

Supplement of

The influence of soil properties and nutrients on conifer forest growth in Sweden, and the first steps in developing a nutrient availability metric

Kevin Van Sundert et al.

Correspondence to: Kevin Van Sundert (kevin.vansundert@uantwerpen.be)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

1 The productivity vs climate regression model

We disentangled the influence of climatological variables (TSUM and precipitation) on productivities of spruce and pine forests using ANCOVA (Analysis of Covariance). All possible combinations of single continuous variables and their interactions with species were alternatively included in data-driven regression models to finally select the one with the

5 lowest mean square of prediction error according to 10-fold cross-validation (package DAAG - Maindonald and Braun, 2015). In addition, potential non-linearities were detected with a generalized additive model from the mgcv package (Wood, 2006) and histograms of the variables. Assumptions of linearity, normality of residuals, homoscedasticity, outliers and non-collinearity were tested with the methods mentioned in the main text.

MAI [m³ ha⁻¹ yr⁻¹] = a x TSUM² [°C days] + b x TSUM [°C days] + c x MAP [mm] + d,(S1)

- 15
- 20
- 25
- 30

35

Table S1. Overall mean squared error (ms) after 10-fold cross-validation for the most relevant (i.e. TSUM and spp clearly had to be included) candidate model structures that explain variation in productivity (mean annual increment - MAI - $m^3 ha^{-1} yr^{-1}$) by climate (TSUM and MAP) and species across Swedish spruce and pine forests. The selected model is marked in gray. Abbreviations: TSUM = growing season temperature sum [°C days]; MAP = mean annual precipitation [mm]; spp = species.

Variables in model	Overall	Variables in model	Overall
	ms		ms
TSUM ² :spp, TSUM:spp, TSUM ² , TSUM, MAP, spp	1.48	TSUM:spp, MAP, TSUM, spp	1.63
TSUM ² :spp, TSUM:spp, MAP:spp, TSUM ² , TSUM,	1.48	TSUM:spp, TSUM, spp	1.64
MAP, spp			
TSUM ² :spp, TSUM:spp, TSUM, spp	1.49	TSUM ² , TSUM, MAP, spp	2.23
TSUM ² , TSUM:spp, MAP:spp, TSUM, MAP, spp	1.58	TSUM ² , TSUM, spp	2.24
TSUM:spp, TSUM ² , TSUM, MAP, spp	1.59	MAP:spp, TSUM, MAP, spp	2.24
TSUM:spp, TSUM ² , TSUM, spp	1.60	TSUM, MAP, spp	2.27
TSUM:spp, MAP:spp, TSUM, MAP, spp	1.61	TSUM, spp	2.28

85	Table S2. Species specific estimates, statistics (t and partial R^2) and significance (P values) for the parameters in Eq. (S1) and F statistics
	and significance for species differences in these estimates. (Partial) R^2 values were approximated based on comparing fitted values with
	actual productivities.

Parameter	Species	Spruce			Pine		
	difference	Estimate	Stati	stics	Estimate	Stati	stics
а	$F_{1,2475} = 175.3$	(9.0 ± 0.6)	$t_{1071} = 14.15$		(-3.0 ± 0.6)	$t_{1403} = -4.64$	
	P < 0.01	x 10 ⁻⁶	P < 0.01		x 10 ⁻⁶	P < 0.01	
b	$F_{1,2475}$	-0.008	$t_{1071} = -5.76$	$R^2 \approx 0.854$	0.011	$t_{1403} = 7.80$	$R^2 \approx 0.480$
	= 1112.2	± 0.001	P < 0.01		± 0.001	P < 0.01	
	P < 0.01						
c	N/A ^a	(0.3 ± 0.3)	$t_{1071} = 0.97$	$R^2 \approx 0.001$	(0.3 ± 0.3)	$t_{1403} = 0.97$	$R^2 \approx 0$
		x 10 ⁻³	P = 0.33		x 10 ⁻³	P = 0.33	
d	$F_{1,2475}$	3.5 ± 0.8	$t_{1071} = 4.59$		-4.1 ± 0.7	$t_{1403} = -5.24$	
	= 1731.1		<i>P</i> < 0.01			<i>P</i> < 0.01	
	P < 0.01						
Total				$R^2 \approx 0.856$			$R^2 \approx 0.480$
					$R^2 = 0.805$		

^aA regression model without MAP * species interaction was selected by the cross-validation procedure (Table S1).

Table S3. Association between (log) N deposition and normalized productivity, stratified by soil moisture class (dry to moist). Significance (*P*-values) of N deposition on residual productivity (mean annual increment - MAI [$m^3 ha^{-1} yr^{-1}$]) and actual/attainable MAI (for spruce only) across Sweden are given. For (near) significant variables (i.e. *P* < 0.10), parameter estimates ± s.e.m. and the proportion

Normalized productivity response	Region	ln N deposition [kg N ha ⁻¹ yr ⁻¹]			
		Dry	Fresh	Fresh-moist	Moist
Residual MAI (method 1)	N	slope = 0.7 ± 0.3 P = 0.04 intercept $= -1.0 \pm 0.2$ P < 0.01 $R^2 = 0.100$ n = 32	P = 0.51 n = 399	P = 0.37 $n = 132$	P = 0.26 $n = 5$
	Μ	P = 0.63 $n = 50$	slope = 0.6 ± 0.2 P < 0.01 intercept = -0.2 ± 0.1 P < 0.01 $R^2 = 0.022$ n = 549	P = 0.99 n = 237	<i>P</i> = 0.29 <i>n</i> = 7
	S	P = 0.79 $n = 62$	<i>P</i> = 0.39 <i>n</i> = 742	P = 0.42 n = 233	slope = -3 ± 1 P = 0.04 intercept = 3 ± 2 P = 0.23 $R^2 = 0.201$ n = 17
Actual/attainable MAI (method 2)	entire Sweden	slope = 19 ± 5 P < 0.01 intercept = 8 ± 9 P = 0.36 $R^2 = 0.373$ n = 22	slope = 14.6 ± 0.5 P < 0.01 intercept = 22.7 ± 0.8 P < 0.01 $R^2 = 0.565$ n = 702	slope = 12.7 ± 0.8 P < 0.01 intercept $= 20 \pm 1$ P < 0.01 $R^2 = 0.415$ n = 318	slope = 12 ± 4 P = 0.02 intercept $= 21 \pm 4$ P < 0.01 $R^2 = 0.384$ n = 11

of variation explained (R^2) are shown as well. Abbreviations: N = north; M = middle; S = south.

Table S4. Association between (log) N deposition and normalized productivity, stratified by soil type. Significance (*P*-values) of N105deposition on residual productivity (mean annual increment - MAI [m³ ha⁻¹ yr⁻¹]) and actual/attainable MAI (for spruce only) across
Sweden are given. For (near) significant variables (i.e. P < 0.10), parameter estimates ± s.e.m. and the proportion of variation explained
(R^2) are shown as well. Abbreviations: N = north; M = middle; S = south.

Normalized productivity response	Region	ln N deposition [kg N ha ⁻¹ yr ⁻¹]				
		Histosol	Gleysol	Regosol	Leptosol	Podzol
Residual MAI (method 1)	Ν	P = 0.13 $n = 13$	P = 0.23 $n = 30$	P = 0.86 $n = 217$	P = 0.87 $n = 23$	P = 0.57 $n = 268$
	М	slope = 0.8 ± 0.4 P = 0.09 intercept = -2.0 ± 0.5 P < 0.01 $R^2 = 0.031$ n = 60	<i>P</i> = 0.66 <i>n</i> = 28	P = 0.60 n = 277	P = 0.25 n = 41	slope = 1.0 ± 0.2 P < 0.01 intercept = -0.8 ± 0.2 P < 0.01 $R^2 = 0.064$ n = 400
	S	P = 0.77 $n = 101$	P = 0.51 n = 37	P = 0.44 $n = 372$	P = 0.64 n = 116	P = 0.70 $n = 324$
Actual/attainable MAI (method 2)	entire Sweden	slope = 19 ± 2 P < 0.01 intercept = 10 ± 3 P < 0.01 $R^2 = 0.541$ n = 64	slope = 10 ± 2 P < 0.01 intercept = 26 ± 2 P < 0.01 $R^2 = 0.404$ n = 63	slope = 15.5 ± 0.7 P < 0.01 intercept = 21 ± 1 P < 0.01 $R^2 = 0.578$ n = 377	slope = 12 ± 2 P < 0.01 intercept = 22 ± 4 P < 0.01 $R^2 = 0.270$ n = 70	slope = 14.3 ± 0.6 P < 0.01 intercept $= 21.2 \pm 0.9$ P < 0.01 $R^2 = 0.581$ n = 399

Table S5. Associations between single soil variables and normalized productivity of Table 2, stratified by soil moisture class (dry to moist). Significance (*P*-values) of single soil variable effects on residual productivity (mean annual increment - MAI [m³ ha⁻¹ yr⁻¹]) and actual/attainable MAI (for spruce only) across Sweden are given. For (near) significant variables (i.e. P < 0.10), parameter estimates \pm s.e.m. and the proportion of variation explained (R^2) are shown as well. Abbreviations: N = north; M = middle; S = south; SOC = soil organic carbon concentration; Soil C:N = soil carbon to nitrogen ratio; TEB = total exchangeable bases; quad = parameter estimate for quadratic term; lin = parameter estimate for linear term of a quadratic function.

Normalized productivity response	Region	In SOC 0-20cm [%]			
		Dry	Fresh	Fresh-moist	Moist
Residual MAI (method 1)	N	P = 0.32 $n = 32$	$quad = -0.13 \pm 0.02$ P < 0.01 lin = 0.39 ± 0.10 P < 0.01 intercept = -0.05 ± 0.10 $R^{2}_{tot} = 0.052$ $n_{tot} = 1569$	$quad = -0.22 \pm 0.06$ P < 0.01 lin = 0.9 ± 0.3 P < 0.01 intercept = -0.8 ± 0.3 P = 0.01 $R^{2}_{tot} = 0.106$ $n_{tot} = 830$	$quad = -3 \pm 1$ P = 0.03 $lin = 15 \pm 7$ P = 0.03 intercept = -23 ± 10 P = 0.03 $R^{2}_{tot} = 0.314$ $n_{tot} = 4$
	М	<i>P</i> = 0.75 <i>n</i> = 47	$quad = -0.13 \pm 0.02$ P < 0.01 lin = 0.33 ± 0.09 P < 0.01 intercept = 0.17 ± 0.09 P = 0.06 $R^{2}_{tot} = 0.052$ $n_{tot} = 1569$	$quad = -0.22 \pm 0.06$ P < 0.01 lin = 0.8 ± 0.1 P < 0.01 intercept = -0.9 ± 0.3 P < 0.01 $R^{2}_{tot} = 0.106$ $n_{tot} = 830$	quad = -3 ± 1 P = 0.03 lin = 13 ± 5 P = 0.03 intercept = -14 ± 6 P = 0.02 $R^{2}_{tot} = 0.314$ $n_{tot} = 7$
	S	<i>P</i> = 0.10 <i>n</i> = 44	$quad = -0.13 \pm 0.02$ P < 0.01 slope = 0.2 ± 0.1 P = 0.09 intercept = 0.5 ± 0.1 P < 0.01 $R^{2}_{tot} = 0.052$ $n_{tot} = 1569$	quad = -0.22 ± 0.06 P < 0.01 lin = 0.7 ± 0.3 P = 0.03 intercept = -0.6 ± 0.4 P = 0.19 $R^{2}_{tot} = 0.106$ $n_{tot} = 830$	quad = -3 ± 1 P < 0.01 lin = 13 ± 6 P = 0.05 intercept = -16 ± 9 P = 0.07 $R^{2}_{tot} = 0.314$ $n_{tot} = 17$
Actual/attainable MAI (method 2)	entire Sweden	<i>P</i> = 0.66 <i>n</i> = 19	quad = -1.6 \pm 0.5 P < 0.01 lin = 9 \pm 2 P < 0.01 intercept = 34 \pm 2 P < 0.01 $R^2 = 0.043$ n = 641	quad = -3.4 ± 0.8 P < 0.01 lin = 16 ± 4 P < 0.01 intercept = 19 ± 4 P < 0.01 $R^2 = 0.056$ n = 285	<i>P</i> = 0.53 <i>n</i> = 10

Normalized productivity response	Region	In N stock ^{0-20cm} [g m ⁻²]			
		Dry	Fresh	Fresh-moist	Moist
Residual MAI (method 1)	Ν	P = 0.56 $n_{tot} = 123$	slope = 0.22 ± 0.06 P < 0.01 intercept = -1.0 ± 0.3 P < 0.01 $R^{2}_{tot} = 0.007$ $n_{tot} = 1569$	slope = 0.26 ± 0.08 P < 0.01 intercept = -1.5 ± 0.4 P < 0.01 $R^{2}_{tot} = 0.012$ $n_{tot} = 830$	$P = 0.78$ $n_{tot} = 28$
	М	P = 0.56 $n_{tot} = 123$	slope = 0.22 ± 0.06 P < 0.01 intercept = -1.0 ± 0.3 P < 0.01 $R^{2}_{tot} = 0.007$ $n_{tot} = 1569$	slope = 0.26 ± 0.08 P < 0.01 intercept = -1.5 ± 0.4 P < 0.01 $R^{2}_{tot} = 0.012$ $n_{tot} = 830$	$P = 0.78$ $n_{tot} = 28$
	S	P = 0.56 $n_{tot} = 123$	slope = 0.22 ± 0.06 P < 0.01 intercept = -1.0 ± 0.3 P < 0.01 $R^{2}_{tot} = 0.007$ $n_{tot} = 1569$	slope = 0.26 ± 0.08 P < 0.01 intercept = -1.5 ± 0.4 P < 0.01 $R^{2}_{tot} = 0.012$ $n_{tot} = 830$	$P = 0.78$ $n_{tot} = 28$
Actual/attainable MAI (method 2)	entire Sweden	<i>P</i> = 0.10 <i>n</i> = 19	slope = 11 ± 1 P < 0.01 intercept = -19 ± 6 P < 0.01 $R^2 = 0.149$ n = 641	slope = 10 ± 1 P < 0.01 intercept = -2 ± 7 P < 0.01 $R^2 = 0.212$ n = 285	P = 0.12 n = 10

Normalized productivity response	Region	Soil C:N 0-20cm			
		Dry	Fresh	Fresh-moist	Moist
Residual MAI (method 1)	N	P = 0.20 $n = 32$	slope = -0.007 \pm 0.004 P = 0.09 intercept = 0.3 \pm 0.1 P < 0.01 $R^2 = 0.005$ n = 385	slope = -0.040 \pm 0.008 P < 0.01 intercept = 0.8 \pm 0.2 P < 0.01 $R^2 = 0.184$ n = 121	P = 0.13 $n = 4$
	М	<i>P</i> = 0.22 <i>n</i> = 47	slope = -0.015 \pm 0.006 P = 0.02 intercept = 0.7 \pm 0.2 P < 0.01 $R^2 = 0.008$ n = 515	slope = -0.039 ± 0.010 P < 0.01 intercept = 0.5 ± 0.3 P = 0.09 $R^2 = 0.067$ n = 208	<i>P</i> = 0.39 <i>n</i> = 7
	S	<i>P</i> = 0.28 <i>n</i> = 44	slope = -0.048 \pm 0.009 P < 0.01 intercept = 1.5 \pm 0.2 P < 0.01 $R^2 = 0.041$ n = 669	slope = -0.09 \pm 0.01 P < 0.01 intercept = 1.8 \pm 0.4 P < 0.01 $R^2 = 0.170$ n = 216	P = 0.14 n = 17
Actual/attainable MAI (method 2)	entire Sweden	N/A	N/A	N/A	N/A

Normalized productivity response	Region	In soil C:N 0-10 cm			
		Dry	Fresh	Fresh-moist	Moist
Residual MAI	Ν	N/A	N/A	N/A	N/A
(method 1)	Μ	N/A	N/A	N/A	N/A
	S	N/A	N/A	N/A	N/A
Actual/attainable	entire	slope	slope = -17 ± 2	slope = -19 ± 3	P = 0.35
MAI	Sweden	$= -33 \pm 15$	P < 0.01	P < 0.01	<i>n</i> = 10
(method 2)		P = 0.04	intercept = 96 ± 6	intercept = 95 ± 8	
		intercept	P < 0.01	P < 0.01	
		$= 143 \pm 47$	$R^2 = 0.112$	$R^2 = 0.149$	
		P < 0.01	n = 641	n = 285	
		$R^2 = 0.174$			
		<i>n</i> = 19			

productivity response		[%]			
		Dry	Fresh	Fresh-moist	Moist
Residual MAI (method 1)	Ν	slope = 0.021 ± 0.009 P = 0.02 intercept = -1.3 ± 0.8 P = 0.10 $R^{2}_{tot} = 0.101$ $n_{tot} = 123$	slope = 0.004 ± 0.001 P < 0.01 intercept = -0.2 ± 0.1 P = 0.04 $R^{2}_{tot} = 0.006$ $n_{tot} = 1569$	slope = 0.006 ± 0.002 P < 0.01 intercept = -0.4 ± 0.1 P < 0.01 $R^{2}_{tot} = 0.015$ $n_{tot} = 830$	$P = 0.64$ $n_{tot} = 28$
	Μ	slope = 0.021 ± 0.009 P = 0.02 intercept = -1.0 ± 0.6 P = 0.09 $R^{2}_{tot} = 0.101$ $n_{tot} = 123$	slope = 0.004 ± 0.001 P < 0.01 intercept = -0.15 ± 0.09 P = 0.10 $R^{2}_{tot} = 0.006$ $n_{tot} = 1569$	slope = 0.006 ± 0.002 P < 0.01 intercept = -0.6 ± 0.1 P < 0.01 $R^{2}_{tot} = 0.015$ $n_{tot} = 830$	P = 0.64 n _{tot} = 28
	S	slope = 0.021 ± 0.009 P = 0.02 intercept = -1.6 ± 0.5 P < 0.01 $R^{2}_{tot} = 0.101$ $n_{tot} = 123$	slope = 0.004 ± 0.001 P < 0.01 intercept = -0.01 ± 0.08 P = 0.86 $R^{2}_{tot} = 0.006$ $n_{tot} = 1569$	slope = 0.006 ± 0.002 P < 0.01 intercept = -0.5 ± 0.1 P < 0.01 $R^{2}_{tot} = 0.015$ $n_{tot} = 830$	$P = 0.64$ $n_{tot} = 28$

Region

Mineral soil sand

Normalized productivity response	Region	Mineral soil clay [%]			
		Dry	Fresh	Fresh-moist	Moist
Residual MAI (method 1)	Ν	slope = 0.10 ± 0.05 P = 0.03 intercept = -0.8 ± 0.3 P = 0.02 $R^{2}_{tot} = 0.072$ $n_{tot} = 123$	slope = 0.011 ± 0.005 P = 0.02 intercept = 0.06 ± 0.04 P = 0.14 $R^{2}_{tot} = 0.003$ $n_{tot} = 1569$	$P = 0.97$ $n_{tot} = 545$	slope = 0.05 ± 0.02 P = 0.03 intercept $= -0.6 \pm 0.2$ P = 0.03 $R^{2}_{tot} = 0.124$ $n_{tot} = 28$
	Μ	slope = 0.10 ± 0.05 P = 0.03 intercept = -0.8 ± 0.3 P = 0.02 $R^{2}_{tot} = 0.072$ $n_{tot} = 123$	slope = 0.011 ± 0.005 P = 0.02 intercept = 0.06 ± 0.04 P = 0.14 $R^{2}_{tot} = 0.003$ $n_{tot} = 1569$	$P = 0.97$ $n_{tot} = 545$	slope = 0.05 ± 0.02 P = 0.03 intercept = -0.6 ± 0.2 P = 0.03 $R^{2}_{tot} = 0.124$ $n_{tot} = 28$
	S	slope = 0.10 ± 0.05 P = 0.03 intercept = -0.8 ± 0.3 P = 0.02 $R^{2}_{tot} = 0.072$ $n_{tot} = 123$	slope = 0.011 ± 0.005 P = 0.02 intercept = 0.06 ± 0.04 P = 0.14 $R^{2}_{tot} = 0.003$ $n_{tot} = 1569$	$P = 0.97$ $n_{tot} = 545$	slope = 0.05 ± 0.02 P = 0.03 intercept = -0.6 ± 0.2 P = 0.03 $R^{2}_{tot} = 0.124$ $n_{tot} = 28$
Actual/attainable MAI (method 2)	entire Sweden	<i>P</i> = 0.80 <i>n</i> = 19	slope = 0.21 ± 0.07 P < 0.01 intercept = 41.8 ± 0.7 P < 0.01 $R^2 = 0.011$ n = 641	<i>P</i> = 0.30 <i>n</i> = 285	P = 0.84 $n = 10$

Normalized	Region	In TEB stock			
productivity response		0-20cm [cmol+ m ⁻²]			
		Dry	Fresh	Fresh-moist	Moist
Residual MAI (method 1)	Ν	slope = 0.4 ± 0.1 P < 0.01 intercept = -1.7 ± 0.3 P < 0.01 $R^2 = 0.274$ n = 32	slope = 0.22 ± 0.05 P < 0.01 intercept = -0.6 ± 0.2 P < 0.01 $R^2 = 0.039$ n = 385	slope = 0.31 ± 0.08 P < 0.01 intercept = -1.5 ± 0.3 P < 0.01 $R^2 = 0.111$ n = 121	slope = 0.5 ± 0.1 P = 0.02 intercept = -3.0 ± 0.5 P = 0.01 $R^2 = 0.808$ n = 4
	Μ	<i>P</i> = 0.23 <i>n</i> = 47	slope = 0.20 ± 0.07 P < 0.01 intercept = -0.4 ± 0.2 P = 0.09 $R^2 = 0.015$ n = 515	slope = 0.18 ± 0.09 P = 0.04 intercept $= -1.3 \pm 0.4$ P < 0.01 $R^2 = 0.016$ n = 208	P = 0.97 n = 7
	S	P = 0.41 $n = 44$	slope = -0.20 ± 0.06 P < 0.01 intercept = 1.3 ± 0.3 P < 0.01 $R^2 = 0.014$ n = 669	slope = 0.4 ± 0.1 P < 0.01 intercept = -2.4 ± 0.5 P < 0.01 $R^2 = 0.050$ n = 216	<i>P</i> = 0.16 <i>n</i> = 17
Actual/attainable MAI (method 2)	entire Sweden	P = 0.51 n = 19	slope = 2.7 ± 0.7 P < 0.01 intercept = 32 ± 3 P < 0.01 $R^2 = 0.025$ n = 641	slope = 3.6 ± 0.8 P < 0.01 intercept = 20 ± 4 P < 0.01 $R^2 = 0.060$ n = 285	P = 0.68 n = 10

Normalized productivity response	Region	рН _{КС1} 0-20ст			
		Dry	Fresh	Fresh-moist	Moist
Residual MAI (method 1)	Ν	P = 0.80 $n_{tot} = 123$	$quad = -0.54 \pm 0.07$ $P < 0.01$ $lin = 3.9 \pm 0.5$ $P < 0.01$ intercept = -7 ± 1 $P < 0.01$ $R^{2}_{tot} = 0.043$ $n_{tot} = 1569$	$quad = -0.4 \pm 0.1$ P < 0.01 lin = 3.4 ± 0.8 P < 0.01 intercept = -7 ± 2 P < 0.01 $R^{2}_{tot} = 0.121$ $n_{tot} = 545$	quad = -1.8 ± 0.8 P = 0.03 lin = 12 ± 5 P = 0.03 intercept = -22 ± 9 P = 0.02 $R^{2}_{tot} = 0.415$ $n_{tot} = 28$
	М	P = 0.80 $n_{tot} = 123$	$quad = -0.54 \pm 0.07$ P < 0.01 $lin = 4.2 \pm 0.5$ P < 0.01 intercept = -8 ± 1 P < 0.01 $R^{2}_{tot} = 0.043$ $n_{tot} = 1569$	$quad = -0.4 \pm 0.1$ P < 0.01 $lin = 3.5 \pm 0.8$ P < 0.01 intercept = -8 ± 1 P < 0.01 $R^{2}_{tot} = 0.121$ $n_{tot} = 545$	quad = -1.8 \pm 0.8 P = 0.03 lin = 12 \pm 5 P = 0.03 intercept = -23 \pm 9 P = 0.02 $R^{2}_{tot} = 0.415$ $n_{tot} = 28$
	S	P = 0.80 $n_{tot} = 123$	$quad = -0.54 \pm 0.07$ P < 0.01 $lin = 4.2 \pm 0.5$ P < 0.01 intercept = -8 ± 1 P < 0.01 $R^{2}_{tot} = 0.043$ $n_{tot} = 1569$	$quad = -0.4 \pm 0.1$ P < 0.01 $lin = 3.8 \pm 0.8$ P < 0.01 intercept = -8 ± 1 P < 0.01 $R^{2}_{tot} = 0.121$ $n_{tot} = 545$	quad = -1.8 \pm 0.8 P = 0.03 lin = 12 \pm 5 P = 0.03 intercept = -21 \pm 9 P = 0.03 $R^{2}_{tot} = 0.415$ $n_{tot} = 28$
Actual/attainable MAI (method 2)	entire Sweden	P = 0.13 n = 19	P = 0.21 n = 641	slope = 4 ± 2 P = 0.02 intercept = 23 ± 5 P < 0.01 $R^2 = 0.016$ n = 285	P = 0.45 $n = 10$

Table S6. Associations between single soil variables and normalized productivity of Table 2, stratified by soil type. Significance (*P*-values) of single soil variable effects on residual productivity (mean annual increment - MAI [m³ ha⁻¹ yr⁻¹]) and actual/attainable MAI (for spruce only) across Sweden are given. For (near) significant variables (i.e. P < 0.10), parameter estimates \pm s.e.m. and the proportion of variation explained (R^2) are shown as well. Abbreviations: N = north; M = middle; S = south; SOC = soil organic carbon concentration; Soil C:N = soil carbon to nitrogen ratio; TEB = total exchangeable bases; quad = parameter estimate for quadratic term; lin = parameter estimate for linear term of a quadratic function.

Normalized	Region	ln SOC				
productivity response		0-20cm [%]				
		Histosol	Gleysol	Regosol	Leptosol	Podzol
Residual MAI (method 1)	Ν	$quad = -1.9 \pm 0.9$ P = 0.04 lin = 11 ± 7 P = 0.15 intercept $= -14 \pm 17$ P = 0.42 $R^{2}_{tot} = 0.063$ $n_{tot} = 156$	P = 0.66 $n = 30$	$quad = -0.12 \pm 0.03$ P < 0.01 lin = 0.3 ± 0.1 P = 0.02 intercept = -0.1 ± 0.1 P = 0.64 $R^{2}_{tot} = 0.064$ $n_{tot} = 823$	P = 0.46 $n_{tot} = 71$	$quad = -0.12 \pm 0.03$ P < 0.01 lin = 0.4 ± 0.1 P < 0.01 intercept = -0.1 ± 0.1 P = 0.26 $R^{2}_{tot} = 0.043$ $n_{tot} = 979$
	Μ	$quad = -1.9 \pm 0.9$ P = 0.04 lin = 12 ± 7 P = 0.07 intercept $= -20 \pm 13$ P = 0.11 $R^{2}_{tot} = 0.063$ $n_{tot} = 156$	<i>P</i> = 0.56 <i>n</i> = 28	$quad = -0.12 \pm 0.03$ P < 0.01 lin = 0.2 ± 0.1 P = 0.07 intercept = 0.1 ± 0.1 P = 0.39 $R^{2}_{tot} = 0.064$ $n_{tot} = 823$	$P = 0.46$ $n_{tot} = 71$	$quad = -0.12 \pm 0.03$ P < 0.01 lin = 0.3 ± 0.1 P = 0.03 intercept = 0.0 ± 0.1 P = 0.68 $R^{2}_{tot} = 0.043$ $n_{tot} = 979$
	S	quad = -1.9 ± 0.9 P = 0.04 lin = 10 ± 5 P = 0.07 intercept $= -12 \pm 8$ P = 0.14 $R^{2}_{tot} = 0.063$ $n_{tot} = 156$	slope = -0.6 ± 0.2 P < 0.01 intercept $= 0.9 \pm 0.6$ P = 0.11 $R^2 = 0.183$ n = 34	quad = -0.12 \pm 0.03 P = 0.27 lin = 0.2 \pm 0.1 P = 0.23 intercept = 0.5 \pm 0.2 P < 0.01 $R^{2}_{tot} = 0.064$ $n_{tot} = 823$	P = 0.46 $n_{tot} = 71$	$quad = -0.12 \pm 0.03$ P < 0.01 lin = 0.2 ± 0.1 P = 0.19 intercept = 0.4 ± 0.2 P = 0.01 $R^{2}_{tot} = 0.043$ $n_{tot} = 979$
Actual/attainable MAI (method 2)	entire Sweden	slope = -11 ± 5 <i>P</i> = 0.05 intercept = 75 ± 20 <i>P</i> < 0.01 <i>R</i> ² = 0.051 <i>n</i> = 56	<i>P</i> = 0.55 <i>n</i> = 59	quad = -1.9 \pm 0.7 P < 0.01 lin = 8 \pm 3 P < 0.01 intercept = 35 \pm 3 P < 0.01 $R^2 = 0.016$ n = 350	quad = -3 ± 1 P = 0.01 lin = 16 ± 5 P < 0.01 intercept $= 20 \pm 6$ P < 0.01 $R^2 = 0.199$ n = 27	$quad = -2.3 \pm 0.6$ P < 0.01 lin = 10 ± 2 P < 0.01 intercept = 31 ± 2 P < 0.01 $R^2 = 0.041$ n = 390

Table S6	(continued).
----------	--------------

Normalized productivity response	Region	In N stock ^{0-20cm} [g m ⁻²]				
		Histosol	Gleysol	Regosol	Leptosol	Podzol
Residual MAI (method 1)	Ν	slope = 0.9 ± 0.2 P < 0.01 intercept = -6.3 ± 0.9 P < 0.01 $R^{2}_{tot} = 0.140$ $n_{tot} = 158$	$P = 0.62$ $n_{tot} = 91$	slope = 0.23 ± 0.08 P < 0.01 intercept = -1.0 ± 0.4 P = 0.02 $R^{2}_{tot} = 0.008$ $n_{tot} = 825$	$P = 0.95$ $n_{tot} = 73$	slope = 0.28 ± 0.08 P < 0.01 intercept = -1.2 ± 0.4 P < 0.01 $R^{2}_{tot} = 0.012$ $n_{tot} = 981$
	Μ	slope = 0.9 ± 0.2 P < 0.01 intercept = -6.3 ± 0.9 P < 0.01 $R^{2}_{tot} = 0.140$ $n_{tot} = 158$	$P = 0.62$ $n_{tot} = 91$	slope = 0.23 ± 0.08 P < 0.01 intercept = -1.0 ± 0.4 P = 0.02 $R^{2}_{tot} = 0.008$ $n_{tot} = 825$	P = 0.95 $n_{tot} = 73$	slope = 0.28 ± 0.08 P < 0.01 intercept = -1.2 ± 0.4 P < 0.01 $R^{2}_{tot} = 0.012$ $n_{tot} = 981$
	S	slope = 0.9 ± 0.2 P < 0.01 intercept = -6.3 ± 0.9 P < 0.01 $R^{2}_{tot} = 0.140$ $n_{tot} = 158$	$P = 0.62$ $n_{tot} = 91$	slope = 0.23 ± 0.08 P < 0.01 intercept = -1.0 ± 0.4 P = 0.02 $R^{2}_{tot} = 0.008$ $n_{tot} = 825$	$P = 0.95$ $n_{tot} = 73$	slope = 0.28 ± 0.08 P < 0.01 intercept = -1.2 ± 0.4 P < 0.01 $R^{2}_{tot} = 0.012$ $n_{tot} = 981$
Actual/attainable MAI (method 2)	entire Sweden	slope = 10 ± 3 P < 0.01 intercept = -26 ± 15 P = 0.10 $R^2 = 0.213$ n = 56	slope = 8 ± 3 P < 0.01 intercept = -9 ± 14 P = 0.54 $R^2 = 0.131$ n = 59	slope = 12 ± 1 P < 0.01 intercept = -25 ± 8 P < 0.01 $R^2 = 0.178$ n = 350	slope = 18 ± 3 P < 0.01 intercept = -64 ± 21 P < 0.01 $R^2 = 0.442$ n = 27	slope = 12 ± 2 P < 0.01 intercept = -24 ± 9 P < 0.01 $R^2 = 0.115$ n = 390

Normalized productivity response	Region	Soil C:N 0-20cm				
		Histosol	Gleysol	Regosol	Leptosol	Podzol
Residual MAI (method 1)	Ν	slope = -0.06 \pm 0.02 P = 0.04 intercept = 0.6 \pm 0.7 P = 0.40 $R^2 = 0.255$ n = 13	slope = -0.03 \pm 0.01 P = 0.03 intercept = 0.6 \pm 0.3 P = 0.10 $R^2 = 0.121$ n = 30	P = 0.13 n = 203	$P = 0.45$ $n_{tot} = 71$	slope = -0.013 \pm 0.006 P = 0.03 intercept = 0.4 \pm 0.2 P = 0.01 $R^2 = 0.015$ n = 267
	Μ	slope = -0.05 ± 0.02 P = 0.03 intercept = 0.0 ± 0.6 P = 0.99 $R^2 = 0.079$ n = 50	P = 0.11 n = 25	slope = -0.016 \pm 0.009 P = 0.07 intercept = 0.5 \pm 0.2 P = 0.04 $R^2 = 0.008$ n = 262	$P = 0.45$ $n_{tot} = 71$	slope = -0.026 ± 0.008 P < 0.01 intercept = 0.8 ± 0.2 P < 0.01 $R^2 = 0.027$ n = 390
	S	slope = -0.10 \pm 0.02 P < 0.01 intercept = 1.3 \pm 0.7 P = 0.06 $R^2 = 0.154$ n = 93	<i>P</i> = 0.40 <i>n</i> = 34	slope = -0.07 ± 0.01 P < 0.01 intercept = 1.8 ± 0.3 P < 0.01 $R^2 = 0.067$ n = 358	$P = 0.45$ $n_{tot} = 71$	slope = -0.04 ± 0.01 P < 0.01 intercept = 1.3 ± 0.3 P < 0.01 $R^2 = 0.027$ n = 322
Actual/attainable MAI (method 2)	entire Sweden	N/A	N/A	N/A	N/A	N/A

Table S6 (continued).							
Normalized productivity response	Region	In soil C:N 0-10cm					
		Histosol	Gleysol	Regosol	Leptosol	Podzol	
Residual MAI	Ν	N/A	N/A	N/A	N/A	N/A	
(method 1)	Μ	N/A	N/A	N/A	N/A	N/A	
	S	N/A	N/A	N/A	N/A	N/A	
Actual/attainable	entire	slope = -25 ± 8	slope = -17 ± 4	slope = -20 ± 2	slope = -19 ± 9	slope = -16 ± 3	
MAI	Sweden	P < 0.01	P < 0.01	P < 0.01	P = 0.03	P < 0.01	
(method 2)		intercept = 113 ± 26	intercept = 90 ± 14	intercept = 106 ± 8	intercept = 102 ± 29	intercept = 91 ± 9	
		P < 0.01	P < 0.01	P < 0.01	P < 0.01	P < 0.01	
		$R^2 = 0.117$	$R^2 = 0.176$	$R^2 = 0.154$	$R^2 = 0.093$	$R^2 = 0.082$	
		<i>n</i> = 61	n = 62	<i>n</i> = 360	<i>n</i> = 38	<i>n</i> = 391	

Table SU (continueu).					
Normalized productivity response	Region	Mineral soil sand [%]				
		Histosol	Gleysol	Regosol	Leptosol	Podzol
Residual MAI (method 1)	N	$P = 0.44$ $n_{tot} = 174$	$P = 0.21$ $n_{tot} = 95$	P = 0.74 $n = 217$	$P = 0.48$ $n_{tot} = 181$	slope = -0.004 \pm 0.002 P = 0.09 intercept = 0.3 \pm 0.2 P = 0.04 $R^2 = 0.007$ n = 268
	Μ	P = 0.44 $n_{tot} = 174$	$P = 0.21$ $n_{tot} = 95$	P = 0.98 n = 277	P = 0.48 $n_{tot} = 181$	slope = 0.008 ± 0.003 P < 0.01 intercept = -0.4 ± 0.2 P = 0.05 $R^2 = 0.016$ n = 401
	S	$P = 0.44$ $n_{tot} = 174$	$P = 0.21$ $n_{tot} = 95$	P = 0.93 n = 374	$P = 0.48$ $n_{tot} = 181$	P = 0.69 n = 324
Actual/attainable MAI (method 2)	entire Sweden	P = 0.75 n = 64	P = 0.65 n = 63	slope = -0.06 ± 0.03 P = 0.05 intercept $= 45 \pm 2$ P < 0.01 $R^2 = 0.008$ n = 377	P = 0.87 $n = 71$	slope = -0.06 ± 0.03 P = 0.03 intercept $= 43 \pm 2$ P < 0.01 $R^2 = 0.009$ n = 399

Normalized productivity response	Region	Mineral soil clay [%]				
		Histosol	Glevsol	Regosol	Leptosol	Podzol
Residual MAI (method 1)	N	$P = 0.82$ $n_{tot} = 176$	slope = -0.02 ± 0.01 P = 0.05 intercept = -0.1 ± 0.1 P = 0.31 $R^{2}_{tot} = 0.031$ $n_{tot} = 97$	$P = 0.11$ $n_{tot} = 870$	$P = 0.76$ $n_{tot} = 183$	$P = 0.26$ $n_{tot} = 995$
	Μ	$P = 0.82$ $n_{tot} = 176$	slope = -0.02 ± 0.01 P = 0.05 intercept = -0.1 ± 0.1 P = 0.31 $R^{2}_{tot} = 0.031$ $n_{tot} = 97$	P = 0.11 $n_{tot} = 870$	P = 0.76 $n_{tot} = 183$	$P = 0.26$ $n_{tot} = 995$
	S	$P = 0.82$ $n_{tot} = 176$	slope = -0.02 ± 0.01 P = 0.05 intercept = -0.1 ± 0.1 P = 0.31 $R^{2}_{tot} = 0.031$ $n_{tot} = 97$	P = 0.11 $n_{tot} = 870$	P = 0.76 $n_{tot} = 183$	$P = 0.26$ $n_{tot} = 995$
Actual/attainable MAI (method 2)	entire Sweden	P = 0.61 n = 64	<i>P</i> = 0.54 <i>n</i> = 63	slope = 0.23 ± 0.09 P = 0.01 intercept = 40 ± 1 P < 0.01 $R^2 = 0.014$ n = 377	<i>P</i> = 0.66 <i>n</i> = 71	slope = 0.2 ± 0.1 P = 0.08 intercept = 38 ± 1 P < 0.01 $R^2 = 0.005$ n = 399

Normalized	Region	In TEB stock				
productivity response		0-20cm [cmol ₊ m ⁻²]				
		Histosol	Gleysol	Regosol	Leptosol	Podzol
Residual MAI (method 1)	Ν	P = 0.27 $n = 56$	$P = 0.17$ $n_{tot} = 89$	slope = 0.25 ± 0.06 P < 0.01 intercept $= -0.9 \pm 0.2$ P < 0.01 $R^2 = 0.070$ n = 203	$P = 0.21$ $n_{tot} = 71$	slope = 0.23 ± 0.08 P < 0.01 intercept = -0.7 ± 0.3 P < 0.01 $R^2 = 0.029$ n = 266
	Μ	P = 0.51 n = 50	$P = 0.17$ $n_{tot} = 89$	slope = 0.25 ± 0.09 P < 0.01 intercept = -0.9 ± 0.3 P = 0.01 $R^2 = 0.026$ n = 262	$P = 0.21$ $n_{tot} = 71$	slope = 0.15 ± 0.08 P = 0.08 intercept $= -0.4 \pm 0.3$ P = 0.18 $R^2 = 0.005$ n = 390
	S	slope = 0.7 ± 0.2 P < 0.01 intercept = -4.4 ± 0.9 P < 0.01 $R^2 = 0.096$ n = 93	$P = 0.17$ $n_{tot} = 89$	slope = -0.15 ± 0.09 P = 0.08 intercept $= 1.0 \pm 0.4$ P < 0.01 $R^2 = 0.006$ n = 358	P = 0.21 $n_{tot} = 71$	P = 0.6 n = 322
Actual/attainable MAI (method 2)	entire Sweden	P = 0.13 n = 56	P = 0.30 n = 59	slope = 1.4 ± 0.8 P = 0.09 intercept = 36 ± 4 P < 0.01 $R^2 = 0.005$ n = 350	P = 0.15 n = 27	slope = 2 ± 1 P = 0.09 intercept = 32 ± 4 P < 0.01 $R^2 = 0.005$ n = 390

Normalized productivity response	Region	рНксі 0-20cm				
		Histosol	Gleysol	Regosol	Leptosol	Podzol
Residual MAI (method 1)	Ν	$quad = -0.1 \pm 0.3$ P = 0.65 lin = 2 ± 2 P = 0.48 intercept $= 0 \pm 2$ P = 0.84 $R^{2}_{tot} = 0.037$ $n_{tot} = 156$	quad = -0.3 ± 0.2 P = 0.23 lin = 2 ± 2 P = 0.19 intercept $= -5 \pm 4$ P = 0.16 $R^{2}_{tot} = 0.099$ $n_{tot} = 89$	$quad = -0.45 \pm 0.09$ P < 0.01 lin = 3.4 ± 0.7 P < 0.01 intercept $= -6 \pm 1$ P < 0.01 $R^{2}_{tot} = 0.049$ $n_{tot} = 822$	P = 0.42 n _{tot} = 71	$quad = -0.6 \pm 0.2$ P < 0.01 lin = 4 ± 1 P < 0.01 intercept $= -7 \pm 2$ P < 0.01 $R^{2}_{tot} = 0.029$ $n_{tot} = 977$
	Μ	quad = -0.1 ± 0.3 P = 0.65 lin = 1 ± 2 P = 0.55 intercept = -4 ± 4 P = 0.28 $R^{2}_{tot} = 0.037$ $n_{tot} = 156$	quad = -0.3 ± 0.2 P = 0.23 lin = 4 ± 2 P = 0.05 intercept = -10 ± 4 P = 0.01 $R^{2}_{tot} = 0.099$ $n_{tot} = 89$	$quad = -0.45 \pm 0.09$ P < 0.01 lin = 3.9 ± 0.7 P < 0.01 intercept $= -8 \pm 1$ P < 0.01 $R^{2}_{tot} = 0.049$ $n_{tot} = 822$	$P = 0.42$ $n_{tot} = 71$	quad = -0.6 ± 0.2 P < 0.01 lin = 4 ± 1 P < 0.01 intercept $= -7 \pm 2$ P < 0.01 $R^{2}_{tot} = 0.029$ $n_{tot} = 977$
	S	quad = -0.1 \pm 0.3 P = 0.65 lin = 2 \pm 2 P = 0.36 intercept = -2 \pm 1 P = 0.30 $R^{2}_{tot} = 0.037$ $n_{tot} = 156$	quad = -0.3 ± 0.2 P = 0.23 lin = 3 ± 2 P = 0.16 intercept $= -7 \pm 4$ P = 0.08 $R^{2}_{tot} = 0.099$ $n_{tot} = 89$	$quad = -0.45 \pm 0.09$ P < 0.01 lin = 3.6 ± 0.7 P < 0.01 intercept = -8 ± 1 P < 0.01 $R^{2}_{tot} = 0.049$ $n_{tot} = 822$	$P = 0.42$ $n_{tot} = 71$	$quad = -0.6 \pm 0.2$ P < 0.01 $lin = 5 \pm 1$ P < 0.01 intercept $= -8 \pm 2$ P < 0.01 $R^{2}_{tot} = 0.029$ $n_{tot} = 977$
Actual/attainable MAI (method 2)	entire Sweden	P = 0.42 $n = 56$	P = 0.50 n = 59	P = 0.11 n = 350	P = 0.63 n = 27	P = 0.92 $n = 389$

Table S7. Overall mean squared error (ms) after 10-fold cross-validation for the most relevant candidate model structures that explain 140 variation in normalized productivity according to method 1 (residual mean annual increment - MAI) by soil variables (0-20 cm depth or mineral soil only) for Swedish spruce and pine forests. The selected model is marked in gray. Abbreviations: C:N = soil carbon to nitrogen ratio; pH = pH_{KCl}; SOC = soil organic carbon concentration; CLAY_{min.soil} = clay fraction in the mineral soil; TEB = total exchangeable bases. REGION is a factor with north, middle and south as levels.

Variables in model	Overall	Variables in model	Overall	
	ms		ms	
LN ² (SOC), LN(SOC), C:N, CLAY _{min.soil} , LN(TEB), pH ² , pH, REGION, all interactions with REGION	1.24	LN ² (SOC), LN(SOC), C:N, LN(TEB), pH ² , pH, REGION, all interactions with REGION except	1.23	
pH ² , pH, REGION, all interactions with REGION except LN ² (SOC):REGION	1.24	LN ² (SOC):REGION, LN(SOC):REGION, LN(TEB):REGION	1.04	
LN ² (SOC), LN(SOC), C:N, CLAY _{min.soil} , LN(TEB), pH ² , pH, REGION, all interactions with REGION except LN ² (SOC):REGION, LN(TEB): REGION	1.24	LN4(SOC), LN(SOC), C:N, pH ² , pH, REGION, all interactions with REGION except LN ² (SOC):REGION, LN(SOC):REGION,	1.24	
LN ² (SOC), LN(SOC), C:N, CLAY _{min.soil} , LN(TEB),	1.24	LN(TEB):REGION		
all interactions with REGION except LN ² (SOC):REGION, LN(TEB):REGION, CLAY _{min.soil} :REGION		LN ² (SOC), LN(SOC), C:N, LN(TEB), pH ² , pH, REGION, all interactions with REGION except LN ² (SOC):REGION, LN(SOC):REGION,	1.24	
LN ² (SOC), LN(SOC), C:N, LN(TEB), pH ² , pH, pEGION	1.23	LN(TEB):REGION, pH2:REGION		
all interactions with REGION except LN ² (SOC):REGION, LN(TEB):REGION		LN ² (SOC), LN(SOC), C:N, LN(TEB), pH ² , pH, REGION, all interactions with REGION except LN ² (SOC):REGION,	1.25	
LN ² (SOC), LN(SOC), C:N, LN(TEB), pH ² , pH, REGION, all interactions with REGION except	1.24	LN(SOC):REGION, LN(TEB):REGION, C:N:REGION		
LN-(SOC):REGION, LN(TEB):REGION, pH ² :REGION		LN(SOC), C:N, LN(TEB), pH ² , pH, REGION.	1.26	
LN ² (SOC), LN(SOC), C:N, pH ² , pH, REGION, all interactions with REGION except LN ² (SOC):REGION, pH ² :REGION	1.24	all interactions with REGION except LN ² (SOC):REGION, LN(SOC):REGION, LN(TEB):REGION		
		all models including LN(N stock)	≥1.24	

Table S8. Overall mean squared error (ms) after 10-fold cross-validation for the most relevant candidate model structures that explain variation in normalized productivity according to method 2 (actual/attainable mean annual increment - MAI) by soil variables (0-20 cm or mineral soil only) for Swedish spruce and pine forests. The selected model is marked in gray. Abbreviations: C:N = soil carbon to nitrogen ratio; TEB = total exchangeable bases; pH = pH_{KCI}; CLAY_{min.soil} = clay fraction in the mineral soil; SOC = soil organic carbon concentration. For soil C:N, data of depth 0-10 cm were used instead of 0-20 cm as the mean squared error of the single regression model

was lowest in the former case (Table 2).

Variables in model	Overall ms
LN ² (SOC), LN(SOC), LN(N stock), LN(C:N), SAND _{min.soil} , CLAY _{min.soil} , LN(TEB), pH	138
LN2(SOC), LN(SOC), LN(N stock), LN(C:N), SANDmin.soil, LN(TEB), pH	138
LN ² (SOC), LN(SOC), LN(N stock), LN(C:N), SAND _{min.soil} , pH	138
LN2(SOC), LN(SOC), LN(N stock), LN(C:N), pH	139
LN ² (SOC), LN(SOC), LN(N stock), LN(C:N), SAND _{min.soil}	143

Table S9. Tests of variable implementation in the IIASA-metric of constraints on nutrient availability, based on the complete Swedish database. Associations between residuals of normalized productivities in Fig. 9 and soil variables in the IIASA-metric are shown. For (near) significant variables (i.e. P < 0.10), parameter estimates \pm s.e.m. and the proportion of variation explained (R^2) are given. Abbreviations: N = north; M = middle; S = south; SOC = soil organic carbon concentration; TEB = total exchangeable bases; pH_w = pH measured in water; quad = parameter estimate for quadratic term; lin = parameter estimate for linear term of a quadratic function. Note that TEB is expressed here according to the standard definition (per kg dry weight as defined for the IIASA-metric), whereas elsewhere in this paper, TEB is referred to as a stock, i.e. an amount per m² in the upper 20 cm of the soil, thus better representing the actual number of base cations available to plants. Error bars represent the s.e.m.

Residuals of	Region	In SOC0-20cm [%]	Sand _{0-20cm} [%]	In TEB _{0-20cm} [cmol ₊ kg ⁻¹]	pH _{w,0-20cm}
Residual MAI (method 1)	N (<i>n</i> = 542)	slope = -0.11 ± 0.03 P < 0.01 $R^2 = 0.022$	slope = 0.005 ± 0.001 P < 0.01 $R^2 = 0.025$	slope = -0.04 ± 0.02 P = 0.09 $R^2 = 0.003$	quad = -0.3 ± 0.1 lin = 2.7 ± 0.9 P < 0.01 $R^2 = 0.019$
	M (<i>n</i> = 777)	slope = -0.31 ± 0.03 P < 0.01 $R^2 = 0.092$	slope = 0.012 ± 0.002 P < 0.01 $R^2 = 0.065$	slope = -0.20 ± 0.03 P < 0.01 $R^2 = 0.052$	quad = -0.4 ± 0.1 lin = 4 ± 1 P < 0.01 $R^2 = 0.055$
	S (<i>n</i> = 946)	slope = -0.56 ± 0.04 P < 0.01 $R^2 = 0.141$	slope = 0.015 ± 0.002 P < 0.01 $R^2 = 0.076$	slope = -0.39 ± 0.04 P < 0.01 $R^2 = 0.099$	quad = -0.86 ± 0.07 lin = 8.4 ± 0.6 P < 0.01 $R^2 = 0.166$
Actual/attainable MAI (method 2)	entire Sweden $(n = 955)$	<i>P</i> = 0.41	<i>P</i> = 0.33	slope = -0.6 ± 0.4 P = 0.08 $R^2 = 0.002$	<i>P</i> = 0.73

Table S10. Associations between single key soil variables and normalized productivity (method 1) for spruce and pine forests in southern Sweden. Significance (*P*-values) of single soil variable effects on residual productivity (mean annual increment - MAI [m³ ha⁻¹ yr⁻¹]) are given. For (near) significant variables (i.e. P < 0.10), parameter estimates \pm s.e.m. and the proportion of variation explained (R^2) are shown as well. Note that the results presented here deviate slightly from the data presented in Table 2, as separate regression analyses were performed for southern Sweden here instead of ANCOVA analyses with region as the factor, and results were based on a calibration subset here, instead of the complete database Moreover, pH_w was used instead of pH_{KCl} to keep the same variable for soil pH as in the original nutrient availability metric. Abbreviations: S = south; SOC = soil organic carbon concentration; Soil C:N = soil carbon to nitrogen ratio; quad = parameter estimate for quadratic term; lin = parameter estimate for linear term of a quadratic function.

Normalized productivity response	Region	In SOC _{0-20cm} [%]	Soil C:N0-20cm	рН _{w,0-20ст}	
Residual MAI	S (<i>n</i> = 473)	quad = -0.18 ± 0.06 P < 0.01 lin = 0.3 ± 0.3 P = 0.22 intercept = 0.4 ± 0.3 P = 0.19 $R^{2}_{tot} = 0.134$	slope = -0.082 ± 0.009 P < 0.01 intercept = 2.0 ± 0.2 P < 0.01 $R^2 = 0.134$	$quad = -0.9 \pm 0.1$ P < 0.01 $lin = 8.4 \pm 0.9$ P < 0.01 intercept = -19 ± 2 P < 0.01 $R^{2}_{tot} = 0.172$	215

Table S11. Associations between single key soil variables and normalized productivity (method 2) for spruce forests in Sweden. Significance (*P*-values) of single soil variable effects on actual/attainable productivity (mean annual increment - MAI [m³ ha⁻¹ yr⁻¹]) are given. For (near) significant variables (i.e. P < 0.10), parameter estimates \pm s.e.m. and the proportion of variation explained (R^2) are shown as well. Note that the results presented here deviate slightly from the data presented in Table 2, as they were based on a calibration subset here, instead of the complete database. Moreover, pH_w was used instead of pH_{KCl} to keep the same variable for soil pH as in the original nutrient availability metric. Abbreviations: S = south; SOC = soil organic carbon concentration; Soil C:N = soil carbon to nitrogen ratio; quad = parameter estimate for quadratic term; lin = parameter estimate for linear term of a quadratic function.

Normalized productivity	ln SOC _{0-20cm} [%]	In soil C:N _{0-10cm}	pH _{w,0-20cm}
Actual/attainable	$auad = -2.8 \pm 0.6$	slope = -19 + 2	slope $-2 + 1$
MAI	P < 0.01	P < 0.01	P = 0.08
(n = 475)	$lin = 12 \pm 3$	intercept = 102 ± 7	intercept = 31 ± 5
	P < 0.01	P < 0.01	P < 0.01
	intercept = 31 ± 2	$R^2 = 0.138$	$R^2 = 0.004$
	P < 0.01		
	$R^2 = 0.049$		

Table S12. Performance of adjusted metric 1 per soil moisture class. Significance (*P*-values) of metric-normalized productivity (mean annual increment - MAI [m³ ha⁻¹ yr⁻¹]) associations are given. For (near) significant relationships (i.e. P < 0.10), parameter estimates ± s.e.m. and the proportion of variation explained (R^2) are shown as well. Abbreviations: N = north; M = middle; S = south.

Normalized productivity response	Region	Adjusted metric 1 [m³ ha⁻¹ yr⁻¹]			
		Dry	Fresh	Fresh-moist	Moist
Residual MAI (method 1)	Ν	P = 0.99 n = 10	slope = 0.5 ± 0.1 P < 0.01 $R^2 = 0.071$ n = 322	slope = 0.3 ± 0.1 P < 0.01 $R^2 = 0.030$ n = 201	slope = 1.0 ± 0.1 P = 0.01 $R^2 = 0.539$ n = 8
	Μ	P = 0.78 $n = 16$	slope = 0.8 ± 0.1 P < 0.01 $R^2 = 0.089$ n = 488	slope = 0.9 ± 0.1 P < 0.01 $R^2 = 0.135$ n = 262	P = 0.45 $n = 10$
	S	P = 0.51 $n = 6$	slope = 1.4 ± 0.2 P < 0.01 $R^2 = 0.089$ n = 488	slope = 1.7 ± 0.2 P < 0.01 $R^2 = 0.258$ n = 183	P = 0.95 $n = 8$
Actual/attainable MAI (method 2)	entire Sweden	P = 0.20 n = 19	slope = 3 ± 2 P = 0.08 $R^2 = 0.003$ n = 640	slope = 4 ± 2 P = 0.02 $R^2 = 0.017$ n = 285	P = 0.67 $n = 10$

Table S13. Performance of adjusted metric 1 per soil type. Significance (P-values) of metric-normalized productivity (mean annual
increment - MAI [m ³ ha ⁻¹ yr ⁻¹]) associations are given. For (near) significant relationships (i.e. $P < 0.10$), parameter estimates \pm s.e.m.
and the proportion of variation explained (R^2) are shown as well. Abbreviations: N = north; M = middle; S = south.

Normalized productivity response	Region	Adjusted metric 1 [m³ ha ⁻¹ yr ⁻¹]				
		Histosol	Gleysol	Regosol	Leptosol	Podzol
Residual MAI (method 1)	Ν	slope = 1.4 ± 0.6 P = 0.03 $R^2 = 0.297$ n = 13	P = 0.86 $n = 30$	slope = 0.4 ± 0.1 P < 0.01 $R^2 = 0.036$ n = 203	P = 0.31 $n = 14$	slope = 0.3 ± 0.1 P = 0.02 $R^2 = 0.017$ n = 266
	М	slope = 1.2 ± 0.5 P = 0.03 $R^2 = 0.074$ n = 50	P = 0.31 n = 25	slope = 0.4 ± 0.2 P < 0.01 $R^2 = 0.023$ n = 261	P = 0.49 n = 17	slope = 0.6 ± 0.1 P < 0.01 $R^2 = 0.040$ n = 390
	S	P = 0.22 n = 53	P = 0.11 n = 16	slope = 0.9 ± 0.3 P < 0.01 $R^2 = 0.060$ n = 179	P = 0.95 n = 20	slope = 0.7 ± 0.3 P = 0.04 $R^2 = 0.021$ n = 154
Actual/attainable MAI (method 2)	entire Sweden	slope = 18 ± 7 P = 0.01 $R^2 = 0.094$ n = 56	P = 0.72 n = 59	slope = 5 ± 2 P = 0.01 $R^2 = 0.015$ n = 348	P = 0.38 n = 27	slope = 5 ± 2 P = 0.01 $R^2 = 0.013$ n = 389

Table S14. Performance of adjusted metric 2 per soil moisture class. Significance (*P*-values) of metric-normalized productivity (mean annual increment - MAI [m³ ha⁻¹ yr⁻¹]) associations are given. For (near) significant relationships (i.e. P < 0.10), parameter estimates \pm s.e.m. and the proportion of variation explained (R^2) are shown as well. Abbreviations: N = north; M = middle; S = south.

Normalized productivity response	Region	Adjusted metric 2 [%]			
_		Dry	Fresh	Fresh-moist	Moist
Residual MAI (method 1)	Ν	slope = 0.07 ± 0.03 P = 0.02 $R^2 = 0.148$ n = 32	slope = 0.07 ± 0.01 P < 0.01 $R^2 = 0.055$ n = 383	slope = 0.14 ± 0.02 P < 0.01 $R^2 = 0.240$ n = 122	P = 0.26 $n = 4$
	Μ	P = 0.39 n = 47	slope = 0.10 ± 0.02 P < 0.01 $R^2 = 0.042$ n = 514	slope = 0.18 ± 0.03 P < 0.01 $R^2 = 0.141$ n = 208	P = 0.33 n = 7
	S	P = 0.95 $n = 44$	slope = 0.11 ± 0.03 P < 0.01 $R^2 = 0.026$ n = 669	slope = 0.27 ± 0.04 P < 0.01 $R^2 = 0.211$ n = 216	slope = 0.5 ± 0.2 P = 0.02 $R^2 = 0.233$ n = 17
Actual/attainable MAI (method 2)	entire Sweden	slope = 5 ± 2 P = 0.03 $R^2 = 0.334$ n = 11	slope = 2.7 ± 0.3 P < 0.01 $R^2 = 0.167$ n = 320	slope = 2.0 ± 0.4 P < 0.01 $R^2 = 0.132$ n = 135	P = 0.92 $n = 6$

Table S15. Performance of adjusted metric 2 per soil type. Significance (*P*-values) of metric-normalized productivity (mean annual increment - MAI [m³ ha⁻¹ yr⁻¹]) associations are given. For (near) significant relationships (i.e. P < 0.10), parameter estimates \pm s.e.m. and the proportion of variation explained (R^2) are shown as well. Abbreviations: N = north; M = middle; S = south.

Normalized productivity response	Region	Adjusted metric 2 [%]				
		Histosol	Gleysol	Regosol	Leptosol	Podzol
Residual MAI (method 1)	N	slope = 0.23 ± 0.08 P = 0.01 $R^2 = 0.381$ n = 13	slope = 0.08 ± 0.04 P = 0.06 $R^2 = 0.091$ n = 30	slope = 0.07 ± 0.02 P < 0.01 $R^2 = 0.064$ n = 203	slope = 0.16 ± 0.05 P < 0.01 $R^2 = 0.370$ n = 14	slope = 0.07 ± 0.02 P < 0.01 $R^2 = 0.051$ n = 266
	Μ	slope = 0.19 ± 0.07 P = 0.01 $R^2 = 0.098$ n = 50	slope = 0.2 ± 0.1 P = 0.10 $R^2 = 0.072$ n = 25	slope = 0.08 ± 0.03 P < 0.01 $R^2 = 0.027$ n = 261	P = 0.99 n = 17	slope = 0.13 ± 0.03 P < 0.01 $R^2 = 0.059$ n = 390
	S	slope = 0.36 ± 0.08 P < 0.01 $R^2 = 0.172$ n = 93	P = 0.23 n = 34	slope = 0.12 ± 0.03 P < 0.01 $R^2 = 0.032$ n = 358	P = 0.79 n = 40	slope = 0.14 ± 0.04 P < 0.01 $R^2 = 0.036$ n = 322
Actual/attainable MAI (method 2)	entire Sweden	P = 0.40 n = 25	slope = 1.9 ± 0.8 P = 0.02 $R^2 = 0.141$ n = 30	slope = 3.3 ± 0.5 P < 0.01 $R^2 = 0.232$ n = 170	slope = 2.0 ± 0.9 P = 0.04 $R^2 = 0.205$ n = 15	slope = 2.5 ± 0.5 P < 0.01 $R^2 = 0.133$ n = 199

Table S16. Tests of variable implementation in adjusted nutrient availability metric 1, based on the complete Swedish database. Associations between residuals of normalized productivities in Fig. 10 and soil variables in adjusted metric 2 are shown. For (near) significant variables (i.e. P < 0.10), parameter estimates \pm s.e.m. and the proportion of variation explained (R^2) are given. Abbreviations: N = north; M = middle; S = south; SOC = soil organic carbon concentration; Soil C:N = soil carbon to nitrogen ratio; pH_w = pH measured in water. Error bars represent the s.e.m.

Residuals of	Region	In SOC _{0-20cm} [%]	Soil C:N0-20cm	pHw,0-20cm
Residual MAI (method 1)	N (<i>n</i> = 542)	P = 0.40	P = 0.24	<i>P</i> = 0.28
	M (<i>n</i> = 777)	slope = -0.06 ± 0.03 P = 0.08 $R^2 = 0.003$	slope = 0.011 ± 0.005 P = 0.03 $R^2 = 0.005$	<i>P</i> = 0.14
	S (<i>n</i> = 473)	<i>P</i> = 0.36	<i>P</i> = 0.73	<i>P</i> = 0.28
Actual/attainable MAI (method 2)	entire Sweden $(n = 955)$	slope = 1.7 ± 0.4 P < 0.01 $R^2 = 0.016$	slope = -0.33 ± 0.07 P < 0.01 $R^2 = 0.021$	<i>P</i> = 0.17

Table S17. Tests of variable implementation in adjusted nutrient availability metric 2, based on the complete Swedish database. Associations between residuals of normalized productivities in Fig. 11 and soil variables in adjusted metric 2 are shown. For (near) significant variables (i.e. P < 0.10), parameter estimates \pm s.e.m. and the proportion of variation explained (R^2) are given. Abbreviations: N = north; M = middle; S = south; SOC = soil organic carbon concentration; Soil C:N = soil carbon to nitrogen ratio; pH_w = pH measured in water. Error bars represent the s.e.m.

Residuals of	Region	In SOC _{0-20cm} [%]	In soil C:N0-10cm	pH _{w,0-20cm}
Residual MAI	Ν	$slope = -0.11 \pm 0.03$	P = 0.55	$slope = 0.16 \pm 0.07$
(method 1)	(n = 545)	P < 0.01		P = 0.02
		$R^2 = 0.023$		$R^2 = 0.008$
	M (<i>n</i> = 780)	slope = -0.30 ± 0.03 P < 0.01 $P^2 = 0.002$	<i>P</i> = 0.94	slope = 0.37 ± 0.09 P = 0.02 $B^2 = 0.020$
		$K^2 = 0.095$		$K^2 = 0.020$
	S (<i>n</i> = 950)	slope = -0.37 ± 0.04 P < 0.01 $R^2 = 0.067$	<i>P</i> = 0.16	<i>P</i> = 0.60
Actual/attainable MAI (method 2)	entire Sweden $(n = 475)$	slope = 1.0 ± 0.6 P = 0.09 $R^2 = 0.004$	<i>P</i> = 0.34	slope = -5 ± 1 P < 0.01 $R^2 = 0.036$

Table S18. Tests of variable implementation in adjusted nutrient availability metric 1, based on selected nutrient availability gradients in
Sweden. Associations between residuals of normalized productivities in Table 4 and soil variables in adjusted metric 1 are shown. For
(near) significant variables (i.e. P < 0.10), parameter estimates \pm s.e.m. and the proportion of variation explained (R^2) are given. For
Norway spruce, no TEB gradient without substantial variation in climate was found, so that only for Scots pine, there was a gradient in
TEB. Abbreviations: SOC = soil organic carbon concentration; Soil C:N = soil carbon to nitrogen ratio; pHw = pH measured in water; TEB
= total exchangeable bases. Error bars represent the s.e.m.

Dominant tree	Gradient type	In SOC _{0-20cm} [%]	Soil C:N0-20cm	рН _{w,0-20ст}
Norway spruce	Soil moisture $(n = 132)$	<i>P</i> = 0.80	<i>P</i> = 0.38	P = 0.89 300
	Productivity $(n = 78)$	<i>P</i> = 0.62	slope = -0.06 ± 0.03 P = 0.06 $R^2 = 0.033$	slope = 1.0 ± 0.4 P < 0.01 $R^2 = 0.083$
Scots pine	Soil moisture $(n = 141)$	<i>P</i> = 0.83	<i>P</i> = 0.62	<i>P</i> = 0.79
	TEB (<i>n</i> = 59)	<i>P</i> = 0.35	P = 0.70	<i>P</i> = 0.22
	Productivity $(n = 67)$	<i>P</i> = 0.94	P = 0.50	<i>P</i> = 0.84

Table S19. Tests of variable implementation in adjusted nutrient availability metric 2, based on selected nutrient availability gradients in Sweden. Associations between residuals of productivities in Table 5 and soil variables in adjusted metric 2 are shown. For (near) significant variables (i.e. P < 0.10), parameter estimates \pm s.e.m. and the proportion of variation explained (R^2) are given. For Norway spruce, no TEB gradient without substantial variation in climate was found, so that only for Scots pine, there was a gradient in TEB. Abbreviations: SOC = soil organic carbon concentration; Soil C:N = soil carbon to nitrogen ratio; pH_w = pH measured in water; TEB = total exchangeable bases. Error bars represent the s.e.m.

Dominant tree species	Gradient type	In SOC _{0-20cm} [%]	In soil C:N _{0-10cm}	pHw,0-20cm
Norway spruce	Soil moisture $(n = 132)$	slope = -0.3 ± 0.1 P = 0.02 $R^2 = 0.031$	<i>P</i> = 0.96	<i>P</i> = 0.88
	Productivity $(n = 78)$	slope = -0.5 ± 0.2 P < 0.01 $R^2 = 0.111$	slope = -1.9 ± 0.7 P = 0.01 $R^2 = 0.065$	slope = 0.6 ± 0.4 P = 0.09 $R^2 = 0.025$
Scots pine	Soil moisture $(n = 141)$	slope = -0.37 ± 0.09 P < 0.01 $R^2 = 0.098$	<i>P</i> = 0.77	slope = 0.6 ± 0.3 P = 0.03 $R^2 = 0.026$
	TEB (<i>n</i> = 59)	slope = -0.3 ± 0.1 P = 0.03 $R^2 = 0.065$	<i>P</i> = 0.86	<i>P</i> = 0.58
	Productivity $(n = 67)$	<i>P</i> = 0.31	P = 0.78	<i>P</i> = 0.71

Figure S1. Productivities (mean annual increment - MAI) of (a) pine and (b) spruce, (c) attainable productivity for spruce (Bergh et al., 2005) and (d) soil carbon to nitrogen (C:N) ratio of conifer forests in Sweden.

Figure S2. Overview of the selected nutrient availability gradients in Sweden. Gradients were selected by manually searching for regions with high spatial variation in either soil moisture, total exchangeable bases (TEB) or productivity for spruce and pine forests, using the ArcGIS software (ESRI, 2011). For Norway spruce, no TEB gradient without substantial variation in climate was found, so that only for Scots pine, there was a gradient in TEB. Each gradient consisted of ≥ 40 data points, and thus represented a sub-selection of the complete Swedish database.

Figure S3. Soil conditions in spruce and pine forests with varying soil moisture. Abbreviations: SOC = soil organic carbon concentration; soil C:N ratio = soil carbon to nitrogen ratio; TEB = total exchangeable bases. Letters indicate statistical differences among moisture classes, either within spruce and pine forests (if the moisture x species interaction was included in the model after cross-validation) or for spruce and pine forests combined (if the moisture x species interaction was not included in the final model). Error bars represent the s.e.m.

Histosol Gleysol Regosol Leptosol Podzol

Figure S4. Soil conditions in spruce and pine forests for the most common soil types in Sweden. Abbreviations: SOC = soil organic carbon concentration; soil C:N ratio = soil carbon to nitrogen ratio; TEB = total exchangeable bases. Letters indicate statistical differences among soil types, for each panel within spruce and pine forests (the moisture x species interaction was included in each model after cross-validation). Error bars represent the s.e.m.

Figure S5. Adjusted soil scores in nutrient availability metric 1 for soil organic carbon concentration (SOC), soil carbon to nitrogen (C:N) ratio and pH measured in water (pH_w). Curves were drawn based on regression equations from Table S10. Minimum constraints were added to avoid artefacts if applied to other databases.

Figure S6. Adjusted soil scores in nutrient availability metric 2 for soil organic carbon concentration (SOC), soil carbon to nitrogen (C:N) ratio and pH measured in water (pHw). Curves were drawn based on regression equations from Table S11. Minimum constraints were 380 added to avoid artefacts if applied to other databases.