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Supplement S1 | Quantifying aboveground carbon density and its uncertainty 

Correcting stem diameters for position of measurement 

Stem diameters (D, in cm) are typically recorded at a height of 1.3 m aboveground. However, 

in some cases it may be necessary to measure D at a different point along the stem (e.g., in the 

presence of stem deformities or buttress roots). To account for differences in the position of 

measurement (POM, in m), we used the following taper model developed for Neotropical 

forests by Cushman et al. (2014) to reconstruct stem diameters at a height of 1.3 m aboveground 

(D1.3m): 

𝐷1.3𝑚 =
𝐷𝑃𝑂𝑀

exp(−0.029 × (𝑃𝑂𝑀 − 1.3))
 

 
(S1) 

where DPOM is the stem diameter measurement taken at POM, which in in turn is expressed as 

a height in meters aboveground. When not reported, POM was assumed to be at 1.3 m 

aboveground. 

Tree height estimation 

Tree heights (H, in m) were measured for a subset of trees at Sepilok (n = 718), at Kuamut (n 

= 5587), in the SAFE experimental plots (n = 7653) and in the riparian buffer zones within the 

SAFE landscape (n = 1380), in the Global Ecosystem Monitoring (GEM) plots (n = 2769), and 

in both the CTSF plot and the CAO plots established at Danum Valley (n = 836 and n = 2769, 

respectively). In each case, H was measured using a laser range finder. Using these data, we 

developed site-specific H–D equations in order to estimate the height of trees that were not 

measured. Following the protocol outlined in the BIOMASS package in R (Rejou-Mechain et 

al., 2016), we compared a number of alternative H–D models with the intent of minimizing the 

residual standard error (σ) of the model. We found that a mixed-effects model of the form 

ln(𝐻) = 𝜌0 + 𝜌1 × ln(𝐷) + 𝜌2 × ln(𝐷)2, where ρ0–2 were allowed to vary by site (i.e., site 

was treated as a random effect influencing both the intercept and slope of the model), fit the 

data best (σ = 4.4; R2 = 0.84). Fig. S1 illustrates the fit of this equation to the data. 
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Fig. S1 | Relationship between tree height and stem diameter across study sites in Sabah. The black 

curve corresponds to the best fit H–D equation across all sites, while coloured lines illustrate how H–D 

relationships vary among sites. The height of the tallest known tree in Sabah (a 94.1 m tall Shorea 

faguetiana growing at Danum Valley, currently the tallest known tree in the tropics) and of the tallest 

tree at Maliau Basin (an 89.5 m tall Shorea faguetiana) are shown for context. 

Wood density estimation 

Wood density (WD, in g cm-3) values were obtained from the Global Wood Density Database 

(Chave et al., 2009; Zanne et al., 2009). Prior to assigning WD, we first checked species names 

against those in the Taxonomic Name Resolution Service (Boyle et al., 2013). At Sepilok, in 

the CTSF plot at Danum Valley, in the GEM plots and in the CAO plots established at Danum 

Valley and Kuamut, trees were matched to species or closest taxonomic unit. If no taxonomic 

information was available, the mean WD of the plot was used instead (Talbot et al., 2014; 

Rejou-Mechain et al., 2016). For plots established as part of the SAFE forest fragmentation 

experiment and those in riparian buffer zones, trees were not identified taxonomically. In this 

case, WD values were assigned on the basis of disturbance history using data from the GEM 

plots as reference (see Table S1 for details). 
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Table S1 | Wood density (WD, in g cm-3) values assigned to plots in the SAFE forest fragmentation 

experiment and in riparian buffer zones. For a description of the SAFE project, including the layout of 

the experimental blocks see Ewers et al. (2011). For a description of Global Ecosystem Monitoring 

(GEM) network plots see http://gem.tropicalforests.ox.ac.uk. 

Site Plot type SAFE block Disturbance history GEM plot code WD 

Maliau SAFE experiment OG1, OG2, OG3 Old growth Belian and Seraya 0.57 

SAFE  SAFE experiment VJR Low logging intensity Belian and Seraya 0.57 

SAFE  SAFE experiment LFE, LF1, LF2, LF3 Twice-logged continuous LFE 0.61 

SAFE  SAFE experiment B Twice-logged fragmented B north and B south 0.46 

SAFE  SAFE experiment E Twice-logged fragmented E 0.53 

SAFE  SAFE experiment A, C, D, F Twice-logged fragmented E, B north and B south 0.48 

SAFE  Riparian buffers LFE Twice-logged continuous LFE 0.61 

SAFE  Riparian buffers   Twice-logged fragmented E, B north and B south 0.48 

 

 

http://gem.tropicalforests.ox.ac.uk/
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Accounting for missing stems in ACD and basal area estimation 

With the exception of plots at Danum Valley and 38 of the SAFE experimental plots where all 

stems >1 cm in D were recorded, in other datasets compiled for this study the size threshold 

for inclusion was D = 10 cm. While large trees account for most of the biomass in forests (e.g., 

Bastin et al., 2015), excluding small stems will nonetheless result in an underestimation of 

aboveground carbon density (ACD, in Mg C ha-1), as well as basal area (BA, in m2 ha-1). To 

correct for this, we used the 45 1 ha plots at Danum to calculate ACD and BA using all available 

data (ACD1cm and BA1cm), and again after having excluded stems with D < 10 cm (ACD10cm and 

BA10cm). These data were then used to derive the following correction factors for ACD and BA 

which were applied to all other datasets (Fig. S2): 

𝐴𝐶𝐷1𝑐𝑚 = 6.713 + 1.004 × 𝐴𝐶𝐷10𝑐𝑚  (S2) 

𝐵𝐴1𝑐𝑚 = 4.168 + 1.009 × 𝐵𝐴10𝑐𝑚  (S3) 

 

Fig. S2 | Relationship between (a) aboveground carbon density (ACD) and (b) basal area (BA) 

calculated with all stems > 1 cm in diameter (D) and after excluding stems with D < 10 cm for the 45 1 

ha plots at Danum Valley. Dashed lines correspond to a 1:1 relationship. 
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Supplement S2 | Comparison of canopy metrics derived from NERC and CAO data 

 

Fig. S3 | Comparison of (a) top-of-canopy height and (b) canopy cover at 20 m aboveground derived 

from NERC and CAO data. The comparisons are based on 86 field plots that were covered by both 

airborne campaigns. Note that a certain degree of departure from a 1:1 relationship (depicted by the 

dashed lines) is to be expected, as the two campaigns were flown more than 18 months apart across a 

region that is undergoing active logging and was affected by severe droughts associated with the El 

Niño event of 2015–16. Pearson’s correlation coefficients (ρ) for each comparison are reported in the 

bottom right-hand corner of the panels. 
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Supplement S3 | Comparison of modelling approaches for estimating ACD 

In addition to the aboveground carbon density (ACD) modelling approach described in the 

main text – which uses the L-BFGS-B nonlinear optimization routine to parameterize Eq. (4) 

and (6) – we compared two further modelling routines in an effort to identify the approach that 

would yield the lowest degree of systematic bias in the predicted values of ACD (see Table S2 

in Supplement S4 below for a full list of equations referenced to here). The first relied on fitting 

a combination of ordinary and nonlinear least squares regression models to parametrise Eq. (2) 

and (4–7). These models did not account for potential spatial autocorrelation in the residuals, 

which could result in a slight underestimation of the true uncertainty in the fitted parameter 

values. We contrasted this approach with one that used generalised and nonlinear least squares 

regression that explicitly account for spatial dependencies in the data. In both case we found 

that these alternative modelling approaches substantially underperformed compared to the 

routine described in the main text. Both routines exhibited strong systematic bias in the 

predicted values of ACD, tending to substantially overestimate ACD for low carbon density 

forests and underestimate ACD in carbon rich ones (Fig. S4). This systematic bias in the model 

predictions was particularly evident in the case of the spatially explicit models (Fig. S4b). 

 

Fig. S4 | Comparison of mean relative model error (i.e., 
𝐴𝐶𝐷𝑝𝑟𝑒𝑑−𝐴𝐶𝐷𝑜𝑏𝑠

𝐴𝐶𝐷𝑜𝑏𝑠
× 100) as a function of field-

estimated aboveground carbon density (ACD) for (a) models fit with a combination of ordinary and 

nonlinear least squares regression that do not account for spatial autocorrelation, (b) models fit with 

generalised and nonlinear least squares regression that explicitly account for spatial dependencies in the 

data and (c) the modelling routine descried in the main text. Each point corresponds to one of the 173 

plots used to calibrate the models, while a regression spline fit to the data points is used to highlight 

systematic bias in model predictions. 
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Supplement S4 | Confidence intervals for parameter estimates 

Table S2 | Parameter estimates for models presented in the main text. For Eq. (2), (3) and (6 – 7), best-

fit parameter estimates are mean values across 100 model iterations, with 95% confidence intervals 

reflecting variation across all 100 model runs given in brackets. For each model, the equation number 

corresponds to that in the main text. σ is the residual standard error of the model. 

Eq Model ρ0 ρ1 ρ2 ρ3 σ 

2 𝐴𝐶𝐷 = 𝜌0 × 𝑇𝐶𝐻𝜌1 × 𝐵𝐴𝜌2 × 𝑊𝐷𝜌3 
0.567  

[0.389; 0.829] 

0.554  

[0.452; 0.657] 

1.081  

[0.956; 
1.213] 

0.186  

[-0.017; 0.351] 
0.185 

3 𝐵𝐴 =  𝜌0 × 𝑇𝐶𝐻 
1.112  

[1.084; 1.142] 
   9.393 

4 𝑙𝑛 (
𝐶𝑜𝑣𝑒𝑟20

1 − 𝐶𝑜𝑣𝑒𝑟20

) = 𝜌0 + 𝜌1 × 𝑙𝑛(𝑇𝐶𝐻) -12.431 4.061   0.101 

6 𝐵𝐴 =  𝜌0 × 𝑇𝐶𝐻𝜌1 × (1 + 𝜌2 × 𝐶𝑜𝑣𝑒𝑟𝑟𝑒𝑠𝑖𝑑) 
1.287  

[1.217; 1.464] 

0.987  

[0.945; 1.000] 

1.983  
[1.904; 

2.000] 

 6.581 

7 𝑊𝐷 = 𝜌0 × 𝑇𝐶𝐻𝜌1 
0.385  

[0.279; 0.516] 

0.097  

[-0.013; 0.216] 
  0.225 
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Supplement S5 | Basal area and wood density predictions from ALS 

 
Fig. S5 | Relationship between field-estimated basal area (BA) and BA modelled as a function of (a) 

top-of-canopy height (TCH) [Eq. (9) in Table S2] and (b) a combination of TCH and canopy cover at 

20 m aboveground [Eq. (10) in Table S2]. Dashed lines correspond to a 1:1 relationship. The RMSE of 

each comparison is printed in the bottom right-hand corner of the panels. 

 

Fig. S6 | Relationship between field-estimated community-weighted mean wood density (WD) and WD 

modelled as a function of (a) top-of-canopy height [Eq. (11) in Table S2] and (b) canopy cover at 20 m 

aboveground. Dashed lines correspond to a 1:1 relationship. The RMSE of each comparison is printed 

in the bottom right-hand corner of the panels. 
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