

Supplement of

An estuarine-tuned quasi-analytical algorithm (QAA-V): assessment and application to satellite estimates of SPM in Galveston Bay following Hurricane Harvey

Ishan D. Joshi and Eurico J. D'Sa

Correspondence to: Eurico J. D'Sa (ejdsa@lsu.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Section S1

Chlorophyll-a profiles along with depth-dependent mass-specific IOPs are necessary to create Rrs using Hydrolight[®] four component case-2 models (S1) (Mobley and Sundman 2013; Sathyendranath et al., 1989; Kirk 1994; Bukata et. al., 1995),

$$a_{t}(\lambda) = a_{w}(\lambda) + a_{\phi}(\lambda) + a_{NAP}(\lambda) + a_{g}(\lambda)$$

$$b_{bt}(\lambda) = b_{bw}(\lambda) + b_{b\phi}(\lambda) + b_{bNAP}(\lambda)$$
(S1)

Synthetic chlorophyll concentrations [Chl] (N=730) were obtained with 73 values and ranged between 1 to 40 mg m⁻³ with 10 repetitions to simulate random variability as observed in natural waters. A total of 730 phytoplankton absorption spectra (a_{ϕ}) were generated using six groups containing 83 in situ normalized a_{ϕ} spectra; random normalized spectrum selection among groups were based on modeled a_{ϕ} 440, and the following bio-optical models (Bricaud et al., 1995; Fischer and Fell 1999; Mobley 1994) (Fig. S1; Table S1),

Figure S1. (a, b) *In situ* phytoplankton absorption spectra (N=83) were collected from CDOM-dominated Apalachicola Bay (USA) and sediment-dominated Barataria Bay (USA) to generate 730 simulated spectra for Hydrolight[®] four-component Case-2 model using Eq. 2, (c) modeled non-algal particle absorption spectra (N = 730) using Eq. 3, and (d) modeled CDOM absorption spectra (N = 730) using (S4).

Table S1: The conditions for allocating in-situ normalized-phytoplankton spectra $(a_{\phi}^{normalized})$ into 6 groups. $a_{\phi}440$ is phytoplankton absorption at 440 nm.

Groups	Condition
(Total spectra $= 83$)	
1 (n=18)	$a_{\phi}440 < 0.1$
2 (n=15)	$a_{\phi}440 \ge 0.1 \& a_{\phi}440 < 0.2$
3 (n=12)	$a_{\phi}440 \ge 0.2 \& a_{\phi}440 < 0.3$
4 (n=11)	$a_{\phi}440 \ge 0.3 \& a_{\phi}440 < 0.5$
5 (n=16)	$a_{\phi}440 \ge 0.5 \& a_{\phi}440 < 1.0$
6 (n=11)	$a_{oldsymbol{\phi}}440 \geq 1.0$

Mass-specific non-algal particle absorption coefficients $(a_{NAP}^*(\lambda))$ were obtained with an exponential model (Roesler et al. 1989; Bricaud et al. 1995), where slope (S_{NAP}) used a random value between 0.005 - 0.015 as observed in natural waters ranging from oceanic to estuarine environments (Kirk 1994). The required a_{NAP} 440 was modeled using a_{φ} 440 based on a constant p_1 (= a_{NAP} 440/ a_{φ} 440) which was set to lie between 1 and 3.5 as generally observed in the two bays, e.g., $p_1 = 1$ represents pigment/CDOM-rich waters and $p_1 = 3.5$ represents sediment/CDOM-rich waters (S3).

$$\begin{aligned} a_{\text{NAP}}(\lambda) &= a_{\text{NAP}} 440 \times e^{-S_{\text{NAP}} \times (\lambda - 440)} \\ p1 &= 1 + \frac{2.5 \times a_{\phi} 440 \times \Re(0,1)}{0.05 + a_{\phi} 440} \\ a_{\text{NAP}}^*(\lambda) &= \frac{a_{\phi}(\lambda)}{[\text{NAP}]} \\ [\text{NAP}] &= p1 \times [\text{Chl}] \end{aligned}$$
(S3)

CDOM absorption coefficient was modeled with an exponential model (Bricaud et al. 1981), where spectral slope (S_g) was chosen randomly between 0.01 to 0.025 as generally observed in various oceanic to productive estuarine environments (Kirk 1994; Babin et al., 2003) (Fig. S1d). a_g440 was estimated from $a_{\varphi}440$ and a constant p2 (= $a_g440 / a_{\varphi}440$). p_2 was set between 1 to 4.5 based on field data, e.g., p_2 = 1 represents phytoplankton/sediment dominated waters and p_2 = 4.5 represents CDOM-rich waters (S4).

$$\begin{aligned} a_{g}(\lambda) &= a_{g} 440 \times e^{-S_{g} \times (\lambda - 440)} \\ a_{g} 440 &= p2 \times a_{\phi} 440 \\ p2 &= 1 + \frac{3.5 \times a_{\phi} 440 \times \Re(0,1)}{0.02 + a_{\phi} 440} \\ a_{g}^{*}(\lambda) &= \frac{a_{g}(\lambda)}{[Chl]} \end{aligned}$$
(S4)

Mass-specific phytoplankton backscattering $(b_{b\phi}^*)$ and non-algal particle back-scattering (b_{bNAP}^*) coefficients were obtained based on the oceanic models (IOCCG 2006; please see references therein) with no change, as insufficient observations were available for estuarine environments. Subsequently, these coefficients were then converted to respective back-scattering coefficients by multiplying phase function dependent values "0.005" and "0.0183" (S5 and S6) (Mobley 1994; Mobley and Sundman 2013),

$$b_{bNAP}^{*}(\lambda) = \frac{b_{NAP}(\lambda) \times 0.0183}{[NAP]}$$
(S5)

$$\mathbf{b}_{\mathbf{b}\phi}^{*}(\lambda) = \frac{\mathbf{b}_{\phi}(\lambda) \times \mathbf{c}(\lambda)^{2}}{[\text{Chl}]}$$
(S6)

Hydrolight[®] simulations were then run with a case-2 model to generate Rrs using mass-specific IOPs, chlorophyll concentrations, dark bottom sediments, finite depth of 5 meters, sun zenith angle of 30°, no Raman scattering, and no chlorophyll fluorescence. A total of 169 erroneous spectra were suspected

possibly due to atypical combinations of CDOM, non-algal particles, and bottom reflectance; these were not used in further analysis.

References

IOCCG (2006). Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. Lee, Z. P. (ed.), Reports of the International Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, Canada.

IOCCG report 5. http://www.ioccg.org/groups/lee_data.pdf

Section S2

Table S2: Comparison statistics between the QAA-V and QAA-v6 algorithms based on simulated Hydrolight[®] dataset (HL) and in-situ estuarine and near-shore dataset (IES). N= number of observations, RMSE=Root mean square error, MRE= mean relative error.

	Ν	Biaslog10 (m ⁻¹)		RMSE _{log10} (m ⁻¹)		MRE (%)		R ²		
		QAA-V	QAA-v6	QAA-V	QAA-v6	QAA-V	QAA-v6	QAA-V	QAA-	
									v6	
Synthetic data										
atnw411	561	-0.028	-0.088	0.074	0.117	12.7	19.7	0.92	0.92	
atnw443	561	-0.006	-0.071	0.071	0.106	12.7	17.7	0.91	0.90	
atnw489	561	-0.003	-0.076	0.072	0.110	13.0	18.0	0.91	0.89	
atnw555	561	-0.020	-0.118	0.096	0.149	16.3	23.9	0.87	0.87	
b _{btnw} 411	561	-0.041	-0.159	0.097	0.173	15.5	28.9	0.95	0.95	
bbtnw443	561	-0.025	-0.130	0.086	0.152	14.4	25.3	0.95	0.94	
bbtnw489	561	-0.017	-0.119	0.082	0.146	14.1	23.9	0.95	0.94	
b _{btnw} 555	561	-0.018	-0.121	0.089	0.153	14.9	23.9	0.94	0.93	
IES dataset (Testing set: N = 219)										
atnw443	209	-0.023	-0.091	0.142	0.180	22.7	25.8	0.83	0.76	
atnw555	209	-0.029	-0.124	0.190	0.249	34.3	47.5	0.72	0.63	
bbtnw532	89	0.038	-0.049	0.173	0.174	26.0	34.6	0.70	0.67	

Section S3

Figure S2: A comparison of SPM concentration obtained with 0.2 μm Nylon filter and 0.7 μm GFF filters.

Figure S3: Validation of the atmospheric corrected images that were used for generating maps of $a_{tnw}443$ and $bb_{tnw}470$ in Fig. 10 of the manuscript.