sink, Geophys. Res. Lett., 40, 5218–5222,
https://doi.org/10.1002/grl.50957, 2013.

Geyer, R., Jambeck, J. R., and Law, K. L.: Production, use,
and fate of all plastics ever made, Sci. Adv., 3, e1700782,
https://doi.org/10.1126/sciadv.1700782, 2017.

GLOBALVIEW-CO2: Cooperative Global Atmospheric Data In-
tegration Project, Multi-laboratory compilation of synchro-
nized and gap-filled atmospheric carbon dioxide records
for the period 1979–2012 (obspack_co2_1_GLOBALVIEW-
CO2_2013_v1.0.4_2013-12-23), updated annually, compiled by:
NOAA Global Monitoring Division, Boulder, Colorado, USA,
available at: http://dx.doi.org/10.3334/OBSPACK/1002, last ac-
cess: 2013.

Gobron, N., Pinty, B., Aussedat, O., Chen, J. M., Cohen, W. B.,
Fensholt, R., Gond, V., Huemmrich, K. F., Lavergne, T., Mélin,
F., Privette, J. L., Sandholt, I., Taberner, M., Turner, D. P., Ver-
straete, M. M., and Widlowski, J. L.: Evaluation of fraction of
absorbed photosynthetically active radiation products for differ-
ent canopy radiation transfer regimes: Methodology and results
using Joint Research Center products derived from SeaWiFS
against ground-based estimations, J. Geophys. Res.-Atmos., 111,
D13110, https://doi.org/10.1029/2005JD006511, 2006.

Goll, D. S., Brovkin, V., Liski, J., Raddatz, T., Thum, T., and
Todd-Brown, K. E.: Strong dependence of CO2 emissions from
anthropogenic land cover change on soil carbon parametriza-
tion and initial land cover, Global Biogeochem. Cy., 29, 1–58,
https://doi.org/10.1002/2014GB004988, 2015.

Graven, A. H. D., Keeling, R. F., Piper, S. C., Patra, P. K.,
and Stephens, B. B.: Enhanced seasonal exchange of CO2
by northern ecosystems since 1960, Science, 341, 1085–1089,
https://doi.org/10.1126/science.1239207, 2013.

Hansis, E., Davis, S. J., and Pongratz, J.: Relevance of method-
ological choices for accounting of land use change car-
bon fluxes, Global Biogeochem. Cycles, 29, 1230–1246,
https://doi.org/10.1002/2014GB004997, 2015.

Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Up-
dated high-resolution grids of monthly climatic observations

– the CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642,
https://doi.org/10.1002/joc.3711, 2014.

Hoffman, F. M., Koven, C. D., Keppel-Aleks, G., Lawrence, D. M.,
Riley, W. J., Randerson, J. T., Ahlström, A., Abramowitz, G.,
Baldocchi, D. D., Best, M. J., Bond-Lamberty, Kauwe, B. M.
G. D., Denning, A. S., Desai, A. R., Eyring, V., Fisher, J. B.,
Fisher, R. A., Gleckler, P. J., Huang, M., Hugelius, G., Jain,
A. K., Kiang, N. Y., Kim, H., Koster, R. D., Kumar, S. V., Li,
H., Luo, Y., Mao, J., McDowell, N. G., Mishra, U., Moorcroft,
P. R., Pau, G. S. H., Ricciuto, D. M., Schaefer, K., Schwalm,
C. R., Serbin, S. P., Shevliakova, E., Slater, A. G., Tang, J.,
Williams, M., Xia, J., Xu, C., Joseph, R., and Koch, D.: Inter-
national Land Model Benchmarking (ILAMB) 2016 Workshop
Report, 1, https://doi.org/10.2172/1330803, 2017.

Hoffmann, T., Mudd, S. M., van Oost, K., Verstraeten, G., Erkens,
G., Lang, A., Middelkoop, H., Boyle, J., Kaplan, J. O., Willen-
bring, J., and Aalto, R.: Short Communication: Humans and the
missing C-sink: erosion and burial of soil carbon through time,
Earth Surf. Dynam., 1, 45–52, https://doi.org/10.5194/esurf-1-
45-2013, 2013.

Holden, P. B., Edwards, N. R., Oliver, K. I. C., Lenton, T. M., and
Wilkinson, R. D.: A probabilistic calibration of climate sensitiv-
ity and terrestrial carbon change in GENIE-1, Clim. Dynam., 35,
785–806, https://doi.org/10.1007/s00382-009-0630-8, 2010.

Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J.,
Wösten, H., and Jauhiainen, J.: Current and future CO2 emis-
sions from drained peatlands in Southeast Asia, Biogeosciences,
7, 1505–1514, https://doi.org/10.5194/bg-7-1505-2010, 2010.

Houghton, R. A. and Nassikas, A. A.: Global and Re-
gional Fluxes of Carbon from Land Use and Land-Cover
Change 1850–2015, Global Biogeochem. Cy., 31, 456–472,
https://doi.org/10.1002/2016GB005546, 2017.

Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R.,
DeFries, R. S., Hansen, M. C., Le Quéré, C., and Ramankutty,
N.: Carbon emissions from land use and land-cover change, Bio-
geosciences, 9, 5125–5142, https://doi.org/10.5194/bg-9-5125-
2012, 2012.

Hurtt, G., Chini, L., Sahajpa, R., and Frolking, S.: Harmonization
of global land-use change and management for the period 850–
2100, Geosci. Model Dev. Discuss., in preparation, 2018.

Joos, F. and Spahni, R.: Rates of change in natural and
anthropogenic radiative forcing over the past 20,000
years, P. Natl. Acad. Sci. USA, 105, 1425–1430,
https://doi.org/10.1073/pnas.0707386105, 2007.

Kaminski, T., Heimann, M., and Giering, R.: A coarse grid three-
dimensional global inverse model of the atmospheric transport:
2. Inversion of the transport of CO2 in the 1980s, J. Geophys.
Res., 104, 18555, https://doi.org/10.1029/1999JD900146, 1999.

Kaminski, T., Knorr, W., Schürmann, G., Scholze, M., Rayner,
P. J., Zaehle, S., Blessing, S., Dorigo, W., Gayler, V., Giering,
R., Gobron, N., Grant, J. P., Heimann, M., Hooker-Stroud, A.,
Houweling, S., Kato, T., Kattge, J., Kelley, D., Kemp, S., Koffi,
E. N., Köstler, C., Mathieu, P. P., Pinty, B., Reick, C. H., Rö-
denbeck, C., Schnur, R., Scipal, K., Sebald, C., Stacke, T., Van
Scheltinga, A. T., Vossbeck, M., Widmann, H., and Ziehn, T.:
The BETHY/JSBACH Carbon Cycle Data Assimilation Sys-
tem: Experiences and challenges, J. Geophys. Res.-Biogeo., 118,
1414–1426, https://doi.org/10.1002/jgrg.20118, 2013.

www.biogeosciences.net/15/2909/2018/ Biogeosciences, 15, 2909–2930, 2018

https://doi.org/10.1017/CBO9781107415324.015
https://doi.org/10.1002/2013GB004739
https://doi.org/10.1007/s00382-010-0921-0
https://doi.org/10.5194/esd-9-153-2018
https://doi.org/10.1016/j.ocemod.2012.12.012
https://doi.org/10.1002/grl.50957
https://doi.org/10.1126/sciadv.1700782
http://dx.doi.org/10.3334/OBSPACK/1002
https://doi.org/10.1029/2005JD006511
https://doi.org/10.1002/2014GB004988
https://doi.org/10.1126/science.1239207
https://doi.org/10.1002/2014GB004997
https://doi.org/10.1002/joc.3711
https://doi.org/10.2172/1330803
https://doi.org/10.5194/esurf-1-45-2013
https://doi.org/10.5194/esurf-1-45-2013
https://doi.org/10.1007/s00382-009-0630-8
https://doi.org/10.5194/bg-7-1505-2010
https://doi.org/10.1002/2016GB005546
https://doi.org/10.5194/bg-9-5125-2012
https://doi.org/10.5194/bg-9-5125-2012
https://doi.org/10.1073/pnas.0707386105
https://doi.org/10.1029/1999JD900146
https://doi.org/10.1002/jgrg.20118


2928 S. Lienert and F. Joos: Data assimilation: model parameters and land-use emissions

Kato, T., Knorr, W., Scholze, M., Veenendaal, E., Kaminski, T.,
Kattge, J., and Gobron, N.: Simultaneous assimilation of satellite
and eddy covariance data for improving terrestrial water and car-
bon simulations at a semi-arid woodland site in Botswana, Bio-
geosciences, 10, 789–802, https://doi.org/10.5194/bg-10-789-
2013, 2013.

Keith, H., Mackey, B. G., and Lindenmayer, D. B.: Re-evaluation
of forest biomass carbon stocks and lessons from the world’s
most carbon-dense forests, P. Natl. Acad. Sci. USA, 106, 11635–
11640, https://doi.org/10.1073/pnas.0901970106, 2009.

Keller, K. M., Lienert, S., Bozbiyik, A., Stocker, T. F., Chu-
rakova (Sidorova), O. V., Frank, D. C., Klesse, S., Koven, C.
D., Leuenberger, M., Riley, W. J., Saurer, M., Siegwolf, R.,
Weigt, R. B., and Joos, F.: 20th century changes in carbon
isotopes and water-use efficiency: tree-ring-based evaluation of
the CLM4.5 and LPX-Bern models, Biogeosciences, 14, 2641–
2673, https://doi.org/10.5194/bg-14-2641-2017, 2017.

Kelley, D. I., Prentice, I. C., Harrison, S. P., Wang, H., Simard, M.,
Fisher, J. B., and Willis, K. O.: A comprehensive benchmarking
system for evaluating global vegetation models, Biogeosciences,
10, 3313–3340, https://doi.org/10.5194/bg-10-3313-2013, 2013.

Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M.,
Doney, S. C., Graven, H. D., Gruber, N., McKinley, G. A.,
Murata, A., Ríos, A. F., and Sabine, C. L.: Global ocean stor-
age of anthropogenic carbon, Biogeosciences, 10, 2169–2191,
https://doi.org/10.5194/bg-10-2169-2013, 2013.

Koh, L. P., Miettinen, J., Liew, S. C., and Ghazoul, J.:
Remotely sensed evidence of tropical peatland conversion
to oil palm, P. Natl. Acad. Sci. USA, 108, 5127–5132,
https://doi.org/10.1073/pnas.1018776108, 2011.

Kosmas, C., Giraldez, J. V., da Silva, J. R. M., Merckx, R.,
Van Oost, K., Quine, T. A., Govers, G., De Gryze, S.,
Six, J., Harden, J. W., Ritchie, J. C., McCarty, G. W.,
and Heckrath, G.: The Impact of Agricultural Soil Ero-
sion on the Global Carbon Cycle, Science, 318, 626–629,
https://doi.org/10.1126/science.1145724, 2007.

Lamarque, J.-F., Dentener, F., McConnell, J., Ro, C.-U., Shaw,
M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S.,
Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H.,
MacKenzie, I. A., Plummer, D., Shindell, D. T., Skeie, R. B.,
Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen,
D., Das, S., Fritzsche, D., and Nolan, M.: Multi-model mean
nitrogen and sulfur deposition from the Atmospheric Chem-
istry and Climate Model Intercomparison Project (ACCMIP):
evaluation of historical and projected future changes, Atmos.
Chem. Phys., 13, 7997–8018, https://doi.org/10.5194/acp-13-
7997-2013, 2013.

Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Kors-
bakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans,
P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D.,
Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P.,
Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P.,
Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M.,
Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Land-
schützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi,
D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S.,
Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., O’Brien, K.,
Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Röden-
beck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R.,

Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian,
H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G.
R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.:
Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605–649,
https://doi.org/10.5194/essd-8-605-2016, 2016.

Li, W., Ciais, P., Peng, S., Yue, C., Wang, Y., Thurner, M., Saatchi,
S. S., Arneth, A., Avitabile, V., Carvalhais, N., Harper, A. B.,
Kato, E., Koven, C., Liu, Y. Y., Nabel, J. E. M. S., Pan, Y.,
Pongratz, J., Poulter, B., Pugh, T. A. M., Santoro, M., Sitch,
S., Stocker, B. D., Viovy, N., Wiltshire, A., Yousefpour, R., and
Zaehle, S.: Land-use and land-cover change carbon emissions
between 1901 and 2012 constrained by biomass observations,
Biogeosciences, 14, 5053–5067, https://doi.org/10.5194/bg-14-
5053-2017, 2017.

Lorenc, A. C.: The potential of the ensemble Kalman filter for
NWP—a comparison with 4D-Var, Q. J. Roy. Meteor. Soc., 129,
3183–3203, https://doi.org/10.1256/qj.02.132, 2003.

Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth, E.,
Carvalhais, N., Ciais, P., Dalmonech, D., Fisher, J. B., Fisher,
R., Friedlingstein, P., Hibbard, K., Hoffman, F., Huntzinger,
D., Jones, C. D., Koven, C., Lawrence, D., Li, D. J., Ma-
hecha, M., Niu, S. L., Norby, R., Piao, S. L., Qi, X., Peylin, P.,
Prentice, I. C., Riley, W., Reichstein, M., Schwalm, C., Wang,
Y. P., Xia, J. Y., Zaehle, S., and Zhou, X. H.: A framework
for benchmarking land models, Biogeosciences, 9, 3857–3874,
https://doi.org/10.5194/bg-9-3857-2012, 2012.

Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reich-
stein, M., Ppapale, D., Piao, S. L., Schulze, E.-D., Wingate, L.,
Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer,
C., Black, K. G., Bonal, D., Bonnefond, J.-M., Chambers, J.,
Ciais, P., Cook, B., Davis, K. J., Dolman, A. J., Gielen, B.,
Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grün-
wald, T., Guidolotti, G., Hanson, P. J., Harding, R., Hollinger,
D. Y., Hutyra, L. R., Kolari, P., Kruijt, B., Kutsch, W., Lager-
gren, F., Laurila, T., Law, B. E., Le Maire, G., Lindroth, A.,
Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson,
L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J. W.,
Nikinmaa, E., Ollinger, S. V., Pita, G., Rebmann, C., Roup-
sard, O., Saigusa, N., Sanz, M. J., Seufert, G., Sierra, C., Smith,
M.-L., Tang, J., Valentini, R., Vesala, T., and Janssens, I. A.:
CO2 balance of boreal, temperate, and tropical forests derived
from a global database, Glob. Change Biol., 13, 2509–2537,
https://doi.org/10.1111/j.1365-2486.2007.01439.x, 2007.

Luyssaert, S., Inglima, I., and Jung, M.: Global Forest Ecosys-
tem Structure and Function Data For Carbon Balance Research,
https://doi.org/10.3334/ORNLDAAC/949, 2009.

Ma, R., Zhang, L., Tian, X., Zhang, J., Yuan, W., Zheng,
Y., Zhao, X., and Kato, T.: Assimilation of remotely-sensed
leaf area index into a dynamic vegetation model for gross
primary productivity estimation, Remote Sensing, 9, 188,
https://doi.org/10.3390/rs9030188, 2017.

Mahowald, N. M., Randerson, J. T., Lindsay, K., Munoz, E., Doney,
S. C., Lawrence, P., Schlunegger, S., Ward, D. S., Lawrence, D.,
and Hoffman, F. M.: Interactions between land use change and
carbon cycle feedbacks, Global Biogeochem. Cy., 31, 96–113,
https://doi.org/10.1002/2016GB005374, 2017.

McGuire, a. D., Sitch, S., Clein, J. S., Dargaville, R., Esser,
G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter,
D. W., Meier, R. A., Melillo, J. M., Moore, B., Prentice,

Biogeosciences, 15, 2909–2930, 2018 www.biogeosciences.net/15/2909/2018/

https://doi.org/10.5194/bg-10-789-2013
https://doi.org/10.5194/bg-10-789-2013
https://doi.org/10.1073/pnas.0901970106
https://doi.org/10.5194/bg-14-2641-2017
https://doi.org/10.5194/bg-10-3313-2013
https://doi.org/10.5194/bg-10-2169-2013
https://doi.org/10.1073/pnas.1018776108
https://doi.org/10.1126/science.1145724
https://doi.org/10.5194/acp-13-7997-2013
https://doi.org/10.5194/acp-13-7997-2013
https://doi.org/10.5194/essd-8-605-2016
https://doi.org/10.5194/bg-14-5053-2017
https://doi.org/10.5194/bg-14-5053-2017
https://doi.org/10.1256/qj.02.132
https://doi.org/10.5194/bg-9-3857-2012
https://doi.org/10.1111/j.1365-2486.2007.01439.x
https://doi.org/10.3334/ORNLDAAC/949
https://doi.org/10.3390/rs9030188
https://doi.org/10.1002/2016GB005374


S. Lienert and F. Joos: Data assimilation: model parameters and land-use emissions 2929

I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H.,
Williams, L. J., and Wittenberg, U.: Carbon balance of the
terrestrial biosphere in the Twentieth Century: Analyses of
CO2, climate and land use effects with four process-based
ecosystem models, Global Biogeochem. Cy., 15, 183–206,
https://doi.org/10.1029/2000GB001298, 2001.

McKay, M. D., Beckman, R. J., and Conover, W. J.: Comparison
of Three Methods for Selecting Values of Input Variables in
the Analysis of Output from a Computer Code, Technometrics,
21, 239–245, https://doi.org/10.1080/00401706.1979.10489755,
1979.

Meure, C. M., Etheridge, D., Trudinger, C., Steele, P., Lan-
genfelds, R., van Ommen, T., Smith, A., and Elkins, J.:
Law Dome CO2, CH4 and N2O ice core records ex-
tended to 2000 years BP, Geophys. Res. Lett., 33, L14810,
https://doi.org/10.1029/2006GL026152, 2006.

Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A.,
Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan,
F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield,
J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S.
I.: Benchmark products for land evapotranspiration: LandFlux-
EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17,
3707–3720, https://doi.org/10.5194/hess-17-3707-2013, 2013.

Olson, R. J., Scurlock, J. M. O., Prince, S. D., Zheng,
D. L., and Johnson, K. R.: NPP Multi-Biome: NPP and
Driver Data for Ecosystem Model-data Intercomparison, R2,
https://doi.org/10.3334/ornldaac/615, 2013.

Peng, S., Ciais, P., Chevallier, F., Peylin, P., Cadule, P., Sitch, S.,
Piao, S., Ahlström, A., Huntingford, C., Levy, P., Li, X., Liu,
Y., Lomas, M., Poulter, B., Viovy, N., Wang, T., and Wang, X.:
Benchmarking the seasonal cycle of CO2 fluxes simulated by ter-
restrial ecosystem models, Global Biogeochem. Cy., 29, 46–64,
https://doi.org/10.1002/2014GB004931, 2014.

Peng, S., Ciais, P., Maignan, F., Li, W., Chang, J., Wang, T., and
Yue, C.: Sensitivity of land use change emission estimates to his-
torical land use and land cover mapping, Global Biogeochem.
Cy., 31, 626–643, https://doi.org/10.1002/2015GB005360, 2017.

Pongratz, J. and Caldeira, K.: Attribution of atmospheric CO2
and temperature increases to regions: Importance of prein-
dustrial land use change, Environ. Res. Lett., 7, 034001,
https://doi.org/10.1088/1748-9326/7/3/034001, 2012.

Pongratz, J., Reick, C. H., Houghton, R. A., and House, J. I.: Ter-
minology as a key uncertainty in net land use and land cover
change carbon flux estimates, Earth Syst. Dynam., 5, 177–195,
https://doi.org/10.5194/esd-5-177-2014, 2014.

Randerson, J. T., Hoffman, F. M., Thornton, P. E., Mahowald,
N. M., Lindsay, K., Lee, Y. H., Nevison, C. D., Doney, S. C.,
Bonan, G., Stöckli, R., Covey, C., Running, S. W., and Fung,
I. Y.: Systematic assessment of terrestrial biogeochemistry in
coupled climate-carbon models, Glob. Change Biol., 15, 2462–
2484, https://doi.org/10.1111/j.1365-2486.2009.01912.x, 2009.

Ritz, S. P., Stocker, T. F., Joos, F., Ritz, S. P., Stocker, T. F., and
Joos, F.: A Coupled Dynamical Ocean–Energy Balance Atmo-
sphere Model for Paleoclimate Studies, J. Climate, 24, 349–375,
https://doi.org/10.1175/2010JCLI3351.1, 2011.

Roman-Cuesta, R. M., Rufino, M. C., Herold, M., Butterbach-
Bahl, K., Rosenstock, T. S., Herrero, M., Ogle, S., Li, C.,
Poulter, B., Verchot, L., Martius, C., Stuiver, J., and de Bruin,
S.: Hotspots of gross emissions from the land use sector: pat-

terns, uncertainties, and leading emission sources for the pe-
riod 2000–2005 in the tropics, Biogeosciences, 13, 4253–4269,
https://doi.org/10.5194/bg-13-4253-2016, 2016.

Roth, R., Ritz, S. P., and Joos, F.: Burial-nutrient feedbacks amplify
the sensitivity of atmospheric carbon dioxide to changes in or-
ganic matter remineralisation, Earth Syst. Dynam., 5, 321–343,
https://doi.org/10.5194/esd-5-321-2014, 2014.

Rougier, J.: Probabilistic inference for future climate using an en-
semble of climate model evaluations, Climatic Change, 81, 247–
264, https://doi.org/10.1007/s10584-006-9156-9, 2007.

Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing
CO2 on the terrestrial carbon cycle, P. Natl. Acad. Sci. USA, 112,
436–441, https://doi.org/10.1073/pnas.1407302112, 2015.

Schmittner, A., Urban, N. M., Keller, K., and Matthews,
D.: Using tracer observations to reduce the uncertainty
of ocean diapycnal mixing and climate-carbon cy-
cle projections, Global Biogeochem. Cy., 23, GB4009,
https://doi.org/10.1029/2008GB003421, 2009.

Schwalm, C. R., Huntinzger, D. N., Fisher, J. B., Michalak,
A. M., Bowman, K., Cook, R., El-masri, B., Hayes, D.,
Huang, M., Jacobson, A., Jain, A., King, A. W., Lei, H.,
and Liu, J.: Toward “optimal” integration of terrestrial bio-
sphere model ensembles, Geophys. Res. Lett., 42, 4418–4428,
https://doi.org/10.1002/2015GL064002, 2015.

Shevliakova, E., Pacala, S. W., Malyshev, S., Hurtt, G. C.,
Milly, P. C. D., Caspersen, J. P., Sentman, L. T., Fisk,
J. P., Wirth, C., and Crevoisier, C.: Carbon cycling un-
der 300 years of land use change: Importance of the sec-
ondary vegetation sink, Global Biogeochem. Cy., 23, 1–16,
https://doi.org/10.1029/2007GB003176, 2009.

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A.,
Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T.,
Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynam-
ics, plant geography and terrestrial carbon cycling in the LPJ dy-
namic global vegetation model, Glob. Change Biol., 9, 161–185,
https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-
Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze,
C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poul-
ter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan,
G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis,
R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B.,
Zhu, Z., and Myneni, R.: Recent trends and drivers of regional
sources and sinks of carbon dioxide, Biogeosciences, 12, 653–
679, https://doi.org/10.5194/bg-12-653-2015, 2015.

Spahni, R., Joos, F., Stocker, B. D., Steinacher, M., and Yu, Z. C.:
Transient simulations of the carbon and nitrogen dynamics in
northern peatlands: from the Last Glacial Maximum to the 21st
century, Clim. Past, 9, 1287–1308, https://doi.org/10.5194/cp-9-
1287-2013, 2013.

Steinacher, M. and Joos, F.: Transient Earth system responses to
cumulative carbon dioxide emissions: linearities, uncertainties,
and probabilities in an observation-constrained model ensemble,
Biogeosciences, 13, 1071–1103, https://doi.org/10.5194/bg-13-
1071-2016, 2016.

Steinacher, M., Joos, F., and Stocker, T. F.: Allowable carbon emis-
sions lowered by multiple climate targets, Nature, 499, 197–201,
https://doi.org/10.1038/nature12269, 2013.

www.biogeosciences.net/15/2909/2018/ Biogeosciences, 15, 2909–2930, 2018

https://doi.org/10.1029/2000GB001298
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1029/2006GL026152
https://doi.org/10.5194/hess-17-3707-2013
https://doi.org/10.3334/ornldaac/615
https://doi.org/10.1002/2014GB004931
https://doi.org/10.1002/2015GB005360
https://doi.org/10.1088/1748-9326/7/3/034001
https://doi.org/10.5194/esd-5-177-2014
https://doi.org/10.1111/j.1365-2486.2009.01912.x
https://doi.org/10.1175/2010JCLI3351.1
https://doi.org/10.5194/bg-13-4253-2016
https://doi.org/10.5194/esd-5-321-2014
https://doi.org/10.1007/s10584-006-9156-9
https://doi.org/10.1073/pnas.1407302112
https://doi.org/10.1029/2008GB003421
https://doi.org/10.1002/2015GL064002
https://doi.org/10.1029/2007GB003176
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.5194/bg-12-653-2015
https://doi.org/10.5194/cp-9-1287-2013
https://doi.org/10.5194/cp-9-1287-2013
https://doi.org/10.5194/bg-13-1071-2016
https://doi.org/10.5194/bg-13-1071-2016
https://doi.org/10.1038/nature12269


2930 S. Lienert and F. Joos: Data assimilation: model parameters and land-use emissions

Stocker, B., Feissli, F., and Strassmann, K.: Past and
future carbon fluxes from land use change, shift-
ing cultivation and wood harvest, Tellus B, 1, 1–15,
https://doi.org/10.3402/tellusb.v66.23188, 2014.

Stocker, B. D. and Joos, F.: Quantifying differences in land use
emission estimates implied by definition discrepancies, Earth
Syst. Dynam., 6, 731–744, https://doi.org/10.5194/esd-6-731-
2015, 2015.

Stocker, B. D., Roth, R., Joos, F., Spahni, R., Steinacher, M., Za-
ehle, S., Bouwman, L., Xu-Ri, and Prentice, I. C.: Multiple
greenhouse-gas feedbacks from the land biosphere under future
climate change scenarios, Nature Climate Change, 3, 666–672,
https://doi.org/10.1038/nclimate1864, 2013.

Stocker, B. D., Yu, Z., Massa, C., and Joos, F.: Holocene peatland
and ice-core data constraints on the timing and magnitude of
CO2 emissions from past land use, P. Natl. Acad. Sci. USA, 114,
1492–1497, https://doi.org/10.1073/pnas.1613889114, 2017.

Stöckli, R., Rutishauser, T., Baker, I., Liniger, M. A.,
and Denning, A. S.: A global reanalysis of vegeta-
tion phenology, J. Geophys. Res.-Biogeo., 116, 1–19,
https://doi.org/10.1029/2010JG001545, 2011.

Stow, C. A., Jolliff, J., McGillicuddy, D. J., Doney, S. C.,
Allen, J. I., Friedrichs, M. A., Rose, K. A., and Wall-
head, P.: Skill assessment for coupled biological/physical
models of marine systems, J. Marine Syst., 76, 4–15,
https://doi.org/10.1016/j.jmarsys.2008.03.011, 2009.

Strassmann, K. M., Joos, F., and Fischer, G.: Simulating ef-
fects of land use changes on carbon fluxes: Past contributions
to atmospheric CO2 increases and future commitments due
to losses of terrestrial sink capacity, Tellus B, 60, 583–603,
https://doi.org/10.1111/j.1600-0889.2008.00340.x, 2008.

Tans, P. and Keeling, R.: NOAA/ESRL and Scripps Institution
of Oceanography, available at: www.esrl.noaa.gov/gmd/ccgg/
trends/, scrippsco2.ucsd.edu/, last access: 23 January 2017.

Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhi-
tova, G., and Zimov, S.: Soil organic carbon pools in the north-
ern circumpolar permafrost region, Global Biogeochem. Cy., 23,
GB2023, https://doi.org/10.1029/2008GB003327, 2009.

Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J. G., Jackson, R., Ar-
neth, A., Chang, J., Chen, G., Ciais, P., Gerber, S., Ito, A., Huang,
Y., Joos, F., Lienert, S., Messina, P., Olin, S., Pan, S., Peng,
C., Saikawa, E., Thompson, R. L., Vuichard, N., Winiwarter,
W., Zaehle, S., Zhang, B., Zhang, K., and Zhu, Q.: The global
N2O Model Intercomparison Project (NMIP): Objectives, Simu-
lation Protocol and Expected Products, B. Am. Meteorol. Soc.,
https://doi.org/10.1175/BAMS-D-17-0212.1, online first, 2018.

Wang, Z., Hoffmann, T., Six, J., Kaplan, J. O., Govers, G., Doetterl,
S., and Van Oost, K.: Human-induced erosion has offset one-
third of carbon emissions from land cover change, Nature Cli-
mate Change, 7, 345–350, https://doi.org/10.1038/nclimate3263,
2017.

Wilkenskjeld, S., Kloster, S., Pongratz, J., Raddatz, T., and Re-
ick, C. H.: Comparing the influence of net and gross an-
thropogenic land-use and land-cover changes on the car-
bon cycle in the MPI-ESM, Biogeosciences, 11, 4817–4828,
https://doi.org/10.5194/bg-11-4817-2014, 2014.

Williamson, D. B., Blaker, A. T., and Sinha, B.: Tuning with-
out over-tuning: parametric uncertainty quantification for the
NEMO ocean model, Geosci. Model Dev., 10, 1789–1816,
https://doi.org/10.5194/gmd-10-1789-2017, 2017.

Zaehle, S., Sitch, S., Smith, B., and Hatterman, F.: Ef-
fects of parameter uncertainties on the modeling of terres-
trial biosphere dynamics, Global Biogeochem. Cy., 19, 1–16,
https://doi.org/10.1029/2004GB002395, 2005.

Zaehle, S., Ciais, P., Friend, A. D., and Prieur, V.: Car-
bon benefits of anthropogenic reactive nitrogen offset
by nitrous oxide emissions, Nat. Geosci., 4, 601–605,
https://doi.org/10.1038/ngeo1207, 2011.

Biogeosciences, 15, 2909–2930, 2018 www.biogeosciences.net/15/2909/2018/

https://doi.org/10.3402/tellusb.v66.23188
https://doi.org/10.5194/esd-6-731-2015
https://doi.org/10.5194/esd-6-731-2015
https://doi.org/10.1038/nclimate1864
https://doi.org/10.1073/pnas.1613889114
https://doi.org/10.1029/2010JG001545
https://doi.org/10.1016/j.jmarsys.2008.03.011
https://doi.org/10.1111/j.1600-0889.2008.00340.x
www.esrl.noaa.gov/gmd/ccgg/trends/
www.esrl.noaa.gov/gmd/ccgg/trends/
scrippsco2.ucsd.edu/
https://doi.org/10.1029/2008GB003327
https://doi.org/10.1175/BAMS-D-17-0212.1
https://doi.org/10.1038/nclimate3263
https://doi.org/10.5194/bg-11-4817-2014
https://doi.org/10.5194/gmd-10-1789-2017
https://doi.org/10.1029/2004GB002395
https://doi.org/10.1038/ngeo1207

	Abstract
	Introduction
	Methods
	LPX-Bern
	Model setup and spin-up
	Sampling and constraining
	Description of the sampling parameters
	Selection of the prior distribution
	Skill scores and the posterior distribution

	Observational constraints
	Definition of land-use emissions and the setup of the model ensembles

	Results
	Land-use emissions
	Global fluxes
	Spatial patterns and regional aggregates

	Evaluation of ensemble performance with respect to observational targets
	Parameters of the new reference model version

	Discussion
	Land--atmosphere fluxes and ELUC
	Benchmark performance and best-guess version

	Conclusions
	Data availability
	Competing interests
	Special issue statement
	Acknowledgements
	References

