Supplement of Biogeosciences, 15, 3873–3882, 2018 https://doi.org/10.5194/bg-15-3873-2018-supplement © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

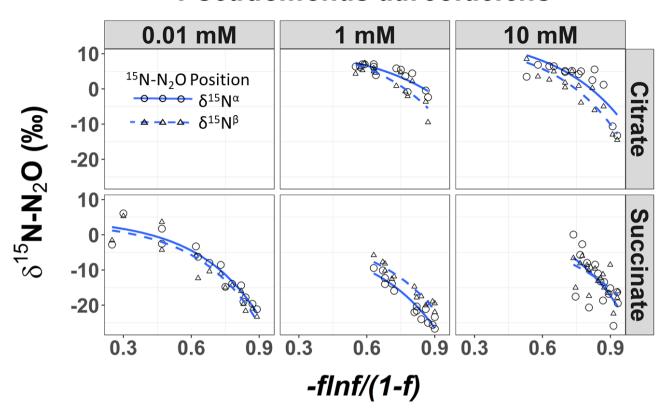
Supplement of

Estimation of isotope variation of N_2O during denitrification by *Pseudomonas aureofaciens* and *Pseudomonas chlororaphis*: implications for N_2O source apportionment

Joshua A. Haslun et al.

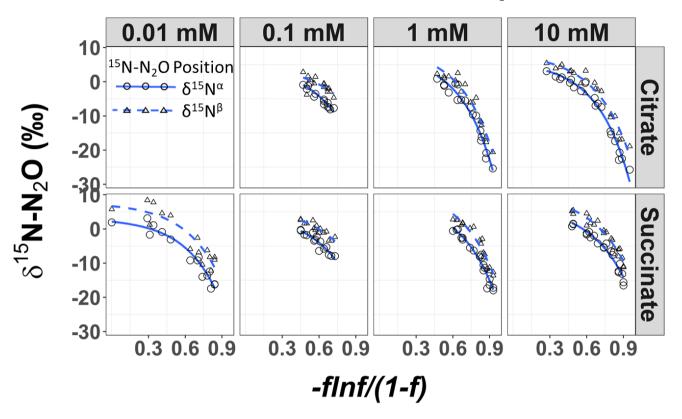
Correspondence to: Peggy H. Ostrom (ostrom@msu.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.


Supplementary Table S1: Non-linear exponential models estimating the change in $\delta^{15}N$ isotope values following reduction of NO_5 to N_2O by two species of denitrifying bacteria across an extent of the reaction. The coefficients of each equation were determined from non-linear regression of $\delta^{15}N-N_2O$ on [-flnf/(1-f)]. The derivatives were used to determine η across the observed extent of the reaction.

Species	Carbon	Concentration	Non-Linear Model	Derivative of Non-Linear
	Source			Model
Pseudomonas aureofaciens	Citrate	1	$\delta^{15}N = 12.986 - e^{3.187 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.187e^{3.187 \left[\frac{-f \ln f}{(1-f)} \right]}$
		10	$\delta^{15}N = 14.821 - e^{3.455 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.455e^{3.455 \left[\frac{-f \ln f}{(1-f)} \right]}$
	Succinate	0.01	$\delta^{15}N = 4.257 - e^{3.726 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.726e^{3.726 \left[\frac{-f \ln f}{(1-f)} \right]}$
		1	$\delta^{15} N = -0.097 - e^{3.524 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.524e^{3.524 \left[\frac{-f \ln f}{(1-f)} \right]}$
		10	δ^{15} N = 4.481 - $e^{3.378 \left[\frac{-f lnf}{(1-f)} \right]}$	$\eta = -3.378e^{3.378 \left[\frac{-f \ln f}{(1-f)} \right]}$
Pseudomonas chlororaphis	Citrate	0.1	δ^{15} N = 4.997 - $e^{3.356} \left[\frac{-f \ln f}{(1-f)} \right]$	$\eta = -3.356e^{3.356 \left[\frac{-f \ln f}{(1-f)} \right]}$
		1	$\delta^{15}N = 8.852 - e^{3.752 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.752e^{3.752\left[\frac{-f\ln f}{(1-f)}\right]}$
		10	$\delta^{15} N = 7.188 - e^{3.664 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.664e^{3.664 \left[\frac{-f \ln f}{(1-f)} \right]}$
	Succinate	0.01	$\delta^{15} N = 5.411 - e^{3.548 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.548e^{3.548 \left[\frac{-f \ln f}{(1-f)} \right]}$
		0.1	$\delta^{15} N = 5.516 - e^{3.370 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.370e^{3.370 \left[\frac{-f \ln f}{(1-f)} \right]}$
		1	$\delta^{15}N = 10.582 - e^{3.504 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.504e^{3.504 \left[\frac{-f \ln f}{(1-f)} \right]}$
		10	$\delta^{15}N = 8.746 - e^{3.356 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.356e^{3.356 \left[\frac{-f \ln f}{(1-f)} \right]}$

Supplementary Table S2: Non-linear exponential models estimating the change in $\delta^{18}O$ isotope values following reduction of NO₅ to N₂O by two species of denitrifying bacteria across an extent of the reaction. The coefficients of each equation were determined from non-linear regression of $\delta^{18}O$ on [-f lnf/(1-f)]. The derivatives were used to determine η across the observed extent of the reaction.


Species	Carbon Source	Concentration	Non-Linear Model	Derivative of Non-Linear Model
Pseudomonas aureofaciens	Citrate	1	$\delta^{18}0 = 15.593 - e^{2.549 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -2.549e^{2.549 \left[\frac{-f \ln f}{(1-f)} \right]}$
		10	$\delta^{18}0 = 13.606 - e^{2.260 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -2.260e^{2.260\left[\frac{-f \ln f}{(1-f)}\right]}$
	Succinate	0.01	$\delta^{18}0 = 11.737 - e^{1.813 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -1.813e^{1.813 \left[\frac{-f \ln f}{(1-f)} \right]}$
		1	$\delta^{18}0 = 52.359 - e^{3.312 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.312e^{3.312\left[\frac{-f \ln f}{(1-f)}\right]}$
		10	$\delta^{18}0 = 50.978 - e^{3.079 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.079e^{3.079 \left[\frac{-f \ln f}{(1-f)} \right]}$
Pseudomonas chlororaphis	Citrate	0.1	$\delta^{18}0 = 70.519 - e^{2.675 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -2.675e^{2.675 \left[\frac{-f \ln f}{(1-f)} \right]}$
		1	$\delta^{18}0 = 75.956 - e^{3.433 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.433e^{3.433\left[\frac{-f \ln f}{(1-f)}\right]}$
		10	$\delta^{18}0 = 73.385 - e^{3.289 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.289e^{3.289\left[\frac{-f \ln f}{(1-f)}\right]}$
	Succinate	0.01	$\delta^{18}0 = 66.495 - e^{3.014 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.014e^{3.014 \left[\frac{-f \ln f}{(1-f)} \right]}$
		0.1	$\delta^{18}0 = 69.863 - e^{2.974 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -2.974e^{2.974 \left[\frac{-f \ln f}{(1-f)} \right]}$
		1	$\delta^{18}0 = 78.748 - e^{3.343 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.343e^{3.343\left[\frac{-f \ln f}{(1-f)}\right]}$
		10	$\delta^{18}0 = 76.600 - e^{3.127 \left[\frac{-f \ln f}{(1-f)} \right]}$	$\eta = -3.127e^{3.127\left[\frac{-f \ln f}{(1-f)}\right]}$

Pseudomonas aureofaciens

Supplementary Figure S1: The $\delta^{15}N^{\alpha}$ (0) and $\delta^{15}N^{\beta}$ (Δ) isotope values of N₂O produced during the anaerobic reduction of NO₃⁻ by *Pseudomonas aureofaciens*. Similar trends can be observed by non-linear models fit to $\delta^{15}N^{\alpha}$ (solid line) and $\delta^{15}N^{\beta}$ (dashed line).

Pseudomonas chlororaphis

⁵ Supplementary Figure S2: The $\delta^{15}N^{\alpha}$ (o) and $\delta^{15}N^{\beta}$ (Δ) isotope values of N₂O produced during the anaerobic reduction of NO₃⁻ by *Pseudomonas chlororaphis*. Similar trends can be observed by non-linear models fit to $\delta^{15}N^{\alpha}$ (solid line) and $\delta^{15}N^{\beta}$ (dashed line).