

Supplement of

Effects of hypoxia and non-lethal shell damage on shell mechanical and geochemical properties of a calcifying polychaete

Jonathan Y. S. Leung and Napo K. M. Cheung

Correspondence to: Jonathan Y. S. Leung (jonathan_0919@hotmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

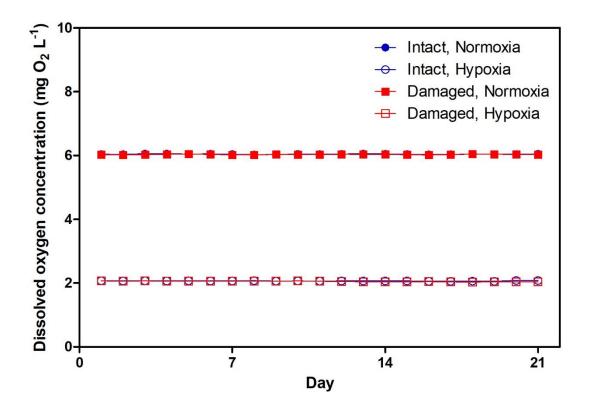


Figure S1 Dissolved oxygen concentration of seawater in different treatments across the 3-week experimental period (mean \pm S.D., n = 3).

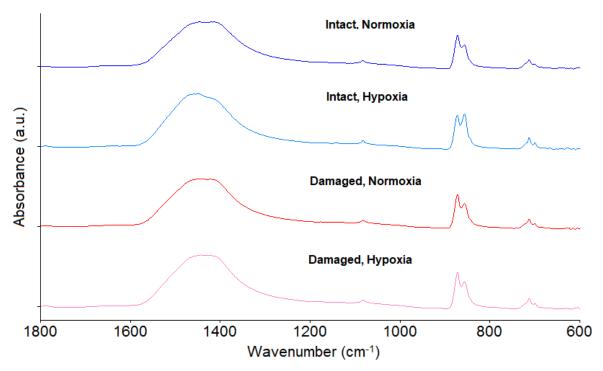


Figure S2 Infrared spectra for the newly produced shells of *H. diramphus* growing under different treatment conditions.

Table S1 The seawater parameters under different treatment conditions throughout the exposure period (mean \pm S.D.). Dissolved oxygen concentration was measured daily using an optical dissolved oxygen probe (SOO-100, TauTheta Instruments, USA). pH was measured daily using a pH meter (HI 9025, HANNA Instruments, USA). Temperature and salinity were measured daily using a thermometer and refractometer, respectively. Total alkalinity was measured weekly using a titrator (HI 84431, HANNA Instruments, USA). Saturation states (Ω) of calcite and aragonite were calculated using the CO2SYS program (Pierrot et al., 2006), with dissociation constants from Mehrbach et al. (1973) refitted by Dickson and Millero (1987).

	Intact, Normoxia	Intact, Hypoxia	Damaged, Normoxia	Damaged, Hypoxia
Measured parameters				
Dissolved oxygen (mg $O_2 L^{-1}$)	6.04 ± 0.02	2.07 ± 0.03	6.03 ± 0.01	2.05 ± 0.03
pH (NBS scale)	8.10 ± 0.05	8.26 ± 0.04	8.09 ± 0.05	8.26 ± 0.04
Temperature (°C)	28.2 ± 0.08	28.2 ± 0.09	28.2 ± 0.08	28.2 ± 0.10
Salinity (psu)	32.9 ± 0.35	33.0 ± 0.25	33.0 ± 0.42	33.1 ± 0.25
Total alkalinity (μ mol kg ⁻¹)	2241 ± 8.96	2231 ± 12.2	2241 ± 9.11	2243 ± 9.44
Calculated parameters				
$C_{\rm T}$ (µmol kg ⁻¹)	1984 ± 26.1	1885 ± 27.9	1988 ± 29.0	1895 ± 24.3
HCO_3^- (µmol kg ⁻¹)	1784 ± 40.2	1632 ± 44.3	1790 ± 45.0	1641 ± 38.5
CO_3^{2-} (µmol kg ⁻¹)	187 ± 16.1	244 ± 17.6	184 ± 18.3	246 ± 15.4
$\Omega_{ ext{calcite}}$	4.61 ± 0.40	6.01 ± 0.43	4.54 ± 0.45	6.05 ± 0.38
$\Omega_{ m aragonite}$	3.04 ± 0.26	3.98 ± 0.29	3.01 ± 0.30	4.01 ± 0.25

See Hanna Instruments (2008) and TauTheta Instruments LLC (2007) for the operation manuals of the titrator for total alkalinity and the optical dissolved oxygen probe for dissolved oxygen concentration, respectively.

Table S2 PERMANOVA table showing the effects of dissolved oxygen (DO) and context on shell growth, mechanical strength, organic matter content, calcite/aragonite, Mg/Ca in calcite, relative ACC content, respiration rate and clearance rate. The bold letters indicate significant difference (p < 0.05).

	df	Mean square	Pseudo-F	р	Comparison of means
Shell growth (Day 21)					
DO	1	21.8	5.66	0.019	Normoxia > Hypoxia
Context	1	676	175	0.001	Damaged > Intact
DO × Context	1	0.163	0.042	0.838	
Mechanical strength					
DO	1	2.00×10^{-7}	0.119	0.734	
Context	1	1.97×10^{-5}	11.7	0.004	Damaged > Intact
DO × Context	1	1.69×10^{-7}	0.101	0.755	
Organic matter content					
DO	1	1.04	1.10	0.309	
Context	1	9.83	10.5	0.005	Damaged > Intact
DO × Context	1	0.022	0.024	0.880	
Calcite/Aragonite					
DO	1	0.070	11.0	0.017	Hypoxia > Normoxia
Context	1	1.14×10^{-3}	0.178	0.623	
DO × Context	1	8.84×10^{-3}	1.39	0.249	
Mg/Ca in calcite					
DO	1	0.018	16.0	0.004	Hypoxia > Normoxia
Context	1	6.92×10^{-4}	0.618	0.455	
$DO \times Context$	1	4.83×10^{-4}	0.431	0.530	
Relative ACC content					
DO	1	0.355	6.02	0.047	Hypoxia > Normoxia
Context	1	0.199	3.37	0.104	
DO × Context	1	0.116	1.97	0.206	
Respiration rate					
DO	1	2.15×10^{-3}	4.36×10^{3}	0.001	Normoxia > Hypoxia
Context	1	8.52×10^{-6}	14.2	0.001	Intact > Damaged
DO × Context	1	$7.40 imes 10^{-8}$	0.150	0.715	
Clearance rate					
DO	1	84.0	140	0.001	Within Intact: Normoxia > Hypoxia
					Within Damaged: Normoxia > Hypoxi
Context	1	89.1	148	0.001	Within Normoxia: Intact > Damaged
					Within Hypoxia: N.S.
DO × Context	1	57.2	95.5	0.001	

References

Dickson, A.G. and Millero, F.J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep Sea Res. A, 34, 1733–1743, 1987.

Hanna Instruments: Instruction Manual - HI 84431 Total Alkalinity Minititrator & pH Meter for Water Analysis. https://www.manualslib.com/manual/530078/Hanna-Instruments-Hi-84431.html#manual, 2008.

Mehrbach, C., Culberso, C.H., Hawley, J.E., and Pytkowic, R.M.: Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure, Limnol. Oceanogr., 18, 897–907, 1973.

Pierrot, D., Lewis, E., and Wallace, D.W.R.: MS Excel Program Developed for CO₂ System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 2006.

TauTheta Instruments LLC: Stable Optical Oxygen System - Model SOO-100 and RuggedO₂TM Optical Oxygen Sensor - Operator's Manual. https://in-situ.com/wp-content/uploads/2015/05/Stable_Optical_Oxygen_System_-SOO-100_Manual.pdf>, 2007.