

Supplement of

Large but decreasing effect of ozone on the European carbon sink

Rebecca J. Oliver et al.

Correspondence to: Rebecca Oliver (rfu@ceh.ac.uk)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

4 Figure S1. Regions of model domain, blue is Boreal, green is Temperate, red is Mediterranean.

11

Figure S3. Calibration of JULES for O₃ impacts on plant productivity for each JULES PFT ; a) broadleaf tree – temperate/boreal, b) broadleaf tree Mediterranean, c) Needle leaf tree, d) C₃ herbaceous (split into temperate/boreal and Mediterranean for the natural grasslands), e) C₄ herbaceous (split into temperate/boreal and Mediterranean for the natural grasslands), and f) shrub. High (red) and low (blue) plant O₃ sensitivities are shown. For the herbaceous PFTs the low sensitivity calibration is separate for Mediterranean regions (black). The solid line is the regression line through the modelled points, the dashed line is the regression line from the observed dose-response relationship. The x axis is cumulative uptake of O₃ (CUO) above the critical O₃ threshold (*F*_{O3crit}).

- 18
- 19
- 20
- 21
- 22
- 23

	High Sensitivity							
	ВТ	NT	C3	C4	SH			
<i>Foзcrit</i> (nmol/m²/s)	1.00	1.00	1.00	1.00	1.00			
<i>a</i> (mmol/m²)	0.110	0.030	0.200	0.220	0.130			
Function	Birch/Beech: y=100.2-0.93x	Norway spruce: y=99.8-0.22x	Wheat: y=100.3-3.85x	Wheat: y=100.3-3.85x	Birch/Beech: y=100.2-0.93x			
dqcrit (kg kg⁻¹)	0.09	0.06	0.1	0.075	0.1			
f0	0.875	0.875	0.9	0.8	0.9			
g1 (kPa ^{0.5})	3.22	2.22	5.56	1.1	2.24			
			Low Sensitivity					
	ВТ	NT	С3	C4	SH			
<i>F_{озсгіt}</i> (nmol/m²/s)	1.00	1.00	1.00	1.00	1.00			
<i>a</i> (mmol/m²)	0.090	0.020	0.060	0.063	0.100			
Function	Birch/Beech: y=100.2-0.74x	Norway spruce: y=99.8-0.17x	Temperate perennial grassland: y=93.9-0.99x	Temperate perennial grassland: y=93.9-0.99x	Birch/Beech: y=100.2-0.74x			
			High Sensitivity	•				
	BT - Med.							
<i>Foзcrit</i> (nmol/m²/s)	1.00							
<i>a</i> (mmol/m²)	0.040							
Function	Dec. Oaks: y=100.3-0.32x							
		Low Sensitivity						
	BT - Med.	C3 - Med.	C4 - Med.	-				
<i>F_{03crit}</i> (nmol/m²/s)	1.00	1.00	1.00					
<i>a</i> (mmol/m²)	0.030	0.050	0.060					
Function	Dec. Oaks: y=100.3-0.22x	Mediterranean annual pasture: y=97.1-0.85x	Mediterranean annual pasture: y=97.1-0.85x					

Table S1. PFT-specific parameter values used in the O₃ uptake and g_s formulation in JULES. F_{O3crit} is the critical O₃ threshold above which damage occurs, *a* determines the reduction in photosynthesis with O₃ exposure, 'function' shows the regression equation for the observed functions (x is F_{O3crit}), dq_{crit} (kg kg⁻¹) is a PFT specific parameters representing the critical humidity deficit at the leaf surface (used in the default JULES g_s model), f_0 is the leaf internal to atmospheric CO₂ ratio (c_i/c_a) at the leaf specific humidity deficit (also used in the default JULES g_s model), and g_1 is the PFT specific parameter of the Medlyn *et al.*, (2011) g_s model. The parameters dq_{crit} , f_0 and g_1 vary by PFT, but not by O₃ sensitivity so are only shown once here.

- 31
- 32
- 33
- 34

Figure. S4. Simulated mean annual leaf area index (LAI) in1901 (top row), 2001 (middle row) and 2050 (bottom row) for the
high plant O₃ sensitivity.

Figure. S5. Simulated mean annual leaf area index (LAI) in1901 (top row), 2001 (middle row) and 2050 (bottom row) for the low
 plant O₃ sensitivity.

Figure. S6. Trend in the emissions of the O₃ precursors a) methane (CH₄ (ppb)), b) nitrous oxides (NO_x (Tg/yr)), c) non-methane
 VOC (NMVOC (Tg/yr)) and d) Isoprene (Gg/yr) over Europe from 1900 to 2050.

Figure S7. (a-d) 1901 seasonal mean (DJF, MAM, JJA, SON) O₃ concentration (ppb) from EMEP for woody (tree and shrub) PFTs; (e-h) change in seasonal O₃ concentration (%) from 1901 to 2001; (i-l) change in seasonal O₃ concentration (%) from 2001 to 2050.

Figure S8. (a-d) 1901 seasonal mean (DJF, MAM, JJA, SON) O₃ concentration (ppb) from EMEP for herbaceous PFTs; (e-h)
change in seasonal O₃ concentration (%) from 1901 to 2001; (i-l) change in seasonal O₃ concentration (%) from 2001 to 2050.

Figure S9. Comparison of the Medlyn *et al.*, (2011) g_s model (y axis) versus the Jacobs (1994) g_s model (x axis) currently used in
JULES for all five JULES PFTs, for stomatal conductance (gs, top row) and the flux of O₃ through the stomata (flux_o3, bottom
row) for a dry site (high soil moisture stress).

Figure S10. Comparison of the Medlyn *et al.*, $(2011) g_s$ model (y axis) versus the Jacobs (1994) g_s model (x axis) currently used in JULES for all five JULES PFTs at the wet site (low soil moisture stress), for net photosynthesis (*Anet*, top row). Residual plots (Medlyn - Jacobs) show the difference between models over the year for latent heat (le, middle row) and sensible heat (h, bottom row).

Figure S11. Comparison of the Medlyn *et al.*, (2011) g_s model (y axis) versus the Jacobs (1994) g_s model (x axis) currently used in JULES for all five JULES PFTs at the dry site (high soil moisture stress), for net photosynthesis (*Anet*, top row). Residual plots (Medlyn - Jacobs) show the difference between models over the year for latent heat (le, middle row) and sensible heat (h, bottom row).

Figure S12. Comparison of the flux of O_3 through the stomata (flux_o3) for the Medlyn *et al.*, (2011) g_s model (y axis) versus the Jacobs (1994) g_s model (x axis) currently used in JULES for all five JULES PFTs for the wet site (low soil moisture stress).

93

- 94
- 95
- 96

Fig. S13 Monthly mean fluxes of latent and sensible heat. Observations \pm standard deviation from FLUXNET2015 sites are shown as black line with grey vertical bars, JULES with the JAC g_s model is shown in red and JULES with the MED g_s model are shown in purple. Also shown are the root mean squared error (rmse) for each simulation.

Figure S14. Mean GPP (g C m² yr⁻¹) from 1991 to 2001 for a) the observations based globally extrapolated Flux Network model tree ensemble (MTE) (Jung et al., 2011); b, c) model simulations with transient CO_2 and fixed O_3 ; d, e)model simulations with fixed CO_2 and transient O_3 , and f, g) our model simulations with transient CO_2 and transient O_3 . All model simulations show GPP for high and low plant O_3 sensitivity respectively.

125

Figure S15. Zonal mean GPP from 1991 to 2001 for FLUXNET-MTE (Jung) and all JULES scenario simulations with both high
 (solid lines) and low (dashed lines) plant O₃ sensitivity.

Figure S16. Mean GPP from 1991 to 2001 shown by region, comparing MTE (Jung) and all JULES scenario simulations with both
 high and low plant O₃ sensitivity.

	Future run, constant climate (1901 - 2001)							
	Hi Sensitivity							
	GPP	NPP	gs	Veg C	Soil C	Land C		
	(Pg C yr ⁻¹)	(Pg C yr ⁻¹)	(m/s)	(Pg C)	(Pg C)	(Pg C)		
Value in 1901:	9.05	4.46	0.03228	41.1	125.8	167		
Absolute diff. (2001 - 1901):								
O ₃	-0.81	-0.47	0.00	-0.02	-9.09	-9.21		
CO ₂	1.16	0.76	0.00	2.82	1.52	4.24		
CO ₂ + O ₃	0.13	0.12	0.00	2.37	-5.55	-3.28		
Relative diff. (%)	(%)	(%)	(%)	(%)	(%)	(%)		
O ₃	-8.95	-10.54	-8.55	-0.05	-7.23	-5.51		
CO ₂	12.82	17.04	-6.07	6.86	1.21	2.54		
CO ₂ + O ₃	1.44	2.69	-13.66	5.77	-4.41	-1.96		
	Lower Sensitivity							
	GPP	NPP	g s	Veg C	Soil C	Land C		
	(Pg C yr ⁻¹)	(Pg C yr ⁻¹)	(m/s)	(Pg C)	(Pg C)	(Pg C)		
Value in 1901:	9.34	4.65	0.03319	41.1	126.4	167.5		
Absolute diff. (2001 - 1901):								
O ₃	-0.30	-0.21	0.00	-0.21	-3.38	-3.59		
CO ₂	1.15	0.74	0.00	2.73	3.70	6.43		
CO ₂ + O ₃	0.65	0.43	0.00	2.21	0.29	2.50		
Relative diff. (%)	(%)	(%)	(%)	(%)	(%)	(%)		
O ₃	-3.21	-4.52	-3.31	-0.51	-2.67	-2.14		
CO ₂	12.31	15.91	-6.39	6.64	2.93	3.84		
CO ₂ + O ₃	6.96	9.25	-9.88	5.38	0.23	1.49		

Table S3. Simulated changes in the European land carbon cycle due to changing O_3 and CO_2 concentrations. Shown are changes in total carbon stocks (Land C), split into vegetation (Veg C) and soil (Soil C) carbon, and gross primary productivity (GPP), net primary productivity (NPP) and conductance (g_s), between 1901 and 2001

Figure S17. Simulated percentage change in stomatal conductance (gs) a-c), soil moisture availability factor (fsmc) d-e) and leaf
 area index (*LAI*) g-i) due to O₃ effects at fixed pre-industrial atmospheric CO₂ concentration (O3), CO₂ effects at fixed pre-industrial
 O₃ concentration (CO2), and effects of CO₂ and O₃ changing simultaneously (CO2+O3). Changes are shown for the periods 1901
 to 2050 for the higher plant O₃ sensitivity.

Figure S18. Simulated percentage change in stomatal conductance (gs) a-c), soil moisture availability factor (fsmc) d-e) and leaf area index (*LAI*) g-i) due to O₃ effects at fixed pre-industrial atmospheric CO₂ concentration (O3), CO₂ effects at fixed pre-industrial O₃ concentration (CO2), and effects of CO₂ and O₃ changing simultaneously (CO2+O3). Changes are shown for the periods 1901 to 2050 for the lower plant O₃ sensitivity.

- -

	Future run, constant climate (2001 - 2050)							
	Hi Sensitivity							
	GPP	NPP	g s	Veg C	Soil C	Land C		
	(Pg C yr ⁻¹)	(Pg C yr ⁻¹)	(m/s)	(Pg C)	(Pg C)	(Pg C)		
Value in 2001:								
O ₃	8.24	3.99	0.02952	41.08	116.71	157.79		
CO ₂	10.21	5.22	0.03032	43.92	127.32	171.24		
CO ₂ + O ₃	9.18	4.58	0.02787	43.47	120.25	163.72		
Absolute diff. (2050 - 2001):								
O ₃	0.01	0.00	0.00	-0.09	-2.35	-2.44		
CO ₂	1.42	0.95	0.00	5.25	7.73	12.98		
CO ₂ + O ₃	1.66	1.07	0.00	5.11	6.00	11.11		
Relative diff. (%)	(%)	(%)	(%)	(%)	(%)	(%)		
O ₃	0.12	0.00	0.00	-0.22	-2.01	-1.55		
CO ₂	13.91	18.20	-13.89	11.95	6.07	7.58		
CO ₂ + O ₃	18.08	23.36	-11.37	11.76	4.99	6.79		
			Lower Se	nsitivity				
	GPP	NPP	g s	Veg C	Soil C	Land C		
	(Pg C yr⁻¹)	(Pg C yr ⁻¹)	(m/s)	(Pg C)	(Pg C)	(Pg C)		
Value in 2001:								
O ₃	9.04	4.44	0.03	40.89	123.02	163.91		
CO ₂	10.49	5.39	0.03	43.83	130.1	173.93		
CO ₂ + O ₃	9.99	5.08	0.02991	43.31	126.69	170		
Absolute diff. (2050 - 2001):								
O ₃	0.02	-0.06	0.00	-0.13	-0.94	-1.07		
CO ₂	1.35	0.92	0.00	5.25	7.89	13.14		
CO ₂ + O ₃	1.50	1.00	0.00	5.11	7.25	12.35		
Relative diff. (%)	(%)	(%)	(%)	(%)	(%)	(%)		
O 3	0.22	-1.35	-0.72	-0.32	-0.76	-0.65		
CO2	12.87	17.07	-14.64	11.98	6.06	7.55		
CO ₂ + O ₃	15.02	19.69	-13.37	11.80	5.72	7.26		

Table S4. Simulated changes in the European land carbon cycle due to changing O_3 and CO_2 concentrations. Shown are changes in total carbon stocks (Land C), split into vegetation (Veg C) and soil (Soil C) carbon, and gross primary productivity (GPP), net primary productivity (NPP) and conductance (g_s), between 2001 and 2050.

- 174
- 175 176
- ____
- 177
- 178
- 179

	Hi Sensitivity							
	GPP	NPP	g s	Veg C	Soil C	Land C		
	(Pg C yr ⁻¹)	(Pg C yr ⁻¹)	(m/s)	(Pg C)	(Pg C)	(Pg C)		
Value in 1901:	9.05	4.46	0.03228	41.1	125.8	167		
Absolute diff. (2050 - 1901):								
O ₃	-0.80	-0.47	0.00	-0.11	-11.44	-11.65		
CO ₂	2.58	1.71	-0.01	8.07	9.25	17.22		
CO ₂ + O ₃	1.79	1.19	-0.01	7.48	0.45	7.83		
Relative diff. (%)	(%)	(%)	(%)	(%)	(%)	(%)		
O ₃	-8.84	-10.54	-8.55	-0.27	-9.09	-6.98		
CO ₂	28.51	38.34	-19.11	19.64	7.35	10.31		
CO ₂ + O ₃	19.78	26.68	-23.48	18.20	0.36	4.69		
	Lower Sensitivity							
			~	VerC	Soil C	Land C		
	GPP	NPP	g s	veg C	3011 C	Luna C		
	GPP (Pg C yr ⁻¹)	NPP (Pg C yr⁻¹)	<i>g</i> ₅ (m/s)	(Pg C)	(Pg C)	(Pg C)		
Value in 1901:	GPP (Pg C yr ⁻¹) 9.34	NPP (Pg C yr ⁻¹) 4.65	<i>g</i> ₅ (m/s) 0.03319	(Pg C) 41.1	(Pg C) 126.4	(Pg C) 167.5		
Value in 1901: Absolute diff. (2050 - 1901):	GPP (Pg C yr ⁻¹) 9.34	NPP (Pg C yr ⁻¹) 4.65	g₅ (m/s) 0.03319	Veg C (Pg C) 41.1	(Pg C) 126.4	(Pg C) 167.5		
Value in 1901: Absolute diff. (2050 - 1901): O ₃	GPP (Pg C yr ⁻¹) 9.34 -0.40	NPP (Pg C yr ⁻¹) 4.65 -0.27	<i>g</i> s (m/s) 0.03319 0.00	-0.34	(Pg C) 126.4 -4.32	(Pg C) 167.5 -4.66		
Value in 1901: Absolute diff. (2050 - 1901): O ₃ CO ₂	GPP (Pg C yr ⁻¹) 9.34 -0.40 2.50	NPP (Pg C yr ⁻¹) 4.65 -0.27 1.66	<i>g</i> s (m/s) 0.03319 0.00 -0.01	-0.34 7.98	(Pg C) 126.4 -4.32 11.59	(Pg C) 167.5 -4.66 19.57		
Value in 1901: Absolute diff. (2050 - 1901): O ₃ CO ₂ CO ₂ + O ₃	GPP (Pg C yr ⁻¹) 9.34 -0.40 2.50 2.15	NPP (Pg C yr ⁻¹) 4.65 -0.27 1.66 1.43	<i>g</i> s (m/s) 0.03319 0.00 -0.01 -0.01	-0.34 7.98 7.32	-4.32 11.59 7.54	(Pg C) 167.5 -4.66 19.57 14.85		
Value in 1901: Absolute diff. (2050 - 1901): O ₃ CO ₂ CO ₂ + O ₃ Relative diff. (%)	GPP (Pg C yr ⁻¹) 9.34 -0.40 2.50 2.15 (%)	NPP (Pg C yr ⁻¹) 4.65 -0.27 1.66 1.43 (%)	<i>g</i> s (m/s) 0.03319 0.00 -0.01 -0.01 (%)	-0.34 7.98 7.32 (%)	-4.32 11.59 7.54 (%)	(Pg C) 167.5 -4.66 19.57 14.85 (%)		
Value in 1901: Absolute diff. (2050 - 1901): O ₃ CO ₂ CO ₂ + O ₃ Relative diff. (%) O ₃	GPP (Pg C yr ⁻¹) 9.34 -0.40 2.50 2.15 (%) -4.28	NPP (Pg C yr ⁻¹) 4.65 -0.27 1.66 1.43 (%) -5.81	<i>g</i> s (m/s) 0.03319 0.00 -0.01 -0.01 (%) -4.01	-0.34 7.98 7.32 (%) -0.83	-4.32 11.59 7.54 (%) -3.42	(Pg C) 167.5 -4.66 19.57 14.85 (%) -2.78		
Value in 1901: Absolute diff. (2050 - 1901): O_3 CO_2 $CO_2 + O_3$ Relative diff. (%) O_3 CO_2	GPP (Pg C yr ⁻¹) 9.34 -0.40 2.50 2.15 (%) -4.28 26.77	NPP (Pg C yr ⁻¹) 4.65 -0.27 1.66 1.43 (%) -5.81 35.70	<i>g</i> s (m/s) 0.03319 0.00 -0.01 -0.01 (%) -4.01 -20.10	<pre>// Veg C (Pg C) 41.1 -0.34 7.98 7.32 (%) -0.83 19.42</pre>	-4.32 11.59 7.54 (%) -3.42 9.17	-4.66 19.57 14.85 (%) -2.78 11.68		

Table S5. Simulated changes in the European land carbon cycle due to changing O_3 and CO_2 concentrations. Shown are changes in total carbon stocks (Land C), split into vegetation (Veg C) and soil (Soil C) carbon, and gross primary productivity (GPP), net primary productivity (NPP) and conductance (g_s), between 1901 and 2050.

	GPP_hi	GPP_low	LandC_hi	LandC_low
	(Pg C yr⁻¹)	(Pg C yr⁻¹)	(Pg C)	(Pg C)
Value in 1901:	9.05	9.34	167.00	167.50
Value in 2050:				
CO ₂	11.63	11.84	184.22	187.07
O ₃	8.25	8.94	155.35	162.84
CO ₂ + O ₃	10.84	11.49	174.83	182.35
⁺ % change due to O_3 at PI CO ₂	-8.84	-4.28	-6.98	-2.78
‡% change due to O₃at high CO₂	-6.79	-2.96	-5.10	-2.52
++ Alleviation of O ₃ damage by CO ₂ increase				
(%)	2.05	1.33	1.88	0.26

195

Table S6. Percentage reduction in simulated GPP and Land C by 2050 due to future O₃ effects at pre-industrial (PI) CO₂ concentration, and under increasing future CO₂ concentration. The difference between these defines the alleviation of the O₃ effect by CO₂. **O₃** = Fixed 1901 CO₂, Varying O₃ ; **CO₂** = Varying CO₂, Fixed 1901 O₃ ; **CO₂** + **O₃** = Varying CO₂, Varying O₃. Calculated as: †) O₃ effect with fixed pre-industrial CO₂: 100*(fixCO₂_varO₃[2050] – value[1901])/value[1901], where value[1901] represents the hypothetical value at 2050 from a run with fixCO₂_fixO₃ which is equivalent to the initial state, i.e. the value in 1901 ; ‡) O₃ effect with increasing CO₂: 100*(varCO₂_varO₃[2050] - varCO₂_fixO₃[2050])/varCO₂_fixO₃[2050] ; ††) the alleviation of O₃ damage by CO₂ is the difference between the two runs: $\ddagger - †$.

- 203
- 204
- 205
-
- 206
- 207 208

- Figure S19. Times series (1901 to 2050) of changes in total carbon stocks (Land C) and gross primary productivity (GPP) due to O₃ effects at fixed pre-industrial atmospheric CO₂ concentration (O₃, blue), CO₂ effects at fixed pre-industrial O₃ concentration (CO₂, black), and effects of CO₂ and O₃ together (CO₂+O₃, red), for the higher and lower plant O₃ sensitivity. The horizontal dashed line shows the pre-industrial value, and the vertical dashed line marks the year 2001.

221 Acknowledgments

This work used eddy covariance data acquired and shared by the FLUXNET community, including these networks: AmeriFlux,
AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS,
KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC. The ERA-Interim reanalysis data are provided by ECMWF and
processed by LSCE. The FLUXNET eddy covariance data processing and harmonization was carried out by the European Fluxes
Database Cluster, AmeriFlux Management Project, and Fluxdata project of FLUXNET, with the support of CDIAC and ICOS
Ecosystem Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux offices.