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Abstract. The standard quasi-analytical algorithm (Lee et
al., 2002) was tuned as QAA-V using a suite of syn-
thetic data and in situ measurements to improve its per-
formance in optically complex and shallow estuarine wa-
ters. Two modifications were applied to the standard QAA:
(1) the semi-analytical relationship for obtaining remote
sensing reflectance just below the water surface as a func-
tion of absorption and backscattering coefficients was up-
dated using Hydrolight® simulations, and (2) an empiri-
cal model of the total non-water absorption coefficient was
proposed using a ratio of green to red bands of an ocean
color sensor, which is known to work well in various in-
land and estuarine environments. The QAA-V-derived total
absorption and backscattering coefficients, which were eval-
uated in a variety of waters ranging from highly absorb-
ing and turbid to relatively clear shelf waters, showed sat-
isfactory performance on a Hydrolight-simulated synthetic
dataset (R2> 0.87, MRE< 17 %), an in situ estuarine and
nearshore dataset (R2> 0.70, MRE< 35 %), and the NO-
MAD (R2> 0.90, MRE< 30 %). When compared to the
standard QAA (QAA-v6), the QAA-V showed an obvious
improvement with ∼ 30–40 % reduction in absolute mean
relative error for the Hydrolight-simulated synthetic and
in situ estuarine and nearshore datasets, respectively. The
methodology of tuning QAA was applied to the VIIRS ocean
color sensor and validation results suggest that the proposed
methodology can also be applied to other ocean color and
land-observing sensors. The QAA-V was also assessed on
VIIRS imagery using a regional relationship between sus-
pended particulate matter (SPM) and particulate backscatter-
ing coefficient at 532 nm (bbtnw532; R2

= 0.89, N = 33). As
a case study, the QAA-V processing chain and VIIRS im-

agery were used to generate a sequence of SPM maps of
Galveston Bay, Texas following the unprecedented flooding
of Houston and the surrounding regions due to Hurricane
Harvey in August 2017. The record discharge of floodwa-
ters through two major rivers into the bay resulted in very
high SPM concentrations over several days throughout the
bay, with wind forcing additionally influencing its distribu-
tion into the coastal waters of the northern Gulf of Mexico.
The promising results of this study suggest that the applica-
tion of QAA-V to various ocean color and land-observing
satellite imagery could be used to assess the bio-optical state
and water quality dynamics in a variety of coastal systems
around the world.

1 Introduction

Urbanization and the associated anthropogenic stressors are
of major concern for the ecosystem health and water quality
of estuarine environments, cumulatively affecting the coastal
and marine ecosystems through estuarine–shelf exchange
processes (Haynes et al., 2007; Bricker et al., 2008; Jutter-
ström et al., 2014). Inherent optical properties (IOPs) such
as absorption and backscattering coefficients have immense
potential to capture changes in the bio-optical state of an
aquatic system and hence provide crucial information about
regional alterations in water quality associated with terres-
trial pollution (Zielinski et al., 2009), harmful algal blooms
(Hu et al., 2008), floods (Álvarez-Romero et al., 2013), hur-
ricanes (Lohrenz et al., 2008; Chen et al., 2009), seasonal
cycles (D’Sa and Miller, 2003; D’Sa et al., 2006; Singh et
al., 2010; Joshi and D’Sa, 2015), and even human-induced
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catastrophes such as oil spills (Ramsey III et al., 2011; D’Sa
et al., 2016). In addition to water itself, there are three major
water constituents that contribute to water-leaving radiance
(Lw), namely colored dissolved organic matter (CDOM; also
called “gelbstoff” or “gilvin”), suspended sediments (detritus
and minerals), and phytoplankton (Naik et al., 2011). CDOM
and suspended sediments are strongly associated with light
absorption in the blue, and therefore high concentrations
may reduce light quality for photosynthetic organisms (e.g.,
phytoplankton and submerged vegetation) in estuarine wa-
ters (Keith et al., 2002; Ralph et al., 2007; Pedersen et al.,
2012). The effects of water turbidity caused by dissolved and
particulate components on physical and behavioral changes
in aquatic species have been well reported in the literature
(Wang et al., 2008; Kjelland et al., 2015). Collectively, these
water constituents attenuate incoming light, while a fraction
of it is backscattered out of water by the water itself and
particles. Therefore, deciphering Lw (or remote sensing re-
flectance; Rrs) to separate the individual contributions of op-
tically active components may provide crucial information
about the bio-optical state of a water body.

Field-based sampling methods are traditional and accurate
ways to measure bio-optical properties; however, they lack
adequate spatial and temporal coverage for capturing short-
period bio-optical alterations and estuarine-scale dynamics.
In contrast, remote sensing platforms (e.g., satellite sensors)
sense Lw (or Rrs) signal and are advantageous over field ob-
servations in providing better synoptic spatiotemporal cov-
erage if the signal is successfully linked to in-water IOPs.
As such, satellite-based remote sensing has been widely used
to monitor harmful algal blooms (Carvalho et al., 2011; Hu
et al., 2016), pollution events (Mishra et al., 2013; Zhao et
al., 2014), suspended sediment dynamics (D’Sa et al., 2007),
CDOM distribution and carbon flux (Joshi and D’Sa, 2015;
Joshi et al., 2017a), and phytoplankton biomass and primary
production (Uitz et al., 2010; Matsumoto et al., 2014), as well
as to evaluate the effects of climate change on exotic marine
biota (Liu et al., 2006; Castillo and Lima, 2010; Cavanaugh
et al., 2011; Pu and Bell, 2017).

In recent years, both empirical and semi-analytical models
have been frequently used to link satellite observations and
in-water properties, such as IOPs, vertical diffuse attenuation
coefficients (Kd), suspended particulate matter (SPM) con-
centrations, CDOM, pigment concentrations, phytoplankton
cell counts and cell size, and particle size (D’Sa et al., 2003,
2006, 2007; Pan et al., 2010; Chen et al., 2013; Brewin et
al., 2015; Joshi et al., 2017b). Empirical relationships are
mathematical formulations (e.g., simple or multiple regres-
sions) that directly link water-leaving measurements to the
parameter of interest in surface waters. They are simple in
nature, easy to implement, and do not require deep under-
standing of the underlying relationships between light and
water properties. Because the performance of empirical rela-
tionships is uncertain outside the range of observations that
are used to develop them, their applicability is doubtful and

may cause significant errors if used in waters with different
optical properties. In contrast, semi-analytical models, which
are based on radiative transfer theory, invert Rrs using a suite
of analytical and empirical relationships to derive the wa-
ter IOPs (absorption and backscattering coefficients of water
constituents; Lee et al., 2002). Because they solely depend
on water-leaving radiance and require less information about
in-water bio-optical properties, they have better applicabil-
ity and accuracy compared to empirical methods in a vari-
ety of waters (IOCCG, 2006). However, a major drawback
is that the retrieval of IOPs for individual water components
is strongly dependent on the performance of the respective
empirical models.

To some extent, this drawback is minimized in a multiband
quasi-analytical algorithm (QAA) for optically deep waters
(Lee et al., 2002). This algorithm analytically decomposes
total non-water absorption coefficients (atnw) for combined
CDOM and suspended sediments (adg) and phytoplankton
(aφ) using their spectral information. The QAA has been im-
proved (e.g., QAA-v5 and QAA-v6) for better performance
in turbid coastal waters (Lee et al., 2009). Several studies
have also contributed to the standard QAA with regional
and/or global modifications in a variety of waters such as the
turbid waters of the Mississippi and Atchafalaya River sys-
tem (Zhu et al., 2011), coastal waters of the South China Sea
(Dong et al., 2013), and inland waters of the USA and China
(Li et al., 2013). A large number of studies have evaluated the
standard QAA in different regions (e.g., turbid inland wa-
ters of northeast China, shallow ponds of the northwestern
Mississippi, Lake Taihu, Yellow Sea, East China Sea, Arc-
tic, and low-latitude oceans) with acceptable performance in
coastal and oceanic waters, but decreasing accuracy towards
CDOM-rich and sediment-rich estuarine and inland waters
(Lee et al., 2010; Qing et al., 2011; Zhu et al., 2011; Mishra et
al., 2013; Mitchell et al., 2014; Zheng et al., 2014; Pitarch et
al., 2016). Several factors could be responsible for the QAA’s
poor performance in shallow waters, including the follow-
ing: (1) the empirical relationships of QAA were designed
using field observations in coastal and oceanic environments
and may not be suitable for the optically deep estuarine and
nearshore waters; and (2) a majority of empirical models of
the standard QAA use Rrs at blue wavelengths (e.g., 443 and
490 nm). However, it is well known that satellite products
suffer from large errors at short wavelengths due to uncer-
tainties in atmospheric correction, especially in coastal wa-
ters. This suggests the need for an estuarine-specific tuning
of the QAA and its evaluation and application to newer ocean
color satellite sensors.

In this study, we present a tuned multiband quasi-
analytical algorithm (QAA-V) that is optimized primarily
for the Visible and Infrared Imaging Radiometer Suite (VI-
IRS) ocean color sensor and calibrated for various other
ocean color sensors, such as Sentinel-3 Ocean and Land
Colour Instrument (Sentinel-3 OLCI), MODerate resolution
Imaging Spectroradiometer (MODIS Aqua), MEdium Res-
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olution Imaging Spectroradiometer (MERIS), Sea-viewing
Wide Field-of-view Sensor (SeaWiFS), and land-observing
sensors, such as Landsat 8 Operational Land Imager
(Landsat 8 OLI) and Sentinel-2 Multispectral Instrument
(Sentinel-2 MSI), to estimate IOPs in shallow estuarine and
nearshore waters. First, synthetic data were generated using
Hydrolight® simulations (Mobley and Sundman, 2013) for
highly absorbing and scattering waters and used collectively
with estuarine in situ observations to update coefficients
for the semi-analytical and empirical models of the stan-
dard QAA processing chain. The algorithm’s performance is
then evaluated on three datasets: (1) a Hydrolight-simulated
dataset, (2) a subset of the well-known NASA bio-Optical
Marine Algorithm Dataset (NOMAD), and (3) field observa-
tions that were obtained in various estuaries on the US East
Coast and in the Gulf of Mexico. The QAA-V performance
was compared to the QAA-v6, which was mainly tuned to
improve QAA’s performance in turbid coastal waters. Addi-
tionally, using a linear backscattering–SPM relationship, the
QAA-V’s applicability to VIIRS and estuarine waters is an-
alyzed for SPM of various coastal sites, including Galveston
Bay (USA). Finally, as a case study, VIIRS-derived SPM im-
agery of Galveston Bay was obtained following Hurricane
Harvey to assess SPM dynamics in the bay and their impact
on the coastal ocean.

2 Materials and methods

2.1 Data for QAA-V

Three datasets were used for tuning and evaluating QAA-V’s
performance in a variety of waters ranging from highly tur-
bid estuarine environments to relatively clear shelf waters.
These datasets include (1) a synthetic dataset, (2) NASA’s
bio-optical marine algorithm dataset, and (3) an estuarine
dataset. The availability of numerous observations represent-
ing the true state of natural systems is the primary require-
ment for any algorithm development and validation analy-
sis. The Hydrolight® radiative transfer model (Mobley and
Sundman, 2013) was used to generate a large set of syn-
thetic data (HL; N = 561) for tuning and extending QAA-
V’s ability to perform in highly absorbing and highly scat-
tering waters (e.g., turbid estuarine environments). The pro-
cess of generating synthetic data using Hydrolight® simula-
tions was similar to the International Ocean-Colour Coordi-
nating Group report (IOCCG Report 5; IOCCG, 2006) and
is briefly described in Sect. S1 in the Supplement with nec-
essary modifications based on in situ estuarine observations.
The in situ estuarine and nearshore dataset (IES) included
340 concurrent water inherent optical properties (IOPs; e.g.,
absorption and backscattering coefficients) and above-water
Rrs measurements at various locations on the US East Coast
and in the northern Gulf of Mexico (Fig. 1a). Data were com-
piled from NASA’s SeaBASS repository by applying a depth

threshold of 10 m for obtaining measurements in estuarine
and nearshore waters (Werdell et al., 2003). The IES dataset
was further divided into a training set (EcoHAB and Tampa
Bay; N = 121) and a testing set (N = 219) for tuning and
validating QAA-V, respectively (Table 1). NOMAD (NASA
bio-Optical Marine Algorithm Dataset) is a freely available,
high-quality field dataset for ocean color algorithm develop-
ment and validation (Werdell and Bailey, 2005). It includes
IOPs and Rrs collected in waters ranging from oceanic to es-
tuarine environments, but mostly in shelf waters around the
world. We extracted a subset (N = 547) containing complete
observations of IOPs and Rrs (Fig. 1b). Data distributions of
synthetic data clearly showed the representation of CDOM-
rich and sediment-rich waters, whereas phytoplankton ab-
sorption was of secondary importance as generally observed
in several estuarine environments (Fig. 2). The training and
testing data (HL and IES datasets) ranged from approxi-
mately 0.1 to 7 m−1 for the CDOM absorption coefficient
(ag443), 0.05 to 4.5 m−1 (detritus+minerals or non-algal
particles) for the absorption coefficient (aNAP443), 0.05 to
2 m−1 for the phytoplankton absorption coefficient (aφ443),
and 0.04 to 0.2 m−1 for the particle backscattering coefficient
(bbtnw532; Fig. 2).

2.2 Data for Galveston Bay

Galveston Bay, the seventh-largest estuary in the United
States (area=∼ 1600 km2; mean depth=∼ 2 m), is located
along the upper coast of Texas in the northern Gulf of Mex-
ico (Fig. 1c). The Trinity River is the major source of fresh
water (∼ 50 %) to the bay followed by the San Jacinto River
(∼ 30 %) and local watersheds (∼ 20 %; Guthrie et al., 2012;
Lucena and Lee, 2017). With the busiest petrochemical port
in the US, Galveston Bay experiences frequent oil spills;
∼ 3500 oil spill (∼ 416 000 gallons) incidences were re-
ported between 1998 and 2009 (Lester and Gonzalez, 2011).
The bay is connected to the Gulf of Mexico via three passes:
Bolivar Roads Pass, Rollover Pass, and San Luis Pass. Galve-
ston Bay can be divided into four sections: (1) Trinity Bay
(TB), (2) upper Galveston Bay (UGB), (3) lower Galveston
Bay (LGB), and (4) East Bay (EB; Fig. 1c).

Surface water samples were collected at several stations
during two field surveys on 29 September 2017 and 29–
30 October 2017 as part of a larger study to investigate the
aftereffects of Hurricane Harvey (25–29 August 2017) on the
water quality of Galveston Bay. Available measurements of
suspended particulate matter (SPM) concentration were uti-
lized for evaluating the applicability of QAA-V in estuar-
ine environments. Samples were filtered using precombusted
and pre-weighed 47 mm, 0.7 µm porosity Whatman GF/F fil-
ters for SPM concentrations (Neukermans et al., 2012). An
analytical scale with an accuracy of ±0.1 mg was used to
measure the mass of SPM. Profiles of bbtnw were obtained at
each station using the WETLabs VSF-3 (470, 530, 670 nm)
and ECO BB (532 nm) backscattering sensors (D’Sa et al.,
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Table 1. In situ estuarine and nearshore dataset (IES: IOPs and Rrs matchups) compiled from the SeaBASS with locations, possessing status,
project instructors, and the purpose in this analysis. Apalachicola Bay, Barataria Bay, and Galveston Bay datasets were collected by the
authors during various field surveys.

Experiment Location
(Depth< 10 m)

N Processing
status

Investigator(s) Purpose for
QAA-V

SWFL Southwest Florida 5 Final Chuanmin Hu Validation
EcoHAB Southwest Florida 74 Final Kendall Carder Tuning
Chesapeake Bay
Light Tower

Chesapeake Bay 8 Preliminary Richard Zimmermann &
Glenn Cota

Validation

GEO-CAPE Chesapeake Bay 19 Final Richard Miller Validation
Tampa Bay Tampa Bay 47 Final Chuanmin Hu Tuning
Lake Erie Lake Erie 3 Preliminary Rick Gould Validation
Horn Island Horn Island 6 Preliminary Bob Arnone Validation
CoJet-4,5,6 Mobile Bay 18 Preliminary Don Johnson Validation
Cojet-7 Mississippi Sound 6 Preliminary Rick Gould Validation
BluCAR Apalachicola Bay 32 Final Eurico D’Sa &

Christopher Osburn
Validation

BluCAR Barataria Bay 31 Final Eurico D’Sa &
Christopher Osburn

Validation

Bio-optics Chesapeake Bay 43 Final Alex Gilerson Validation
SFP Florida Bay 8 Final Frank Muller-Karger Validation
Hurricane Harvey Galveston Bay 27 Final Eurico D’Sa &

Ishan Joshi
Validation

GEOCAPE
GOMEX

Northern Gulf of
Mexico shelf

13 Final Antonio Mannino &
Michael Novak

Validation

2006), and surface values were averaged for depth < 1 m.
Above-water measurements of water-surface radiance (Lw,
W m−2 nm−1 sr−1, nadir= 40–50◦, azimuth= 90–135◦), sky
radiance (Lsky, W m−2 nm−1 sr−1, zenith= 40–50◦, az-
imuth= 90–135◦), and reference plate radiance (Lplate,
W m−2 nm−1 sr−1, nadir= 0◦, azimuth= 90–135◦) were
collected using a GER1500 512iHR spectroradiometer under
clear-sky conditions (Mobley, 1999). The spectroradiometer
was set to provide an average of three internal scans for con-
sidering the variability in reference and target conditions.
Hence, the final spectrum was an average of nine spectra
(three replicates with three internal scans per measurement)
at each station (Joshi et al., 2017a). The above-water remote
sensing reflectance (R0+

rs , unit: sr−1) was obtained using the
following equations (Mueller et al., 2003):

Downwelling irradiance (Ed) (Wm−2 nm−1 sr−1)

= π ×
Lplate

ρplate
, (1)

Above-water remote sensing reflectance (R0+
rs ) (sr−1)

=
Lw− ρ×Lsky

Ed
−Rrs(residual), (2)

where ρplate is reference plate reflectance (99 %) and
Rrs(residual) is attributed to residual sky radiance, which was
taken as R0+

rs (950 nm; Mobley, 1999).
In addition, discharge data were acquired from USGS

river gauge sites for the Trinity River (Romayor site USGS

08066500 and Wallisville site USGS 08067252) and at the
San Jacinto River (the eastern flank USGS 8070200 and the
western flank USGS 8068090) for examining variations in
freshwater flows after Hurricane Harvey. Wind speed and di-
rection were acquired from NOAA Eagle Point station (ID-
8771013) in Galveston Bay. Level-1 VIIRS (nine images)
and MODIS Aqua (one image) products were obtained from
NASA’s Ocean Color data archive (OBPG, NASA), includ-
ing three images during field surveys in Galveston Bay. VI-
IRS imagery was not available on 29 September 2017 corre-
sponding to the first field survey; hence, the next-day image
(30 September 2017) was used in this analysis. The Sentinel-
3 OLCI Level-2 image was downloaded from the Earth Ob-
servation Portal (EUMETSAT) and the Landsat 8 OLI Level-
1 image was downloaded from the USGS Earth Explorer for
29 October 2017.

2.3 QAA processing chain

The underlying structure of QAA-V is similar to the stan-
dard quasi-analytical algorithm (QAA; Lee et al., 2002) and
its modifications (e.g., QAA-v5 and QAA-v6) suitable to
coastal and open oceans (Lee et al., 2007, 2009). The pro-
cessing pathway of QAA-V is illustrated in Table 2 and
briefly mentioned here with justifications for necessary mod-
ifications. The QAA and its updated versions rely upon the
principle that the spectral remote sensing reflectance just be-
low the water surface (R0−

rs ) is a function of the spectral
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Table 2. Processing steps of QAA-V for obtaining total absorption (at) and backscattering coefficients (bbt). Levels 0 and 1C were adopted
from Lee et al. (2002), whereas 1A and 1B were modified in this study∗. Level 1C1 is adopted from D’Sa et al. (2007).

Level Parameter Model Type

0 R0−
rs (λ) R0−

rs (λ)=
R0+

rs (λ)
0.52+0.17×R

0+
rs (λ) Semi-analytical

1A u(λ) u(λ)=
−g0+[g

2
0+4×g1×R

0−
rs (λ)]

0.5

2×g1
Semi-analytical

ρ = log10

(
R0−

rs (λ0)

R0−
rs (671)

)
g0 = 0.0788 and g1 = 0.2379 for ρ < 0.25
g0 = 0.0895 and g1 = 0.1247 for ρ ≥ 0.25

1B atnw (λ0) atnw (λ0)=

{
10
(
0.139−1.788×ρ+0.490×ρ2)

if ρ < 0.25

10
(
0.406−2.940×ρ+0.928×ρ2)

if ρ ≥ 0.25

}
Empirical

λ0 = 551 or 555 ρ = log10

(
R0−

rs (λ0)

R0−
rs (λ1)

)
λ1 = 671

1C bbtnw (λ0) bbtnw (λ0)=
(atnw(λ0)+aw(λ0))×u(λ0)

1−u(λ0)
− bbw(λ0) Analytical

0

1 η η =−0.566− 1.395× log10(bbtnw555) Empirical

2 bbt(λ) bbt(λ)= bbw(λ)+ bbtnw (λ0)×
(
λ0
λ

)η
Semi-analytical

3 at(λ) at(λ)= bbt(λ)×
(

1−u(λ)
u(λ)

)
Analytical

SPM models

This study SPM= (103.07× bbtnw532)+ 0.24 Empirical

D’Sa et al. (2007) SPM= (106.93× bbtnw555)+ 0.61 Empirical

Nechad et al. (2010) SPM=
(
Aρ×ρw

1−ρw/Cρ

)
+Bρ ; Empirical

where Aρ = 373.79 mg L−1, Bρ = 1.47 mg L−1, Cρ = 0.1747 for λ= 670 nm

∗ Parameters g0 = 0.0788 and g1 = 0.2379 were derived with HL datasets. λ0 = 551 or 555 nm; R0−
rs : remote sensing reflectance just below water surface; atnw: total

non-water absorption coefficient; bbtnw: total non-water backscattering coefficient; aw: water absorption coefficient; bbw: water backscattering coefficient; η:
power-law exponent (D’Sa et al., 2007); SPM: suspended particulate matter concentration. Note: in the SPM model comparison, input backscattering values are
obtained from QAA-V, whereas surface reflectance (ρ) is obtained by multiplying π and above-surface remote sensing reflectance (R0+

rs ).

backscattering and absorption coefficients (Gordon et al.,
1988), and it can be modeled using the following equation
(Table 2, Level 1A):

R0−
rs (λ) (sr−1)= g0× u(λ)+ g1× [u(λ)]2,

u(λ)=
bbt (λ)

at (λ)+ bbt (λ)
, (3)

where at and bbt are the total absorption coefficient and to-
tal backscattering coefficient (m−1), respectively. R0−

rs can
be easily computed from above-surface remote sensing re-
flectance (R0+

rs ) using the following relationship (Lee et al.,
1999; Table 2, Level 0).

R0−
rs (λ) (sr−1)=

R0+
rs (λ)

(0.52+ 1.7×R0+
rs (λ))

(4)

The coefficients g0 and g1 are empirically derived parameters
related to the directional nature of the upwelling light field

(Q) and f (well known as the f/Q term). These coefficients
depend on sun angle, viewing geometry, wind speed, and
the bio-optical state of natural waters and vary with phase
function (Morel and Gentili, 1991, 1993, 1996). Thus, ap-
propriate coefficients are needed for different aquatic envi-
ronments (Lee et al., 2002). For example, the values of g0
and g1 were previously suggested as 0.0949 and 0.0794, re-
spectively, for oceanic waters (Gordon et al., 1988). Later,
better approximations of g0 (0.0895) and g1 (0.1247) were
proposed for reflective coastal waters using radiative trans-
fer models on simulated data (Lee et al., 1999). Average
values of g0 and g1 from Gordon et al. (1988) and Lee et
al. (1999) were also used for both coastal and oceanic wa-
ters (Lee et al., 1999). The synthetic data for obtaining these
historic values of g0 and g1 were generated using case-1 ra-
diative transfer models. As the first modification, we updated
these coefficients using Hydrolight® simulations with a four-
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Figure 1. (a) In situ dataset (IES) representing estuarine and
nearshore waters (< 10 m) on the US East Coast and in the northern
Gulf of Mexico (N = 340), (b) NOMAD (N = 547), and (c) Galve-
ston Bay, Texas (USA). GIWW: Gulf Intracoastal Waterway.

component case-2 model (Sect. S1) because a shallow water
environment was the main focus of this study. In addition, it
has been previously suggested that molecular scattering may
primarily contribute to Rrs, especially in the blue and green
wavelengths in oceanic waters. However, the phase function
effect of water molecules could be much smaller than that of
particles in nearshore and estuarine waters. Hence, we have
avoided separating Eq. (3) as is usually done to account for
the phase function effects of individual backscattering con-
tributors (Lee et al., 2013; Zheng et al., 2014).

Next, QAA-v6 uses a set of empirical models (e.g., Eq. 5)
based on above-surface Rrs threshold (0.0015 sr−1) to esti-
mate the total non-water absorption coefficient at a reference
wavelength in coastal and oceanic waters (Table 2, Level
1B):

if R0+
rs (670) < 0.0015sr−1

atnw (λ0)= 10
(
−1.146−1.366×x−0.469×x2)

,

where x = log10

 R0−
rs (443)+R0−

rs (490)

R0−
rs (λ0)+ 5×R0−

rs (670)× R0−
rs (670)
R0−

rs (490)

 ,
otherwise, atnw (λ1)= 0.39×

[
R0+

rs (670)

R0+
rs (443)+R0+

rs (490)

]1.14

, (5)

where atnw is the total non-water absorption coefficient
(m−1), λ0 = 555, and λ1 = 670 nm.

We avoided using blue wavelengths in our empirical
models as blue bands, especially 443 nm or lower, suffer
from large errors in atmospheric correction due to the high
abundance of CDOM, suspended particles, and absorbing
aerosols in a coastal environment. In contrast, the green to
red band ratio (GRBR) can be used for estimating the ab-
sorption coefficient of an individual water constituent with
the primary condition of their dominance in the study re-
gion. The GRBR has been used, for example, to monitor
water constituents in various estuarine and coastal waters,
e.g., ag355 in Barataria Bay, USA (Joshi and D’Sa, 2015),
ag412 in Apalachicola Bay, USA (Joshi et al., 2017a), adg412
in Galveston Bay, USA (D’Sa et al., 2018), suspended par-
ticulate matter (D’Sa et al., 2007), and chlorophyll index
(harmful algal bloom) in the northern Gulf of Mexico (Qi et
al., 2015). Estuarine waters are generally characterized by a
high abundance of CDOM, mineral particles, or both and are
thus known to have strong light absorption towards shorter
wavelengths, sometimes even in the green region. In con-
trast, the light absorption in the red region usually remains
minimal for CDOM and mineral particles. As a result, the
green band can be considered as a pilot band to capture vari-
ations in dissolved or mineral particle absorption, whereas
the red band is a reference band. Hence, small variations
in the GRBR are suitable to capture large variations in ab-
sorption at shorter wavelengths due to the exponential na-
ture of CDOM and particle absorption. A similar band ra-
tio (RGCI; red to green chlorophyll index) has been used in
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Figure 2. Data statistics and distribution of water IOPs, (a) ag443, (b) aNAP443, (c) aφ443, and (d) bbtnw532 for synthetic data (HL,
Hydrolight®; blue), in situ estuarine and nearshore data (IES; green), and the NOMAD (grey). The range of QAA-V indicates data that are
used to update QAA-V for shallow waters (e.g., HL and IES).

a semi-analytical approach to obtain chlorophyll-a concen-
trations for estimating phytoplankton absorption aφ670 and
subsequently atnw670 in the productive waters of Tampa Bay,
USA (Le et al., 2013). The red to green band ratio (RGBR)
works well to quantify variations in chlorophyll concentra-
tions, especially in phytoplankton-dominated waters. There-
fore, the GRBR (or RGBR) can be overall associated with
the dominant water constituent in the study area. However,
optically active water constituents collectively contribute to
total light absorption, and hence these band ratios can also be
used for the remote estimation of atnw at green wavelengths,
especially in estuarine waters where variations in total ab-
sorption coefficients are often noticeable due to a high abun-
dance of one or more (e.g., CDOM and particles) water com-
ponents. A ratio ofRrs at the red and green wavelengths (e.g.,
640/645 and 555 nm for MODIS) was previously used in the
standard QAA to improve the estimates of atnw at a refer-
ence wavelength (e.g., 555 nm for MODIS) in turbid waters,
which worked reasonably in coastal waters (Lee et al., 2002;
Chen and Zhang, 2015). The processing of the high-spatial-
resolution I-1 band (640 nm; spatial resolution: 375 m) is not
supported by NASA’s SeaDAS tool; therefore, our analysis
was limited to the available ocean color bands (M1 to M5;
spatial resolution: 750 m).

Additionally, the selection of the reference wavelength in
Eq. (5) is another important factor affecting the retrieval of
IOPs in QAA. The use of a reference wavelength at red wave-
lengths (e.g., > 600 nm) was suggested for relatively turbid
coastal waters where particulate and dissolved absorption is
much lower than water absorption (Lee et al., 2002; Aurin
and Dierssen, 2012). We used 555 nm as a reference wave-

length for three reasons: (1) there is a lack of absorption mea-
surements at red wavelengths (e.g., IES dataset) to tune em-
pirical models (Table 2, Level 1B); (2) the use of a red ref-
erence wavelength would likely deteriorate the estimations
in blue wavelengths due to errors in spectral extrapolation
corresponding to the empirical nature of the backscattering
power-law exponent, η; and (3) a strong relationship between
the green to red band ratio and total non-water absorption at
555 nm is observed in this study.

Once u(λ0) is obtained as the positive root of Eq. (3) using
R0−

rs and the coefficients g0 and g1, the backscattering coef-
ficient at a reference wavelength (bbtnw(λ0)) can be easily
obtained with u(λ0), atnw(λ0), and the following analytical
model (Table 2, Level 1C0):

bbtnw (λ0) (m−1)=

(
u(λ0)

1− u(λ0)

)
× (atnw (λ0)+ aw (λ0))

− bbw (λ0) , (6)

where aw and bbw are water absorption and backscattering
coefficients, respectively. The spectral distribution of the par-
ticulate backscattering coefficient (bbtnw) can be modeled us-
ing the power-law model (Lee et al., 2002; Table 2, Level
1C2):

bbt (λ) (m−1)= bbw (λ)+ bbtnw (λ0)×

(
λ0

λ

)η
, (7)

where η is the spectral shape of bbtnw distribution. The stan-
dard QAA-v6 uses the following empirical model to obtain
η.
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Table 3. The calibration coefficients for sensor-specific QAA tuning. λ0 is a sensor-specific reference wavelength.

Sensor ρ = log10

(
R0−

rs (λ0)
Rrs

0−
(λ1)

)
atnw (λ0)= 10

(
a+b×ρ+c×ρ2)

(Level 1B, Table 2)

ρ < 0.25 ρ ≥ 0.25 and ρ ≤ 0.65

a b c a b c

VIIRS λ0 = 551 nm & λ1 = 671 nm 0.139 −1.788 0.490 0.406 −2.940 0.928
MODIS Aqua λ0 = 555 nm & λ1 = 667 nm 0.091 −1.800 0.560 0.275 −2.674 0.813
Sentinel-3 OLCI λ0 = 560 nm & λ1 = 674 nm 0.176 −1.830 0.528 0.397 2.940 0.800
MERIS λ0 = 560 nm & λ1 = 665 nm 0.081 −1.868 0.688 0.314 −2.733 0.713
SeaWiFS λ0 = 555 nm & λ1 = 670 nm 0.128 −1.792 0.505 0.276 −2.742 0.842
Sentinel-2 MSI λ0 = 560 nm (band 3) & 0.0814 −1.868 0.688 0.223 −2.732 0.740

λ1 = 665 nm (band 4)
Landsat 8 OLI λ0 = 560 nm (band 3) & −0.087 −1.900 0.952 0.057 −2.667 0.753

λ1 = 655 nm (band 4)

η = 2×

1− 1.2× e

(
−0.9×R

0−
rs (443)

R
0−
rs (555)

) (8)

The variation in the power-law exponent η depends on water
properties and the size of particles according to Mie theory
and it is extremely difficult to retrieve η fromRrs in nearshore
waters (Aurin and Dierssen, 2012). Thus, we adopted a dif-
ferent approach of obtaining η from bbtnw555 with a linear
relationship that was formulated using field observations in
the turbid waters near the Mississippi River delta (D’Sa et
al., 2007; Table 2, Level 1C1).

η =−0.566− 1.395× log10(bbtnw555) (9)

The spectral distribution of total absorption coefficients was
then obtained using bbtnw and u (Table 2, Level 1C3).

at (λ) (m−1)=

(
1− u(λ)
u(λ)

)
× bbt (λ) (10)

To extend and evaluate the applicability of estuarine-specific
QAA tuning, it was further applied to various ocean color
(Sentinel-3 OLCI, MODIS Aqua, MERIS, and SeaWiFS)
and land-observing sensors (Landsat 8 OLI and Sentinel-
2 MSI). The calibration coefficients for obtaining the total
non-water absorption coefficient at a reference wavelength
(atnw(λ0); Level 1B in Table 2) are given in Table 3.

2.4 Atmospheric correction of satellite imagery

Level-1 satellite imagery was corrected for the atmosphere
using the SeaDAS 7.4 image processing tool as described
previously (Joshi et al., 2017a), and mean values of a 3× 3
pixel box centered at a station location were considered as
reasonable satellite matchups for the field measurements.

In addition, in situ Rrs values were matched to the central
wavelengths of spectral bands using the spectral response
functions of respective satellite sensors prior to the sensor-
specific tuning and validation:

RrsRSR (sr−1)=

∫ λ2
λ1

RSR(λ)×Rrsinsitu(λ)dλ∫ λ2
λ1

RSR(λ)dλ
, (11)

where RSR is the relative spectral response for the satellite
sensor, λ1 is the lower bound of a spectral band, and λ2 is the
upper bound of a spectral band.

An iterative NIR atmospheric correction scheme was pre-
viously evaluated for estuarine environments (Bailey et al.,
2010; Werdell et al., 2010; Joshi et al., 2017a); however, it
yielded negative Rrs at blue wavelengths and atmospheric
correction failure at several pixels in Galveston Bay. In com-
parison, the errors in atmospheric correction were consid-
erably reduced with the MUMM NIR correction as it was
designed for low to moderately turbid waters (Ruddick et
al., 2006; Novoa et al., 2017). Furthermore, the validation
of atmospheric-corrected VIIRS imagery showed reasonable
performance of the MUMM atmospheric correction scheme
during both field campaigns in Galveston Bay (Table 4). The
MRE, which was relatively higher at the blue wavelengths,
was greatly reduced towards the green and red wavelengths.
Thus, the success of the atmospheric correction procedure
was decided based on the green and red bands, since only
these bands were used to tune QAA in this study. However,
the observed large errors at other wavelengths (e.g., blue
bands) were likely due to the high abundance of CDOM and
particles in the study region and the aerosol model selection
in the atmospheric correction procedure (Minu et al., 2014).
The time difference between field and satellite measurements
resulted in an error enhancement at longer wavelengths with
relatively smaller errors in October (difference of 0 days) and
larger errors in September (difference of +1 days; Table 4).

Biogeosciences, 15, 4065–4086, 2018 www.biogeosciences.net/15/4065/2018/



I. D. Joshi and E. J. D’Sa: An estuarine-tuned quasi-analytical algorithm 4073

Table 4. The performance evaluation of the atmospheric correction procedure (MUMM) in Galveston Bay (USA) during two field campaigns
(29 September and 29–30 October 2017). The MRE remained relatively lower than the blue for the green and red bands (bold fonts).

Image date Difference of days Number Absolute mean relative error (MRE; %)

for field observation of stations 410 nm 443 nm 486 nm 551 nm 671 nm All bands

30 Sep 2017 +1 9 114.7 40.5 19.8 10.9 18.1 40.8
29 Oct 2017 0 10 55.8 12.4 5.1 6.3 8.9 17.7
30 Oct 2017 0 7 139.6 42.1 21.5 7.5 7.6 43.7

Overall, low MRE in the green and red wavelengths indi-
cated the usefulness of the MUMM atmospheric correction
for investigating bio-optical properties with the QAA-V pro-
cessing chain and VIIRS ocean color data in Galveston Bay
(USA).

2.5 Statistical analysis

The algorithm’s performance and atmospheric-corrected VI-
IRS imagery were evaluated using coefficients of deter-
mination (R2), root mean square error (RMSElog10), bias
(Biaslog10), and absolute mean relative error (MRE).

Biaslog10 =
1
n
×

n∑
i=1

[
log10(yi)− log10(xi)

]
(12)

RMSElog10 =

√√√√1
n
×

n∑
i=1

[
log10(yi)− log10(xi)

]2 (13)

MRE (%)=
100
n
×

n∑
i=1

[∣∣∣∣yi − xixi

∣∣∣∣] (14)

R software was used to generate synthetic IOPs for the
Hydrolight® case-2 model and the statistical analysis pre-
sented in this study.

3 Results

3.1 Modifications to standard QAA

A new set of g0 (0.0788) and g1 (0.2379) obtained using
Hydrolight-simulated IOPs andRrs is proposed for the highly
attenuating waters of this study. These coefficients showed
a notable departure from the quadratic relationship, espe-
cially in highly scattering waters when compared to Gordon
et al. (1988) and Lee et al. (1999, 2002; Fig. 3a). We used the
historical values g0 (0.0895) and g1 (0.1245) for less reflec-
tive nearshore and shelf waters (i.e., threshold ρ ≥ 0.25) in
the validation analysis (Fig. 3b). Overall, the threshold-based
selection of the u vs. R0−

rs model showed a valid retrieval
of u (≈ bbt/(at+ bbt)) as seen when u was analytically used
to obtain the total absorption coefficient (at555) and the to-
tal backscattering coefficients (bbt555; HL dataset) and vice
versa (Fig. 4a, b; Table 2, Level 1A).

The performance of QAA-V was largely dependent on the
estimation of the total non-water absorption coefficient (atnw)
in Level 1B (Table 2). In this study, the empirical model of
standard QAA-v6 (Eq. 5) was replaced by a tuned empirical
power-law relationship using a training set (IES; N = 121;
Table 1) of in situ observations and Hydrolight® synthetic
data (HL; N = 561):

atnw (λ0)=

{
10(0.139−1.788×ρ+0.490×ρ2) if ρ < 0.25
10(0.406−2.940×ρ+0.928×ρ2) if ρ ≥ 0.25

}
,

ρ = log10

(
R0−

rs (λ0)

R0−
rs (λ1)

)
, (15)

where atnw is the total non-water absorption coefficient, λ0 =

551 or 555 nm, and λ1 = 671 nm.
A threshold value of 0.25 was set for ρ to merge the

HL and IES datasets excluding the NOMAD (Fig. 3b).
The atnw555 (ρ > 1.0) nearly reached the lower limit
close to zero for oceanic waters, likely due to low con-
centrations of reflecting and absorbing materials. Thus,
we suggest the upper threshold of ρ = 0.65 beyond
which Level 1B fails and overestimates water atnw(λ0).
Likewise, negative ρ values of synthetic data repre-
sented CDOM-rich waters with very strong absorption
even at green wavelengths (e.g., 555 nm). For HL data,
the modeled atnw555 showed a reasonable performance
of the green to red band ratio model (MRE= 16.3 %,
biaslog10 =−0.0208, RMSElog10 = 0.0963 m−1, N = 561;
Fig. 4c). The performance of the empirical model, how-
ever, showed a significant difference within the IES train-
ing data (R2

= 0.90, MRE= 21 %, biaslog10 =−0.0015,
RMSElog10 = 0.12 m−1, N = 120) and testing data (R2

=

0.72, MRE= 34 %, biaslog10 =−0.0294, RMSElog10 =

0.19 m−1, N = 209; Fig. 4d).

3.2 Comparison of QAA-V with the standard QAA-v6

The QAA-v6 algorithm was applied separately on HL syn-
thetic data and IES field observations for a direct compar-
ison with QAA-V in retrieving optical properties in estu-
arine waters. Figure 4e shows the performance of QAA-
v6 in estimating the total non-water absorption coefficient
at 555 nm (atnw555) with HL synthetic data. In comparison
to QAA-V, the QAA-v6 showed an obvious underestima-
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Figure 3. (a) u (= bb/(a+ bb)) vs. R0−
rs for various studies (this study: orange; Lee et al., 1999: blue; Lee et al., 2002: red; Gordon et al.,

1988: black) using HL datasets. (b) The relationship between green to red band ratio and atnw555 for different datasets (HL: blue, IES: green,
NOMAD: grey). Black line shows a threshold to facilitate a smooth transition from in situ to synthetic data in modeling atnw555. A dashed
line separates data with negative ρ.

Figure 4. Validation of R0−
rs vs. u model using HL data for (a) at555 and (b) bbt555. Validation of QAA-V-modeled atnw555 with “true”

atnw555 for (c) the HL synthetic dataset (biaslog10 =−0.0208, RMSElog10 = 0.0963 m−1) and (d) IES dataset (biaslog10 =−0.0294,
RMSElog10 = 0.190 m−1). Validation of QAA-v6-modeled atnw555 with “true” atnw555 for (e) the HL synthetic dataset (biaslog10 =

−0.1180, RMSElog10 = 0.1490 m−1) and (f) IES dataset (biaslog10 =−0.1252, RMSElog10 = 0.278 m−1). Note: the training set includes
EcoHAB and Tampa Bay data (Table 1). IOP measurements of Galveston Bay (this study) are shown with orange hexagons. MRE: absolute
mean relative error (%). TB: Tampa Bay, AB: Apalachicola Bay, BB: Barataria Bay, CB: Chesapeake Bay, FB: Florida Bay, GoM: Gulf of
Mexico, HI: Horn Island, LE: Lake Erie, MS: Mississippi Sound, MB: Mobile Bay, SWFL: southwest Florida, GB: Galveston Bay (Table 1).
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Figure 5. Statistical assessment of QAA-V in comparison to QAA-v6 (updated on May 2015) using synthetic data (HL; a) and estuarine and
nearshore field data (IES; b). Color scheme indicates atnw and bbtnw at 411 nm (dark blue), 443 nm (blue), 489 nm (cyan), 555 nm (green),
and 532 nm (dark green) wavelengths. MRE: absolute mean relative error (%). RMSE and bias are in m−1.

tion at 555 nm, especially for atnw555>∼ 0.3 m−1. Statisti-
cal assessment showed that QAA-V is more accurate than the
QAA-v6 with approximately 83 % less bias, 35 % decreased
RMSE, and 1.5-fold lower MRE (Fig. 5, Sect. S2). For IES
data, the QAA-v6 showed a clear difference with a poor per-
formance at several stations (Fig. 4f) compared to QAA-V
(Fig. 4d). Furthermore, the retrieval errors were large to-
wards the upper and lower ends (e.g., atnw555>∼ 0.3 and
<∼ 0.1 m−1). Overall, the QAA-v6 had an obvious under-
estimation with approximately 75 % greater bias, 31 % in-
creased RMSE, and 2-fold higher MRE than the QAA-V at
555 nm (Fig. 5, Sect. S2).

3.3 Evaluation of QAA-V on synthetic HL data,
NOMAD, and IES data

Hydrolight-simulated case-2 water R0+
rs spectra were fed

into QAA-V to derive atnw and bbtnw at 411, 443, 489,
and 555 nm (Fig. 6). Although a negative bias indicated
an overall underestimation of modeled absorption coeffi-
cient at 555 nm (Fig. 4c), QAA-V performed satisfactorily
in the blue region (Fig. 6a). Furthermore, the modeled atnw
at blue wavelengths showed relatively lower MRE< 13 %
and RMSElog10< 0.075 m−1 despite the errors in modeled
atnw555 at values less than 0.3 m−1 (relatively low CDOM
and mineral particle abundance), indicating the secondary

importance of the green reference wavelengths in trans-
ferring errors to blue wavelengths in QAA-V’s process-
ing chain compared to the red reference wavelengths (Au-
rin and Dierssen, 2012). Similarly, QAA-V also estimated
bbtnw with MRE< 16 % at four wavelengths (Fig. 6b). When
compared to the QAA-v6, QAA-V performed with ap-
proximately 80–90 % lower bias, 30–40 % reduced RMSE,
and 1–2-fold decreased MRE at blue wavelengths (Fig. 5,
Sect. S2). QAA-V’s performance on the standard NOMAD
showed that the MRE was < 30 % for all blue wavelengths
with atnw443 being the best-retrieved parameter (R2

= 0.94,
MRE= 24.3 %, N = 547). However, large errors were ob-
served for atnw< 0.1 m−1 at all wavelengths (Fig. 7a).

For field validation, R0+
rs spectra from 15 experiments of

IES data were fed into QAA-V for obtaining atnw443 and
bbtnw532 (Fig. 7b and c; Table 1). Modeled IOPs showed
overall good results for atnw443 (MRE= 15 % for train-
ing data and 23 % for testing data; Fig. 7b) and bbtnw532
(MRE= 32 % for all data and 26 % for all data except
Apalachicola Bay; Fig. 7c). A further analysis of individ-
ual datasets showed noticeable variations in MRE. For ex-
ample, MRE varied from ∼ 11–24 % among the five best-
performing datasets for estimating atnw443, whereas it varied
from ∼ 40–75 % for three poorly performing datasets with
preliminary processing status (Table 1). On the IES data,
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Figure 6. Validation of QAA-V on synthetic data (HL) for (a) atnw and (b) bbtnw at 411 nm (dark blue), 443 nm (blue), 489 nm (cyan), and
555 nm (green) wavelengths. MRE: absolute mean relative error (%).

Figure 7. Evaluation of QAA-V’s performance on the estuarine and nearshore dataset (IES) for (a) atnw443 and (b) bbtnw532 and on the
NOMADs for (c) atnw at 411 nm (dark blue), 443 nm (blue), and 488 nm (cyan) wavelengths. (d) SPM–bbtnw532 relationship (R2

= 0.89
without outliers) that was formulated based on field observations in Apalachicola Bay, Barataria Bay, and Galveston Bay. (e) A comparison of
the SPM–bbtnw532 relationship in this study (grey triangles) with SPM models from Nechad et al. (2010; blue circles) and D’Sa et al. (2007;
orange squares) and with field observations in AB, BB, and GB (black stars). TB: Tampa Bay, AB: Apalachicola Bay, BB: Barataria Bay, CB:
Chesapeake Bay, FB: Florida Bay, GoM: Gulf of Mexico, HI: Horn Island, LE: Lake Erie, MS: Mississippi Sound, MB: Mobile Bay, SWFL:
southwest Florida, GB: Galveston Bay (Table 1). Training set includes EcoHAB and Tampa Bay datasets. MRE: absolute mean relative error
(%).
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Figure 8. (a) Validation of QAA-V-derived SPM vs. in situ SPM for (b) 30 September 2017 (MRE= 39.9 %, N = 13), (c) 29 October 2017
(MRE= 39.1 %, N = 14), and (d) 30 October 2017 (MRE= 26.6 %, N = 7). Stations for validation analysis (Fig. 8a) are also illustrated in
corresponding SPM maps.

QAA-V showed fewer errors in retrieving water IOPs than
QAA-v6 (Fig. 5, Sect. S2).

3.4 SPM–bbtnw532 relationship and validation

A linear relationship (R2
= 0.89; N = 33) was observed be-

tween bbtnw532 and SPM (Eq. 16; Fig. 7d). It was used for
evaluating the applicability of QAA-V to generate synoptic
maps of SPM using the VIIRS ocean color sensor in estuar-
ine environments.

SPM= 103.07× (bbtnw532)+ 0.24;where bbtnw532
= backscattering coefficient at 532 nm (16)

It is important to note that the backscattering sensor had an
upper threshold of 0.23 m−1 at which the sensor saturated
and failed to detect variability in SPM; however, the linearity
in the SPM–bbtnw532 relationship was assumed beyond the
threshold (0.23 m−1) in this study. The SPM–bbtnw532 rela-
tionship was compared to a similar relationship developed in
turbid coastal waters of the Mississippi River (D’Sa et al.,
2007) and a generic multisensor algorithm (Nechad et al.,
2010) using the IES dataset (Fig. 7e; Table 2). The three al-
gorithms showed quite similar trends despite different water
properties of the IES dataset. When compared to field ob-
servations of SPM in Apalachicola Bay, Barataria Bay, and
Galveston Bay, these algorithms showed good performance
with the lowest error for the single-wavelength generic algo-
rithm of Nechad et al. (2010; MRE= 32.1 %, N = 57) and
the highest error for the SPM–bbtnw555 relationship of D’Sa
et al. (2007; MRE= 38.8 %, N = 57; Fig. 7e).

3.5 Evaluation of QAA-V in a turbid estuarine
environment

The SPM–bbtnw532 relationship in this study was applied
to VIIRS imagery for evaluating satellite-based application
of QAA-V in a turbid estuarine environment (Fig. 8). The
regional SPM–bbtnw532 relationship showed ∼ 35 % over-
all MRE in a satellite–field comparison (Fig. 8a) for Galve-
ston Bay during the two field campaigns (Fig. 8b–d). Both
field and estimated SPM concentrations followed a simi-
lar pattern of high to low values along the north-to-south
transect. A large-to-small error trend from 30 September
(MRE= 39.9 %) to 30 October (MRE= 26.6 %) was simi-
lar to the error trend in the atmospheric correction of the VI-
IRS imagery (Table 4). Based on these results, a sequence
of cloud-free and atmospherically corrected VIIRS imagery
was converted to SPM maps using the QAA-V processing
chain (Table 2) for analyzing post-hurricane SPM dynamics
in Galveston Bay (Fig. 9).

3.6 Extending the QAA-V tuning to various
satellite sensors

The estuarine-specific green to red band tuning was further
applied to evaluate and extend its applicability to past and
present ocean color (e.g., SeaWiFS, MERIS, MODIS Aqua,
and Sentinel-3 OLCI) and land-observing sensors (Landsat
8 OLI and Sentinel-2 MSI; Table 3). The validation analysis
showed a promising performance of QAA-V tuning in ob-
taining the total non-water absorption coefficient (atnw443)
and total-non water backscattering coefficient (bbtnw470) in
the optically complex and shallow waters of Galveston Bay
(Fig. 10). Overall, different satellite sensors showed simi-
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Figure 9. (a) River discharge of the Trinity River at Romayor, Texas (black line) and Wallisville, Texas (blue line); the west flank of the San
Jacinto River (red line) and the east flank of the San Jacinto River (green line). The river discharge at the Wallisville site was not corrected
for the tides. Black bars represent the days of VIIRS satellite imagery for SPM analysis in Galveston Bay. (b–g) Post-hurricane SPM maps
of Galveston Bay. TB: Trinity Bay, UGB: upper Galveston Bay, LGB: lower Galveston Bay, EB: East Bay (Fig. 1c).

lar trends of atnw443 and bbtnw470 along the transect de-
spite having different spectral and spatial sensor resolutions
(Fig. 10I–IV). The MREs were∼ 15, 9, and 12 % for atnw443
retrievals from VIIRS, MODIS A, and Sentinel-3 OLCI sen-
sors, respectively (Fig. 10a–c and I), whereas they were∼ 26,
7, and 22 % for bbtnw470 retrievals on 29 October 2017
(Fig. 10f–h and III). For Landsat 8 OLI, the MREs were
∼ 20 and ∼ 10 % for atnw443 and bbtnw470, respectively, on
29 September 2017 (Fig. 10e, j, II, IV).

4 Discussion

4.1 QAA-V

The standard QAA (Lee et al., 2002) was first tuned with
VIIRS sensor bands as QAA-V and then extended to other
satellite sensors to obtain more accurate estimates of water
IOPs (e.g., total absorption and backscattering coefficients)
in shallow estuarine and nearshore waters. For this purpose,
two modifications were applied to the QAA: (1) the coef-
ficients g0 and g1 of a quadratic model were updated us-
ing Hydrolight® simulations for highly absorbing and highly
scattering waters (Eq. 3, Fig. 3a); and (2) an empirical model
of QAA for obtaining the total absorption coefficient at a ref-
erence wavelength was replaced by a set of empirical mod-
els that were optimized for highly attenuating estuarine and

nearshore waters (Eq. 15, Fig. 3b). The validity of these mod-
ifications is demonstrated in Fig. 4. The updated coefficients,
g0 and g1, showed a significant departure from historical
values (Gordon et al., 1998; Lee et al., 1999, 2002) espe-
cially at green and red wavelengths in highly attenuating wa-
ters. Likewise, these coefficients were updated using a syn-
thetic dataset representing highly attenuating waters and they
may not perform satisfactorily in less reflective nearshore
and coastal environments. This limitation was addressed by
adopting a water-type switching of the u vs. R0−

rs algorithm
based on a green to red band ratio threshold (ρ) in the QAA-
V processing chain (Table 2). The effectiveness of tuning g0
and g1 is also supported by a previous study showing an ap-
proximate 5-fold bias reduction in obtaining total non-water
IOPs at 440 nm (Aurin and Dierssen, 2012).

Overall, the negative bias for the HL datasets indicated
that the threshold-based empirical models underestimated
atnw555; however, a major error in the model performance
was observed at the lower end of the absorption of values,
likely for two reasons: (1) the failure of the threshold (ρ) in
providing a smooth switching of empirical relationships be-
tween the highly absorbing and scattering waters (synthetic
HL dataset) and estuarine and nearshore waters (IES dataset;
Fig. 4b); and (2) the unsuitability of the empirical relation-
ship for some Rrs spectra in the HL synthetic data based on
the green to red band ratio (e.g., atnw555< 0.3 m−1; Fig. 4a).
In contrast, both empirical relationships worked reasonably
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Figure 10. Application of sensor-specific QAA-V tuning to obtain maps of atnw443 using (a) VIIRS, (b) MODIS Aqua, and (c) Sentinel-3
OLCI on 29 October 2017 and (d) VIIRS and (e) Landsat 8 OLI on 30 September and 29 September 2017, respectively. The validation of
these maps with the field observations along the transect (St. 1 to St. 14) is shown in (I) for Fig. 8a–c and in (II) for Fig. 8d and e. The maps of
bbtnw470 were obtained similarly for (f) VIIRS (29 October 2017), (g) MODIS Aqua, (h) Sentinel-3 OLCI, (i) VIIRS (30 September 2017),
and (j) Landsat 8 OLI (29 September 2017) with their validation results in (III) and (IV). Parameter values beyond the upper limit of tuned
QAA (ρ > 0.65) are shown masked in white.

well in providing a smooth transition from nearshore waters
to the highly turbid and highly absorbing waters of the IES
data (Fig. 4b). However, the large differences within an IES
dataset (e.g., training data and test data) could be explained
by the processing status of different individual experiments
in the IES dataset (Table 1). Training data included Rrs mea-
surements in the final processing status from two well-known
experiments, namely the EcoHAB (N = 74) and Tampa Bay
monitoring programs (N = 47; Table 1). Individual absolute
mean relative errors (MREs) for these data are 24 and 16 %,
respectively. In contrast, few datasets used in the testing set
were in the preliminary processing stage with MRE> 35 %
(e.g., Chesapeake Bay Light Tower, Horn Island, Cojet 7, and
Lake Erie).

The validation of QAA-V in a variety of waters yielded
reasonable performance as shown in Figs. 6 and 7. For
the HL dataset, an error difference (∼ 2 %) between atnw
(Fig. 6a) and bbtnw (Fig. 6b) could be associated with er-
rors in Levels 0 and 1A of the QAA processing chain (Ta-
ble 2). The effect of this systematic error (∼ 1–2 %) is also
present in the estimates of backscattering coefficients at blue
wavelengths; this could be due to uncertainties in various pa-
rameters of the semi-analytical power-law model such as the
power-law exponent η (Table 2; Level 1C1). It has previously
been shown that η is important for obtaining bbt and its tun-
ing can be responsible for an approximate 4-fold decrease
in the percentage difference for bbt440 in estuarine waters
over QAA’s η model (Eq. 8; Aurin and Dierssen, 2012). As
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we used a linear model based on bbtnw(λ0) for η (D’Sa et
al., 2007), the modeled backscattering coefficient may suffer
from errors due to uncertainties in the empirical estimation of
the power-law exponent. η does not play any role in retriev-
ing bbtnw(λ0), and hence errors associated with η should not
affect modeled bbtnw(λ0). However, the errors in ηmay affect
the retrieval of bbtnw at other wavelengths (e.g., bbtnw470;
Table 2). For the NOMAD, the observed large MRE in rela-
tively clearer waters (atnw< 0.1 m−1) can be due to the fact
that the empirical relationships for modeling atnw(λ0) were
not designed to work with very low values of non-water
absorption coefficients, as generally observed in shelf and
oceanic environments (Fig. 7a; Eq. 5). For the IES datasets,
the retrieval of atnw443 is obviously improved compared to
atnw555 (Figs. 4d and 7b); however, a 1- to 2-fold increase
in errors is observed in IOP retrieval when QAA-V is ap-
plied to the field data in contrast to synthetic data. This error
enhancement can be due to several factors, including (1) fail-
ure to achieve a smooth switching between highly absorbing
and reflecting waters and estuarine and nearshore waters in
real data (Fig. 4a), (2) inclusion of preliminary data in vali-
dation analysis (Table 1), (3) the uncertainty propagation of
the previous levels of the QAA-V processing chain (e.g., er-
rors in various empirical, semi-analytical, and analytical re-
lationships; Table 2), and (4) the difference in methodology
of data collection, raw data processing, instrumentation, and
measurement and instrument errors. For example, reflectance
measurements, the primary input of QAA-V, can have large
errors if measured in turbid waters and with large viewing
angles (Lee et al., 1999), while bottom contamination may
introduce an additional error since in situ data represent shal-
low water environments. The bottom effect could probably
be reduced with sophisticated correction schemes (Lee et al.,
1998, 1999; Li et al., 2017).

A statistical comparison showed that the QAA-V provided
better estimations of IOPs than the standard QAA-v6 in estu-
arine and nearshore waters (Fig. 5). Also, a green to red band
ratio is better suited for the satellite application of QAA in
shallow waters due to fewer errors in these bands (Table 4).
In contrast, several studies have demonstrated an overestima-
tion in blue bands in turbid waters, likely due to errors in the
atmospheric correction (Joshi et al., 2017a; Chen and Zhang,
2015, and reference therein). This overestimation could lead
to the observed underestimation of atnw555 and subsequently
the underestimation of a and bb at different wavelengths in
lower levels of the QAA processing chain (Fig. 5, Table 2).

4.2 The SPM optical model

Traditionally, suspended particulate matter (SPM) has been
retrieved from remote sensing imagery using single or multi-
band empirical relationships between above-surface Rrs and
SPM concentrations (Doxaran et al., 2002; Miller and Mc-
Kee, 2004; D’Sa et al., 2007; Han et al., 2016). While empir-
ical relationships are easy to implement, they are regionally

limited and may cause large errors if applied to different wa-
ters due to differences in particle properties such as absorp-
tion, particle size and composition, and refractive index. Fur-
thermore, above-surface Rrs, even at the red and NIR wave-
lengths at which particle attenuation controls the Rrs signal,
is not a “true” representation of particles as the Rrs signal is
also marginally contributed to by the absorption of water and
other optically active materials. Hence, this approach has a
limitation as it can have robust performance only in particle-
dominated waters. Another way to estimate SPM concentra-
tion is to relate it to particle backscattering coefficients (bbp).
Several studies have reported the efficacy of this approach in
estimating concentrations of total suspended material (TSM)
and particulate organic carbon (POC) in a variety of waters
ranging from estuarine to open oceans (Stramski et al., 1999;
Loisel et al., 2001; Aurin and Dierssen, 2012).

When the SPM–bbtnw532 relationship was applied to the
VIIRS imagery, both field- and satellite-estimated SPM con-
centrations showed a similar pattern of high to low along a
north-to-south transect in Galveston Bay; however, the dif-
ferences remained elevated in the turbid region of Trinity
Bay (St. 2 to St. 6 in Fig. 8b and St. 16 to St. 23 in Fig. 8c).
Factors contributing to these differences include (1) the er-
ror propagation from various steps of the QAA-V process-
ing chain to bbtnw532 (e.g., 20–30 %, Fig. 7c) and hence fur-
ther down to the SPM inversion, (2) the uncertainty in the
atmospheric-corrected green and red Rrs (e.g., 5–20 %, Ta-
ble 4), (3) the uncertainty in the SPM–bbtnw532 relationship
due to limited observations, (4) the assumption of linearity
in the SPM–bbtnw532 model beyond the instrument thresh-
old, which may not hold well because the bbtnw532 to SPM
ratio depends on the particle nature and it may not always be
constant, especially in highly turbid waters, and (5) errors in
SPM measurements. For example, SPM is usually measured
with a 0.7 µm (average pore size) GF/F filter, which only rep-
resents the total concentration of particles greater than this
size. However, while smaller particles may not have signifi-
cant contributions to the mass-specific property of SPM (e.g.,
concentration), particles smaller than this size can contribute
notably to the underestimation of SPM concentrations in
highly turbid waters (Sect. S3). Furthermore, small particles
and even colloidal particles (< 0.2 µm) are known to con-
tribute significantly to total particle backscattering in coastal
waters (Zhang and Gray, 2015; Zhang et al., 2011). For in-
stance, high winds associated with the passage of a cold
front on 28 October 2017 (not shown) could have resulted
in the resuspension of smaller particles at the shallower sta-
tions on 29 October (Fig. 8c) and contributed to greater dif-
ferences between satellite estimates and field SPM measure-
ments. Interestingly, on the following day (30 October) un-
der calmer conditions, the differences reduced substantially
(Fig. 8d). Thus, the mismatch between mass-specific and op-
tical properties could be a major source of error in the SPM–
bbtnw532 relationship and hence the observed difference in
field–satellite matchups.
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4.3 Satellite application of QAA-V to Galveston Bay:
post-Hurricane Harvey SPM dynamics

A sequence of SPM maps derived from VIIRS imagery using
QAA-V revealed interesting patterns of SPM concentrations
in Galveston Bay following Hurricane Harvey (Figs. 8 and
9). Hurricane Harvey, a category 4 hurricane, caused catas-
trophic flooding in the Houston metropolitan area and the
surrounding regions of Galveston’s Bay drainage basin with
great potential to degrade the bay’s water quality.

The dramatic increase in the discharge of water from the
Trinity and San Jacinto rivers into Galveston Bay (Fig. 9a)
following the record rainfall and flooding associated with
Hurricane Harvey reveals different patterns of discharge,
with the San Jacinto River peaking and retreating to pre-
hurricane levels much quicker than the Trinity River. This
reflects the differences of the two river basins, as well as the
intensity and variability of the precipitation associated with
the hurricane in the two basins. A sequence of post-hurricane
SPM maps of Galveston Bay (Fig. 9b–g) reveals distinct
spatial and temporal patterns of SPM variations within and
outside the bay, including the offshore shelf waters that ap-
peared to be strongly influenced by the river discharge and
wind forcing. The immediate effect of Hurricane Harvey was
clearly evident on 31 August when unusually high SPM con-
centrations (> 75 mg L−1) were observed throughout the bay
corresponding to high freshwater inputs from the Trinity and
the San Jacinto rivers into Galveston Bay (Fig. 9a and b). The
SPM-rich plume (> 75 mg L−1) extended from the Bolivar
Roads Pass to a large region of the coastal and shelf waters.
In contrast, the bay experienced elevated SPM concentrations
on 2 September, but the plume was limited by wind forcing
and a reduction in fresh water to the bay (Fig. 9a and c).

The strong northeasterly winds (∼ 5–6 m s−1) observed on
7 and 8 September appeared to restrict the SPM plume closer
to the bay entrance and the inner shelf waters (Fig. 9d and e).
Despite the reduced freshwater inflow into the upper Galve-
ston Bay, sustained freshwater inputs from the Trinity River
(∼ 500 m3 s−1) and strong northeasterly winds (e.g., sedi-
ment resuspension) could have resulted in elevated SPM con-
centrations throughout the bay. Furthermore, wind-induced
downwelling currents appeared to transport low SPM off-
shore waters nearshore, while the high SPM nearshore and
plume waters were likely downwelled and could have even-
tually settled into the shelf sediments.

Despite the noticeable reduction in the Trinity River
flow, SPM concentrations remained high within the bay on
12 September, indicating the importance of wind-induced
sediment resuspension for SPM dynamics in the shallow wa-
ter environments. However, outside the bay, a well-defined
and elevated SPM plume extended offshore, likely associated
with the southwesterly winds, which induced the offshore
transport of the inner shelf waters (Fig. 9f). On 16 September,
total freshwater inflow to Galveston Bay was reduced signifi-
cantly (∼ 500 to∼ 100 m3 s−1 in the Trinity River) with SPM

generally reduced throughout the bay. However, Trinity Bay
and East Bay showed relatively higher SPM than the upper
and lower Galveston Bay (Fig. 9g), likely due to a more de-
layed discharge through the Trinity River and the wetlands.

Overall, the QAA-V-based SPM maps of Galveston Bay
showed distinct variations in SPM concentrations following
Hurricane Harvey. Although the Trinity Bay and the upper
Galveston Bay responded similarly a few days following the
hurricane, distinct SPM patterns emerged (e.g., lower SPM
in the western and higher in the eastern part of the bay) af-
ter 2 weeks, suggesting different influences in the eastern
and western parts of the bay. For example, floodwaters from
the Houston metropolitan and surrounding region appeared
to have receded within a few days of the hurricane event
(Fig. 9a), whereas the discharge of floodwaters was elevated
through the Trinity River over the course of several weeks
after Hurricane Harvey. These floodwaters could have accu-
mulated first in wetlands and numerous water bodies in the
eastern region and lower Trinity basin during the hurricane
event and eventually emptied to the main Trinity River chan-
nel. SPM was also elevated in the East Bay, but concentra-
tions were generally lower within the first 2 weeks, suggest-
ing this region of the bay mostly remained isolated from the
other regions of Galveston Bay. Nonetheless, this region re-
ceives discharge from the surrounding wetlands, which could
have been elevated during this period. Overall, wind forcing
was also important in controlling the extent and the dispersal
of the sediment-rich plume waters into the shelf and in con-
tributing to the SPM variability within the bay due to sedi-
ment resuspension and its transport into the shelf waters.

4.4 Application of the QAA tuning to various ocean
color and land-observing sensors

Sensor-specific QAA tuning (e.g., QAA-V for VIIRS,
MODIS, Landsat 8 OLI, and Sentinel-3 OLCI) showed an
overall valid retrieval of absorption and backscattering coef-
ficients with various ocean color and land observation sen-
sors (Fig. 10). Although satellite-derived values and trends
of atnw443 and bbtnw470 are similar to the field observa-
tions, the observed discrepancies could, in addition to the un-
certainties in field measurements, be due to several sources
of errors. For example, it is well known that satellite prod-
ucts suffer from large errors in the blue region, especially
in coastal waters due to atmospheric correction (Table 4;
Sect. S4). The large errors between field- and Landsat-8-
OLI-derived atnw443 could have been due to the fact that the
QAA processing chain uses these erroneous blue Rrs values
to obtain atnw at blue wavelengths (Table 2; Level 3). How-
ever, the bbtnw retrievals at blue wavelengths are unaffected
by the blue Rrs inputs (Table 2; Level 2). Likewise, the errors
were relatively smaller at the reference wavelength (Table 4)
because the proposed QAA tuning avoided using blue wave-
lengths in the primary step of getting atnw and bbtnw at a ref-
erence wavelength. Hence, the atmospheric correction proce-
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dure is an important step that would impact the performance
of QAA-V in ocean color applications of shallow estuarine
and nearshore waters.

Another important discrepancy among various sensor
maps is the number of masked pixels in shelf waters
(Fig. 10). We have used a VIIRS band-ratio-based threshold
(ρ = 0.65) to separate green waters (e.g., productive coastal
waters) and blue waters (e.g., open ocean; Eq. 15) and ap-
plied it to various satellite sensors. Although this threshold
worked well for the sensors with similar green and red bands
(e.g., MODIS A and VIIRS), it did not perform as well for
Sentinel-3 OLCI and Landsat 8 OLI because of notable dif-
ferences between the green and red bands of these sensors
and the VIIRS sensor (Table 3). Thus, while the proposed
threshold works well to represent estuarine and nearshore
waters for various ocean color and land-observing sensors,
it could be further optimized for each satellite sensor.

5 Conclusions

A multiband quasi-analytical algorithm tuned for the VI-
IRS ocean color sensor (QAA-V) and for estuarine and
nearshore waters was proposed. Two major changes were
applied to the standard QAA (Lee et al., 2002): (1) the co-
efficients g0 and g1 of a semi-analytical quadratic relation-
ship were updated to obtain u from the Rrs (Eq. 1), and
(2) a threshold-based empirical model was proposed using
the green to red band ratio (GRBR) to estimate the total ab-
sorption coefficient at a reference wavelength. The QAA-
V-derived total absorption and backscattering coefficients
showed a good relationship in a variety of waters ranging
from highly turbid and highly absorbing (MRE< 17 %) to
relatively clearer coastal waters (MRE< 30 %). Moreover,
a reasonable performance (MRE< 25 %) using in situ es-
tuarine and nearshore data indicated the usefulness of the
GRBR in modeling total absorption coefficients in estuarine
waters regardless of the dominance of one or more water con-
stituents (e.g., CDOM, mineral particles, or phytoplankton).
This band ratio needs to be explored further for various ocean
color sensors and in different estuarine and nearshore envi-
ronments around the world. The QAA-V may not perform
satisfactorily in optically shallow waters as the empirical re-
lationships were designed specifically for optically deep en-
vironments. This study showed good retrieval of backscat-
tering coefficients (MRE=∼ 25–30 %); however, the errors
increased towards the lower levels of the QAA-V processing
chain (e.g., MRE=∼ 35 % in estimating SPM), likely due to
the lack of bbtnw–SPM matchups in a variety of waters in for-
mulating a robust SPM–bbtnw532 relationship corresponding
to estuarine waters. This limitation suggests a great need for
in situ backscattering measurements in various shallow envi-
ronments and their availability for public use.

The QAA-V and a regional SPM–bbtnw532 relationship
were applied to a sequence of VIIRS imagery for investigat-

ing post-hurricane SPM dynamics in Galveston Bay. Despite
noticeable errors, especially in turbid regions of the bay, the
application of QAA-V showed great potential in revealing
the SPM patterns due to post-hurricane variations linked to
freshwater inflow to the bay and wind forcing. A sequence
of SPM maps after the passage of Hurricane Harvey showed
that Galveston Bay received massive amounts of SPM due to
large volumes of freshwater input from the two major rivers
and the surrounding regions. However, while the freshwater
inflow reduced within a few days in the western part of the
bay, it remained high over the course of several weeks in the
eastern part of the bay, providing evidence of the short-term
storage capacity of wetlands and numerous freshwater reser-
voirs in the lower Trinity basin. This discharge pattern cou-
pled with different residence times in the western and east-
ern parts of the bay resulted in distinct SPM patterns in the
two regions of the bay. Furthermore, while winds appeared
to have played an important role in resuspending sediments
within the bay, they were critical in the transport and disper-
sion of sediments into the shelf waters of the Gulf of Mexico.

This study did not address bottom reflectance effects
(e.g., during clear-water conditions), Raman scattering, and
chlorophyll fluorescence that may have degraded the QAA-
V’s performance. Furthermore, the tuning of the semi-
analytical and empirical relationships (e.g., η in Table 2) was
not possible due to scarcity of field IOPs (e.g., backscatter-
ing measurements). Although further refinements and vali-
dation studies are necessary to improve the performance and
applicability of QAA-V in spatially and temporally distinct
shallow waters around the world, the promising results of this
study suggest that the application of QAA-V to various ocean
color and land observation satellites can be a useful tool to
assess the bio-optical state and water quality dynamics in a
variety of coastal systems around the world.
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