

Supplement of

Does predictability of fluxes vary between FLUXNET sites?

Ned Haughton et al.

Correspondence to: Ned Haughton (ned@nedhaughton.com)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplement for: How unique are fluxes from different FLUXNET 1 sites? 2

Aridity 4

3

6

8

Arid sites tend to have higher precipitation variability, with fewer, heavier rain events, and longer dry periods 5 (Donat et al., 2016). We would expect that flux predictability would be lower at arid sites. For this hypothesis, we used an aridity index based on mean annual precipitation from CRU TS4.01, and the energy-only estimate 7 for potential evapotranspiration (PET) from Milly and Dunne (2016), based on net radiation and ground heat flux (PET = $0.8(\overline{Rnet} - \overline{Qg}))$ from FLUXNET, such that the aridity index (AI) = mean precipitation/PET. 9 We assumed Qg=0 where sites did not provide Qg (which is approximately true on long time scales). 10

Figure 1 shows the predictability metrics for aridity index. The pattern shown for each flux, and particularly 11

NEE and Qle, is quite similar to that for mean precipitation in Figure 3 in the paper, with more very arid 12

sites being less predictable. 13

Extended Budyko Analysis 14

The following 2 plots show predictability metrics for Potential and Actual evapotranspiration. 15

Figure 1: Predictability metrics for Aridity Index. 32 sites failed the Aridity Index calculation.

Predictability metrics for Potential Evapotranspiration (PET).

Predictability metrics for Actual Evapotranspiration.

¹⁶ Predictability as a function of site variability

¹⁷ Interannual variability Sites heavily influenced by longer term climate patterns, such as decadal scale ¹⁸ ocean oscillations, are less likely to have all of their relevant patterns captured within the period of FLUXNET ¹⁹ measurement, and so potentially contain systematic biases. We compared the interannual variability between ²⁰ sites for both T and P, using the CRU TS4.01 data. We calculated the coefficient of variance (CoV) for annual ²¹ means of temperature (K), and precipitation (mm/year). We would expect that as IAV increases (shown by ²² greater CoV), predictability would decline.

Seasonality Larger differences between winter and summer conditions would likely lead to lower predictability, 23 since we would expect flux behaviour at such sites to be more diverse over the course of the year. This would 24 also affect the relative influence of time varying factors, e.g. timing of snow melt, or vegetation phenology. For 25 model and site combinations where the training and testing data is more disjointed, this might also lead to 26 lower predictability due to the non-training testing data diverging more in behaviour. Since about 55% of sites 27 in Tier 1 are less than 5 years long, we used the BioClim variables (WorldClim, 2016) to compare seasonality 28 between sites. We investigated: isothermality - the ratio of diurnal temperature range to annual temperature 29 range; temperature seasonality - the standard deviation of monthly average temperatures, normalised by the 30 annual average in K; temperature annual range; precipitation seasonality; precipitation of wettest quarter; 31 and precipitation of the driest quarter. 32

³³ **Diurnal ranges** Sites with large diurnal ranges have stronger rates of change between daily peaks and ³⁴ troughs, and these are likely to make prediction harder. Faster changes in temperature, for example, can ³⁵ cause rapid changes in relative humidity, which is a major driver of latent heat flux. We used the BioClim

³⁶ (WorldClim, 2016) mean diurnal temperature range using the nearest neighbouring grid cell for each site.

37 **Results**

Variability of forcing variables is a major component in the predictability of fluxes. In general, we might expect higher variability to lead to lower predictability. Here we examine predictability at various time scales. Figure 2 shows the predictability metrics over the interannual variability of temperature, and Figure 3 shows the same for precipitation, using the CRU TS4.01 data. There does not appear to be a strong trend in increased predictability with higher interannual temperature variability Figure 2. However, there does appear to be a clear trend toward higher uniqueness at sites with stronger interannual variability in precipitation for NEE and for Qle (Figure 3).

⁴⁵ Other modes of variability descending in scale include intra-annual variability, such as annual range, or ⁴⁶ variance of monthly values (seasonality); means of particular seasons; and diurnal ranges, as well as mixed-⁴⁷ scale measurements, such as isothermality (ratio of diurnal range to annual range of temperature). Measures of ⁴⁸ each of these for both temperature and precipitation are included in the BioClim data, and plots of uniqueness ⁴⁹ as a function of each variable are included in the next section. For the majority of cases, there appears to be ⁵⁰ no clear patterns of note. The exception includes some increase in RMSE uniqueness in NEE, and perhaps ⁵¹ also for Qle, for sites with a higher diurnal temperature range (Figure 5).

52 Extended BioClim plots

⁵³ The following figures use the WorldClim BioClim variables.

- Figure 5 shows the remaining predictability metrics for diurnal temperature range,
- Figure 6 shows isothermality,
- Figure 7 shows temperature seasonality,
- Figure 8 temperature annual range,
- Figure 9 precipitation seasonality,
- Figure 10 precipitation of wettest quarter, and
- Figure 11 precipitation of the driest quarter.

Figure 2: RMSE predictability by temperature interannual variability, calculated from the coefficient of variation in the CRU TS4.01 annual means.

Figure 3: RMSE predictability by precipitation interannual variability, calculated from the coefficient of variation in the CRU TS4.01 annual means.

Figure 4: predictability metrics for temperature diurnal range. Note that higher diurnal temperature ranges are likely partially correlated with lower mean precipitation/humidity.

- ⁶¹ There is a hint of a trend towards higher uniqueness in sites that are driest in their wettest quarter, which is
- ₆₂ perhaps simply a reflection of the same effect seen in Figure 3 in the paper. Other determinants do not have
- ⁶³ a clear patterns in predictability.

⁶⁴ There are some other patterns visible in some of the other predictability metrics, for example there appears

- to be a trend towards a better overlap metric at sites with a higher BioClim_t_annual_range, as well as sites
- ⁶⁶ with a higher BioClim_t_seasonality.

Figure 5: Predictability metrics for temperature diurnal range. Note: The first row is already included in the paper.

Figure 6: Predictability metrics for temperature isothermality.

Figure 7: Predictability metrics for temperature seasonality.

Figure 8: Predictability metrics for temperature annual range.

Figure 9: Predictability metrics for rainfall seasonality.

Figure 10: Predictability metrics for precipitation of the wettest quarter.

Figure 11: Predictability metrics for precipitation of the driest quarter.

⁶⁷ Extended Vegetation type analysis

 $_{68}$ $\,$ This figure shows the other predictability metrics for grouped vegetation type which were omitted from the

69 paper.

Figure 12: Predictability metrics for vegetation type (grouped, see Methods).

70 Geographic analysis

We are training the global models on all available sites, but FLUXNET sites are not evenly distributed over the land area of the globe. As such, we might expect that sites that have many other similar sites in the global dataset would have their behaviours more adequately captured by a globally trained model. To investigate whether more geographically unique sites were less predictable, we mapped the sites by uniqueness, and also compared uniqueness by average distance to all other sites.

76 **Results**

⁷⁷ This section includes maps of RMSE uniqueness mean for Qh and Qle, mapped as per Figure 11 in the paper,

⁷⁸ as well as the remoteness predictability metrics. Distribution of uniqueness appears to be different for Qh

⁷⁹ (more high-uniqueness sites), but over-all, both variables have a similar, but lest distinct pattern of uniqueness

⁸⁰ as seen in NEE in Figure 11.

Figure 13: Map of Qh predictability - RMSE uniqueness, averaged across models, as per Figure 11 in the paper.

Predictability ensemble: Qle - rmse uniqueness mean

Figure 14: Map of Qle predictability - RMSE uniqueness, averaged across models, as per Figure 11 in the paper.

Figure 15: Predictability metrics by remoteness (average distance to all other sites)

Predictability metrics by average remoteness

81 Energy Gap Closure analysis

The energy closure problem in FLUXNET is investigated in Figure 16, where we show the actual gap (in W/m^2), and in Figure 17 where we show the absolute energy gap normalised by Rnet. In the first figure, there is no trend in any flux. In the second figure, there is appears to be a tend toward higher uncertainty in sites with large energy gaps relative to their total Rnet, however this trend is quite uncertain, due to the low

⁸⁶ number of sites involved.

Figure 16: Predictability metrics for energy gap (W/m^2) . Sites with positive energy gaps have too much Rnet to relative to the over heat fluxes.

Figure 17: Predictability metrics for energy gap normalised by Rnet.

87 Extended dataset length analysis

⁸⁸ The following plot shows the predictability metrics by data set length that were omitted from Figure 13.

Predictability metrics for number of years in dataset.

⁸⁹ Fluxnet Citations

Sites, vegetation types, locations and studied periods of flux sites used in this analysis. All data originally from www.fluxdata.org, via https://github.com/trevorkeenan/FLUXNET_citations. Vegetation types: deciduous broadleaf forest (DBF); evergreen broadleaf forest (EBF); evergreen needleleaf forest (ENF); grassland (GRA); mixed deciduous and evergreen needleleaf forest (MF); savanna ecosystem (SAV); shrub ecosystem (SHR); wetland (WET).

Site code	Veg type	Latitude	Longitude	Period	References
AR-SLu	MF	-33.4648	-66.4598	2009-2011	(Ulke et al., 2015)
AR-Vir	\mathbf{ENF}	-28.2395	-56.1886	2009-2012	(Posse et al., 2016)
AT-Neu	GRA	47.1167	11.3175	2002-2012	(Wohlfahrt et al., 2008)
AU-Ade	WSA	-13.0769	131.1178	2007-2009	(Beringer et al., 2011c)
AU-ASM	\mathbf{ENF}	-22.2830	133.2490	2010-2013	(Cleverly et al., 2013)
AU-Cpr	SAV	-34.0021	140.5891	2010-2014	(Meyer et al., 2015)
AU-Cum	EBF	-33.6133	150.7225	2012-2014	(Beringer et al., 2016a)
AU-DaP	GRA	-14.0633	131.3181	2007-2013	(Beringer et al., 2011a)
AU-DaS	SAV	-14.1593	131.3881	2008-2014	(Hutley et al., 2011)
AU-Dry	SAV	-15.2588	132.3706	2008-2014	(Cernusak et al., 2011)
AU-Emr	GRA	-23.8587	148.4746	2011-2013	(Schroder et al., 2014)
AU-Fog	WET	-12.5452	131.3072	2006-2008	(Beringer et al., 2013)
AU-Gin	WSA	-31.3764	115.7138	2011-2014	(Beringer et al., 2016d)
AU-GWW	SAV	-30.1913	120.6541	2013-2014	(Prober et al., 2012)
AU-How	WSA	-12.4943	131.1523	2001-2014	(Cernusak, 2007)
AU-Lox	DBF	-34.4704	140.6551	2008-2009	(Stevens et al., 2011)
AU-RDF	WSA	-14.5636	132.4776	2011-2013	(Bristow et al., 2016)
AU-Rig	GRA	-36.6499	145.5759	2011-2014	(Beringer et al., 2016b)
AU-Rob	EBF	-17.1175	145.6301	2014-2014	(Beringer et al., 2016c)
AU-Stp	GRA	-17.1507	133.3502	2008-2014	(Beringer et al., 2011b)
AU-TTE	OSH	-22.2870	133.6400	2012-2013	(Cleverly et al., 2016)
AU-Wac	EBF	-37.4259	145.1878	2005 - 2008	(Kilinc et al., 2013)
AU-Whr	EBF	-36.6732	145.0294	2011 - 2014	(McHugh et al., 2017)
AU-Wom	EBF	-37.4222	144.0944	2010-2012	(Hinko-Najera et al., 2017)
AU-Ync	GRA	-34.9893	146.2907	2012 - 2014	(Yee et al., 2015)
BE-Bra	\mathbf{MF}	51.3092	4.5206	1996-2014	(Carrara et al., 2004)
BE-Lon	CRO	50.5516	4.7461	2004 - 2014	(Moureaux et al., 2006)
BE-Vie	\mathbf{MF}	50.3051	5.9981	1996-2014	(Aubinet et al., 2001)
BR-Sa3	EBF	-3.0180	-54.9714	2000-2004	(Wick et al., 2005)
CA-Man	\mathbf{ENF}	55.8796	-98.4808	1994 - 2008	(Dunn et al., 2007)
CA-NS1	\mathbf{ENF}	55.8792	-98.4839	2001 - 2005	(Goulden et al., 2006a)
CA-NS2	\mathbf{ENF}	55.9058	-98.5247	2001 - 2005	(Goulden et al., 2006b)
CA-NS3	\mathbf{ENF}	55.9117	-98.3822	2001 - 2005	(Goulden et al., 2006c)
CA-NS4	\mathbf{ENF}	55.9144	-98.3806	2002 - 2005	(Goulden et al., 2006d)
CA-NS5	\mathbf{ENF}	55.8631	-98.4850	2001 - 2005	(Goulden et al., 2006e)
CA-NS6	OSH	55.9167	-98.9644	2001 - 2005	(Goulden et al., 2006f)
CA-NS7	OSH	56.6358	-99.9483	2002 - 2005	(Goulden et al., 2006g)
CA-Qfo	\mathbf{ENF}	49.6925	-74.3421	2003-2010	(Bergeron et al., 2007)
CA-SF1	\mathbf{ENF}	54.4850	-105.8176	2003-2006	(Mkhabela et al., 2009a)
CA-SF2	ENF	54.2539	-105.8775	2001 - 2005	(Mkhabela et al., 2009b)
CA-SF3	OSH	54.0916	-106.0053	2001 - 2006	(Mkhabela et al., 2009c)
CH-Cha	GRA	47.2102	8.4104	2005 - 2014	(Merbold et al., 2014)
CH-Dav	ENF	46.8153	9.8559	1997 - 2014	(Zielis et al., 2014)

Site code	Veg type	Latitude	Longitude	Period	References
CH-Fru	GRA	47.1158	8.5378	2005-2014	(Imer et al., 2013)
CH-Lae	MF	47.4781	8.3650	2004-2014	(Etzold et al., 2011)
CH-Oe1	GRA	47.2858	7.7319	2002-2008	(Ammann et al., 2009)
CH-Oe2	CRO	47.2863	7.7343	2004 - 2014	(Dietiker et al., 2010)
CN-Cha	\mathbf{MF}	42.4025	128.0958	2003-2005	(Guan et al., 2006)
CN-Cng	GRA	44.5934	123.5092	2007-2010	(???)
CN-Dan	GRA	30.4978	91.0664	2004 - 2005	(Shi et al., 2006)
CN-Din	\mathbf{EBF}	23.1733	112.5361	2003-2005	(Yan et al., 2013)
CN-Du2	GRA	42.0467	116.2836	2006-2008	(Chen et al., 2009)
CN-Ha2	WET	37.6086	101.3269	2003-2005	(???)
CN-HaM	GRA	37.3700	101.1800	2002-2004	(Kato et al., 2006)
CN-Qia	\mathbf{ENF}	26.7414	115.0581	2003-2005	(Wen et al., 2010)
CN-Sw2	GRA	41.7902	111.8971	2010-2012	(Shao et al., 2017)
CZ-BK1	\mathbf{ENF}	49.5021	18.5369	2004-2008	(Acosta et al., 2013)
CZ-BK2	GRA	49.4944	18.5429	2004-2006	(???)
CZ-wet	WET	49.0247	14.7704	2006-2014	(Dušek et al., 2012)
DE-Akm	WET	53.8662	13.6834	2009-2014	(???)
DE-Geb	CRO	51.1001	10.9143	2001-2014	(Anthoni et al., 2004)
DE-Gri	GRA	50.9500	13.5126	2004-2014	(Prescher et al., 2010a)
DE-Hai	DBF	51.0792	10.4530	2000-2012	(Knohl et al., 2003)
DE-Kli	CRO	50.8931	13.5224	2004-2014	(Prescher et al., 2010b)
DE-Lkb	\mathbf{ENF}	49.0996	13.3047	2009-2013	(Lindauer et al., 2014)
DE-Obe	\mathbf{ENF}	50.7867	13.7213	2008-2014	(???)
DE-RuR	GRA	50.6219	6.3041	2011-2014	(Post et al., 2015)
DE-RuS	CRO	50.8659	6.4472	2011-2014	(Mauder et al., 2013)
DE-Seh	CRO	50.8706	6.4497	2007-2010	(Schmidt et al., 2012)
DE-SfN	WET	47.8064	11.3275	2012-2014	(Hommeltenberg et al., 2014)
DE-Spw	WET	51.8923	14.0337	2010-2014	
DE-Tha	ENF	50.9624	13.5652	1996-2014	(Grünwald and Bernhofer, 2007)
DK-Fou	CRO	56.4842	9.5872	2005-2005	(???)
DK-NuF	WET	64.1308	-51.3861	2008-2014	(Westergaard-Nielsen et al., 2013)
DK-Sor	DBF	55.4859	11.6446	1996-2014	(Pilegaard et al., 2011)
DK-ZaF	WET	74.4814	-20.5545	2008-2011	(Stiegler et al., 2016)
DK-ZaH	GRA	74.4732	-20.5503	2000-2014	(Lund et al., 2012)
ES-LgS	OSH	37.0979	-2.9658	2007-2009	(Reverter et al., 2010)
ES-Ln2	OSH	36.9695	-3.4758	2009-2009	(Serrano-Ortiz et al., 2011)
FI-Hyy	ENF	61.8474	24.2948	1996-2014	(Sum et al., 2003)
FI-JOK	URU	00.8980	23.3133	2000-2003	(Lonna, 2004)
FI-LOM		07.9972 67.2610	24.2092	2007-2009	(Aurela et al., 2015) (Thum at al. 2007)
FI-500 ED Ean		07.3019	20.0378	2001-2014	(1 num et al., 2007)
FR-FOII	CDO	40.4704	2.7601	2003-2014	(Derplerre et al., 2015)
FR-GII	UNU	40.0442	1.9019	2004-2015	(Doublet et al., 2011) (Doubling et al., 2001)
FR-LDI FR Due		44.7171	-0.7095	1990-2008	(Derdigier et al., 2001)
FR-Pue	EBF	43.7414	3.3938	2000-2014	(Rambal et al., 2004)
GF-Guy		0.2700	-02.9249	2004-2014	(Donal et al., 2008) (Vitale at al. 2015)
	DDE	40.3238	14.9074	2004-2014	(VIIIII e et al., 2015)
TT-CAT	CBO	42.3004 49.3779	12.0200	2011-2014 2011-2014	(Sabbatini et al., 2010a)
TT-CA2	DRF	42.3112	12.0200	2011-2014	(Sabbatini et al., 20100)
II-UAJ	DBE	42.3000	12.0222	2011-2014	(Valentini et al., 2010C)
IT-Cn9	EBE	41.0494 /1.70/2	19 3572	1990-2014 2012 2014	(Fares et a) = 2014)
$TT Cp_2$	FBF	41 7059	19 3761	1007 2014	(Carbulsky of al. 2014)
11-Opz	ĽDГ	41.7002	12.0701	1991-2009	(Garbuisky et al., 2000)

	Site code	Veg type	Latitude	Longitude	Period	References
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	IT-Isp	DBF	45.8126	8.6336	2013-2014	(Ferréa et al., 2012)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	IT-La2	\mathbf{ENF}	45.9542	11.2853	2000-2002	(Marcolla et al., 2003a)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	IT-Lav	\mathbf{ENF}	45.9562	11.2813	2003-2014	(Marcolla et al., 2003b)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IT-MBo	GRA	46.0147	11.0458	2003-2013	(Marcolla et al., 2011)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IT-Noe	CSH	40.6061	8.1515	2004-2014	(Papale et al., 2014)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	IT-PT1	DBF	45.2009	9.0610	2002-2004	(Migliavacca et al., 2009)
$ \begin{array}{cccccc} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	IT-Ren	ENF	46.5869	11.4337	1998-2013	(Montagnani et al., 2009)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IT-Ro1	DBF	42.4081	11.9300	2000-2008	(Rev et al., 2002)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IT-Ro2	DBF	42.3903	11.9209	2002-2012	(Tedeschi et al., 2006)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	IT-SR2	ENF	43 7320	10 2910	2013-2014	(Hoshika et al 2017)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IT-SRo	ENF	437279	10.2844	1999-2012	(Chiesi et al. 2005)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IT-Tor	GRA	45 8444	7 5781	2008-2012	(Galvagno et al. 2003)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	IP-MRF	DBF	44 3869	142 3186	2008-2011	(Matsumoto et al. 2008a)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	IP-SMF	MF	35 2617	1370788	2009-2009	(Matsumoto et al., 2008b)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	NL-Hor	GBA	52 2404	5 0713	2002-2000	(1) (lacobs et al. 2007)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	NL-IIO	ENE	52.2404 52 1666	5 7436	1006 2013	$(M_{OORS}, 2012)$
RU-RuWEI $16,1600$ 10.5250 $2011-2014$ (11) RU-CakWEI $68,6100$ 16.3414 $2002-2005$ $(Merbold et al., 2009a)$ RU-CokOSH 70.8291 147.4943 $2002-2004$ $(Marchesini et al., 2008)$ RU-HalGRA 54.7252 90.0022 $2002-2004$ $(Marchesini et al., 2007)$ SD-DemSAV 13.2829 30.4783 $2005-2009$ $(Marchesini et al., 2014)$ US-AR1GRA 36.4267 -99.4200 $2009-2012$ $(Raz-Yaseef et al., 2015b)$ US-AR2GRA 36.6358 -99.5975 $2009-2012$ $(Raz-Yaseef et al., 2015a)$ US-ARbGRA 35.5497 -98.0402 $2005-2006$ $(Raz-Yaseef et al., 2015a)$ US-ARcGRA 35.5465 -98.0400 $2005-2006$ $(Raz-Yaseef et al., 2007)$ US-ARbGRA 35.5465 -98.0400 $2005-2006$ $(Raz-Yaseef et al., 2007)$ US-ARCGRA 35.5465 -98.0400 $2005-2006$ $(Raz-Yaseef et al., 2007)$ US-ARbENF 38.8953 -120.6328 $1997-2007$ $(Goldstein et al., 2000)$ US-GLEENF 41.3668 -106.2397 $199-2006$ $(Zeller and Nikolov, 2000)$ US-GLEENF 41.3665 -106.2399 $2004-2014$ $(Frank et al., 2014)$ US-Ks2CSH 28.6086 -80.6715 $2002-2014$ $(Irwine et al., 2006)$ US-Me1ENF 44.5794 -121.5074 $2002-2014$ $(Irwine et al., 2007)$	NO Adv	WET	52.1000 78 1860	15 0220	1990-2013 2011 2014	(222)
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	NU-Auv PU Cho		68 6120	161 2414	2011-2014	(\dots)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	RU-Che	OSH OSH	70 8201	101.3414 147.4042	2002-2005	(Melop et al., 2009a)
RU-FyoENF 30.4013 32.921 $1998-2014$ (Murdatova et al., 2008)RU-Ha1GRA 54.7252 90.0022 $2002-2004$ (Marchesini et al., 2007)SD-DemSAV 13.2829 30.4783 $2005-2009$ (Ardo et al., 2008)SN-DhrSAV 15.4028 -15.4322 $2010-2013$ (Tagesson et al., 2015b)US-AR1GRA 36.4267 -99.4200 $2009-2012$ (Raz-Yaseef et al., 2015b)US-AR2GRA 36.6358 -99.5975 $2009-2012$ (Raz-Yaseef et al., 2015c)US-ARbGRA 35.5465 -98.0402 $2005-2006$ (Raz-Yaseef et al., 2015d)US-ARMCRO 36.6058 -97.4888 $2003-2012$ (Fischer et al., 2007)US-ARMCRO 36.6058 -97.4888 $2003-2012$ (Fischer et al., 2000)US-BI0ENF 38.8953 -120.6328 $1997-2007$ (Goldstein et al., 2000)US-GETENF 41.3658 -106.2397 $1999-2006$ (Zeller and Nikolov, 2000)US-GLEENF 41.3658 -106.2399 $2004-2014$ (Frank et al., 2014)US-KS2CSH 28.0086 -80.6715 $2003-2006$ (Powell et al., 2007)US-Me1ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.5674 $2012-2014$ (Irvine et al., 2007)US-Me4ENF 44.3233 -121.6078 $2010-2014$ (Mathes et al., 2014)US-MybWET	RU-COK	USII	10.8291 EG 461E	147.4940	2003-2014	(Wurbatarra at al 2007)
RU-HAIGRA 54.7252 90.0022 $2002-2004$ (Marchesmi et al., 2007)SD-DemSAV 13.2829 30.4783 $2005-2009$ (Ardo et al., 2008)SN-DhrSAV 15.4028 -15.4322 $2010-2013$ (Tagesson et al., 2014)US-AR1GRA 36.4267 -99.4200 $2009-2012$ (Raz-Yaseef et al., $2015b$)US-AR2GRA 36.6358 -99.5975 $2009-2012$ (Raz-Yaseef et al., $2015c$)US-ARbGRA 35.5465 -98.0402 $2005-2006$ (Raz-Yaseef et al., $2015a$)US-ARcGRA 35.5465 -98.0400 $2005-2006$ (Raz-Yaseef et al., $2015a$)US-ARbCRO 36.6058 -97.4888 $2003-2012$ (Fischer et al., 2007)US-BloENF 38.8953 -120.6328 $1997-2007$ (Goldstein et al., 2000)US-GBTENF 41.3658 -106.2397 $1999-2006$ (Zeller and Nikolov, 2000)US-GLEENF 41.3665 -106.2397 $1999-2006$ (Bulman et al., 2000)US-LosWET 46.0827 -89.9792 $2000-2014$ (Frank et al., 2004)US-Me1ENF 44.5794 -121.5000 $2004-2005$ (Irvine et al., 2009)US-Me2ENF 44.4523 -121.6078 $2010-2014$ (Matches et al., 2014)US-Me6ENF 44.3233 -121.6678 $2010-2014$ (Matches et al., 2014)US-MybWET 38.0498 -121.7651 $2010-2014$ (Morson et al., 2014) <td>RU-FYO</td> <td></td> <td>50.4015</td> <td>32.9221</td> <td>1998-2014</td> <td>(Marsharini et al., 2008)</td>	RU-FYO		50.4015	32.9221	1998-2014	(Marsharini et al., 2008)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	RU-Hal	GRA	04. <i>(2</i> 02	90.0022	2002-2004	(Marchesini et al., 2007)
SAV13.4028 -13.4322 $2010-2013$ (Tagesson et al., 2014)US-AR1GRA 36.4267 -99.4200 $2009-2012$ (Raz-Yaseef et al., 2015)US-AR2GRA 36.6358 -99.5975 $2009-2012$ (Raz-Yaseef et al., $2015c$)US-ARbGRA 35.5497 -98.0402 $2005-2006$ (Raz-Yaseef et al., $2015a$)US-ARbGRA 35.5465 -98.0400 $2005-2006$ (Raz-Yaseef et al., $2015a$)US-ARMCRO 36.6058 -97.4888 $2003-2012$ (Fischer et al., 2007)US-BloENF 38.8953 -120.6328 $1997-2007$ (Goldstein et al., 2000)US-GBTENF 41.3658 -106.2397 $1999-2006$ (Zeller and Nikolov, 2000)US-GLEENF 41.3665 -106.2399 $2004-2014$ (Frank et al., 2014)US-KS2CSH 28.6086 -80.6715 $2003-2006$ (Powell et al., 2006)US-LosWET 46.0827 -89.9792 $2000-2014$ (Sulman et al., 2009)US-Me1ENF 44.523 -121.5574 $2002-2014$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.6678 $2010-2014$ (Matthes et al., 2014)US-Me4ENF 44.3233 -121.6678 $2010-2014$ (Matthes et al., 2014)US-Me5ENF 44.3233 -121.6671 $2010-2013$ (Matthes et al., 2014)US-Me6ENF 44.3237 -121.651 $2010-2013$ (Matthes et al., 2014)US-Nyb<	SD-Dem	SAV	15.2829	30.4783	2005-2009	(Ardo et al., 2008)
US-AR1GRA 36.4267 -99.4200 $2009-2012$ (Raz-Yaseef et al., 2015b)US-AR2GRA 36.6358 -99.5975 $2009-2012$ (Raz-Yaseef et al., 2015c)US-ARbGRA 35.5497 -98.0402 $2005-2006$ (Raz-Yaseef et al., 2015a)US-ARcGRA 35.5465 -98.0400 $2005-2006$ (Raz-Yaseef et al., 2007)US-ARMCRO 36.6058 -97.4888 $2003-2012$ (Fischer et al., 2007)US-BloENF 38.8953 -120.6328 $1997-2007$ (Goldstein et al., 2000)US-GBTENF 41.3658 -106.2397 $1999-2006$ (Zeller and Nikolov, 2000)US-GLEENF 41.3655 -106.2399 $2004-2014$ (Frank et al., 2014)US-KS2CSH 28.6086 -80.6715 $2003-2006$ (Powell et al., 2006)US-Me1ENF 44.5794 -121.5000 $2004-2014$ (Sulman et al., 2009)US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2007)US-Me2ENF 44.3233 -121.6678 $2010-2014$ (Matthes et al., 2014)US-Me5WET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-Me4ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-MrWET 40.0329 -105.5464 $1998-2014$ (Monson et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2015)US-SRMWSA<	SN-Dhr	SAV	15.4028	-10.4322	2010-2013	(1 agesson et al., 2014)
US-AR2GRA 36.6358 -99.975 $2009-2012$ (Raz-Yaseef et al., 2015c)US-ARbGRA 35.5497 -98.0402 $2005-2006$ (Raz-Yaseef et al., 2015a)US-ARcGRA 35.5465 -98.0400 $2005-2006$ (Raz-Yaseef et al., 2015d)US-ARMCRO 36.6058 -97.4888 $2003-2012$ (Fischer et al., 2007)US-BloENF 38.8953 -120.6328 $1997-2007$ (Goldstein et al., 2000)US-GBTENF 41.3658 -106.2397 $1999-2006$ (Zeller and Nikolov, 2000)US-GELEENF 41.3665 -106.2399 $2004-2014$ (Frank et al., 2014)US-KS2CSH 28.6086 -80.6715 $2003-2006$ (Powell et al., 2006)US-Me1ENF 44.5794 -121.5000 $2004-2005$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2007)US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Matthes et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SrbyMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-SrbyMF 4	US-ARI	GRA	36.4267	-99.4200	2009-2012	(Raz-Yaseef et al., 2015b)
US-ARbGRA 35.5497 -98.0402 $2005-2006$ (Raz-Yasef et al., 2015a)US-ARcGRA 35.5465 -98.0400 $2005-2006$ (Raz-Yasef et al., 2015d)US-ARMCRO 36.6058 -97.4888 $2003-2012$ (Fischer et al., 2007)US-BloENF 38.8953 -120.6328 $1997-2007$ (Goldstein et al., 2000)US-GBTENF 41.3658 -106.2397 $1999-2006$ (Zeller and Nikolov, 2000)US-GLEENF 41.3665 -106.2399 $2004-2014$ (Frank et al., 2014)US-KS2CSH 28.6086 -80.6715 $2003-2006$ (Powell et al., 2006)US-Me1ENF 44.5794 -121.5000 $2004-2005$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2007)US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Ruchr et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SRMWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2005)US-TonWSA 38.416 -120.9660 $2001-2014$ (Baldocchi et al., 2017)US-Tw1WET 38.107	US-AR2	GRA	36.6358	-99.5975	2009-2012	(Raz-Yaseef et al., 2015c)
US-ARcGRA 35.3465 -98.0400 $2005-2006$ (Raz-Yaseef et al., 2015d)US-ARMCRO 36.6058 -97.4888 $2003-2012$ (Fischer et al., 2007)US-BloENF 38.8953 -120.6328 $1997-2007$ (Goldstein et al., 2000)US-GBTENF 41.3658 -106.2397 $1999-2006$ (Zeller and Nikolov, 2000)US-GLEENF 41.3665 -106.2399 $2004-2014$ (Frank et al., 2014)US-KS2CSH 28.6086 -80.6715 $2003-2006$ (Powell et al., 2006)US-LosWET 46.0827 -89.9792 $2000-2014$ (Sulman et al., 2009)US-Me1ENF 44.5794 -121.5000 $2004-2005$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2008)US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Ruehr et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Monson et al., 2002)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2016)US-SrbwMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-SrbwMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2010)US-SrbwMF 46.2420 <td< td=""><td>US-ARb</td><td>GRA</td><td>35.5497</td><td>-98.0402</td><td>2005-2006</td><td>(Raz-Yaseef et al., 2015a)</td></td<>	US-ARb	GRA	35.5497	-98.0402	2005-2006	(Raz-Yaseef et al., 2015a)
US-ARMCRO 36.6058 -97.4888 $2003-2012$ (Fischer et al., 2007)US-BloENF 38.8953 -120.6328 $1997-2007$ (Goldstein et al., 2000)US-GBTENF 41.3658 -106.2397 $1999-2006$ (Zeller and Nikolov, 2000)US-GLEENF 41.3665 -106.2399 $2004-2014$ (Frank et al., 2014)US-KS2CSH 28.6086 -80.6715 $2003-2006$ (Powell et al., 2006)US-LosWET 46.0827 -89.9792 $2000-2014$ (Sulman et al., 2009)US-Me1ENF 44.5794 -121.5000 $2004-2005$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2008)US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Ruehr et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Monson et al., 2012)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2005)US-SrhWSA 38.4316 -120.9660 $2001-2014$ (Desai et al., 2005)US-SrhWSA 38.4316 -120.9660 $2001-2014$ (Diadocchi et al., 2017)US-Tw1	US-ARC	GRA	35.5465	-98.0400	2005-2006	(Raz-Yaseef et al., 2015d)
US-BloENF 38.8953 -120.6328 $1997-2007$ (Goldstein et al., 2000)US-GBTENF 41.3658 -106.2397 $1999-2006$ (Zeller and Nikolov, 2000)US-GLEENF 41.3665 -106.2399 $2004-2014$ (Frank et al., 2014)US-KS2CSH 28.6086 -80.6715 $2003-2006$ (Powell et al., 2006)US-LosWET 46.0827 -89.9792 $2000-2014$ (Sulman et al., 2009)US-Me1ENF 44.5794 -121.5000 $2004-2005$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2012)US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Ruehr et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2005)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2014$ (Oikawa et al., 2015)	US-ARM	CRO	36.6058	-97.4888	2003-2012	(Fischer et al., 2007)
US-GBTENF 41.3658 -106.2397 $1999-2006$ $(Zeller and Nikolov, 2000)$ US-GLEENF 41.3665 -106.2399 $2004-2014$ (Frank et al., 2014)US-KS2CSH 28.6086 -80.6715 $2003-2006$ (Powell et al., 2006)US-LosWET 46.0827 -89.9792 $2000-2014$ (Sulman et al., 2009)US-Me1ENF 44.5794 -121.5000 $2004-2005$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2012)US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Ruehr et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2013$ (Knox et al., 2016)	US-Blo	ENF	38.8953	-120.6328	1997-2007	(Goldstein et al., 2000)
US-GLEENF 41.3665 -106.2399 $2004-2014$ (Frank et al., 2014)US-KS2CSH 28.6086 -80.6715 $2003-2006$ (Powell et al., 2006)US-LosWET 46.0827 -89.9792 $2000-2014$ (Sulman et al., 2009)US-Me1ENF 44.5794 -121.5000 $2004-2005$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2008)US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Ruehr et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Morson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2009)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2010)US-Tw1WET 38.1074 -121.6433 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6467 $2012-2014$ (Desai et al., 2015)	US-GBT	ENF	41.3658	-106.2397	1999-2006	(Zeller and Nikolov, 2000)
US-KS2CSH 28.6086 -80.6715 $2003-2006$ (Powell et al., 2006)US-LosWET 46.0827 -89.9792 $2000-2014$ (Sulman et al., 2009)US-Me1ENF 44.5794 -121.5000 $2004-2005$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2008)US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Ruehr et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2010)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2013$ (Knox et al., 2015)	US-GLE	ENF	41.3665	-106.2399	2004-2014	(Frank et al., 2014)
US-LosWET 46.0827 -89.9792 $2000-2014$ (Sulman et al., 2009)US-Me1ENF 44.5794 -121.5000 $2004-2005$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2008)US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Ruehr et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SrWWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2009)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2013$ (Knox et al., 2016)	US-KS2	CSH	28.6086	-80.6715	2003-2006	(Powell et al., 2006)
US-Me1ENF 44.5794 -121.5000 $2004-2005$ (Irvine et al., 2007)US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2008)US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Ruehr et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SRMWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2009)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2013$ (Knox et al., 2016)	US-Los	WET	46.0827	-89.9792	2000-2014	(Sulman et al., 2009)
US-Me2ENF 44.4523 -121.5574 $2002-2014$ (Irvine et al., 2008)US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Ruehr et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SrMWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2009)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-TonWSA 38.4316 -120.9660 $2001-2014$ (Dikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2014$ (Oikawa et al., 2015)	US-Me1	ENF	44.5794	-121.5000	2004 - 2005	(Irvine et al., 2007 $)$
US-Me6ENF 44.3233 -121.6078 $2010-2014$ (Ruehr et al., 2012)US-MybWET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2013)US-ORvWET 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015)US-SRMWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2009)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-TonWSA 38.4316 -120.9660 $2001-2014$ (Baldocchi et al., 2010)US-Tw1WET 38.1074 -121.6433 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1159 -121.6467 2013.2014 (Baldocchi et al., 2015)	US-Me2	\mathbf{ENF}	44.4523	-121.5574	2002 - 2014	(Irvine et al., 2008 $)$
US-MybWET 38.0498 -121.7651 $2010-2014$ (Matthes et al., 2014)US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SRMWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2009)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-TonWSA 38.4316 -120.9660 $2001-2014$ (Baldocchi et al., 2010)US-Tw1WET 38.1074 -121.6433 $2012-2013$ (Knox et al., 2016)US-Tw2CRO 38.1150 121.6467 2013.2014 (Baldocchi et al., 2015)	US-Me6	ENF	44.3233	-121.6078	2010-2014	(Ruehr et al., 2012)
US-NR1ENF 40.0329 -105.5464 $1998-2014$ (Monson et al., 2002)US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SRMWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2009)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-TonWSA 38.4316 -120.9660 $2001-2014$ (Baldocchi et al., 2010)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2014$ (Raldocchi et al., 2015)	US-Myb	WET	38.0498	-121.7651	2010-2014	(Matthes et al., 2014)
US-ORvWET 40.0201 -83.0183 $2011-2011$ (Morin et al., 2014)US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., $2015a$)US-SRMWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2009)US-SrMWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2009)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-TonWSA 38.4316 -120.9660 $2001-2014$ (Baldocchi et al., 2010)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2013$ (Knox et al., 2016)US-Tw3CRO 38.1159 121.6467 2013.2014 (Baldocchi et al., 2015)	US-NR1	\mathbf{ENF}	40.0329	-105.5464	1998-2014	(Monson et al., 2002)
US-PrrENF 65.1237 -147.4876 $2010-2013$ (Nakai et al., 2013)US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SRMWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2009)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-TonWSA 38.4316 -120.9660 $2001-2014$ (Baldocchi et al., 2010)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2013$ (Knox et al., 2016)US Tw3CRO 38.1159 121.6467 2013.2014 (Baldocchi et al., 2015)	US-ORv	WET	40.0201	-83.0183	2011-2011	(Morin et al., 2014)
US-SRGGRA 31.7894 -110.8277 $2008-2014$ (Scott et al., 2015a)US-SRMWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2009)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-TonWSA 38.4316 -120.9660 $2001-2014$ (Baldocchi et al., 2010)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2013$ (Knox et al., 2016)US Tw3CRO 38.1150 121.6467 2013.2014 (Baldocchi et al., 2015)	US-Prr	\mathbf{ENF}	65.1237	-147.4876	2010-2013	(Nakai et al., 2013)
US-SRMWSA 31.8214 -110.8661 $2004-2014$ (Scott et al., 2009)US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-TonWSA 38.4316 -120.9660 $2001-2014$ (Baldocchi et al., 2010)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2013$ (Knox et al., 2016)US-Tw3CRO 38.1150 121.6467 2013.2014 (Baldocchi et al., 2015)	US-SRG	GRA	31.7894	-110.8277	2008-2014	(Scott et al., 2015a $)$
US-SyvMF 46.2420 -89.3477 $2001-2014$ (Desai et al., 2005)US-TonWSA 38.4316 -120.9660 $2001-2014$ (Baldocchi et al., 2010)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2013$ (Knox et al., 2016)US-Tw3CRO 38.1150 121.6467 2013.2014 (Baldocchi et al., 2015)	US-SRM	WSA	31.8214	-110.8661	2004 - 2014	(Scott et al., 2009)
US-TonWSA 38.4316 -120.9660 $2001-2014$ (Baldocchi et al., 2010)US-Tw1WET 38.1074 -121.6469 $2012-2014$ (Oikawa et al., 2017)US-Tw2CRO 38.1047 -121.6433 $2012-2013$ (Knox et al., 2016)US-Tw3CRO 38.1150 121.6467 2013.2014 (Baldocchi et al., 2015)	US-Syv	\mathbf{MF}	46.2420	-89.3477	2001-2014	(Desai et al., 2005)
US-Tw1 WET 38.1074 -121.6469 2012-2014 (Oikawa et al., 2017) US-Tw2 CRO 38.1047 -121.6433 2012-2013 (Knox et al., 2016) US-Tw3 CRO 38.1150 121.6467 2013 2014 (Paldocabi et al., 2015)	US-Ton	WSA	38.4316	-120.9660	2001-2014	(Baldocchi et al., 2010)
US-Tw2 CRO 38.1047 -121.6433 2012-2013 (Knox et al., 2016) US Tw3 CRO 38.1150 121.6467 2013 2014 (Baldocabi et al. 2015)	US-Tw1	WET	38.1074	-121.6469	2012 - 2014	(Oikawa et al., 2017)
US T_{W} CBO 38 1150 191 6467 9013 9014 (Baldocebi et al. 9015)	US-Tw2	CRO	38.1047	-121.6433	2012 - 2013	(Knox et al., 2016)
0.5 1.00 0.1109 -121.0407 $2013-2014$ (Daluoccill et al., 2013)	US-Tw3	CRO	38.1159	-121.6467	2013 - 2014	(Baldocchi et al., 2015)
US-Tw4 WET 38.1030 -121.6414 2013-2014 (Baldocchi, 2016)	US-Tw4	WET	38.1030	-121.6414	2013 - 2014	(Baldocchi, 2016)
US-Twt CRO 38.1087 -121.6530 2009-2014 (Hatala et al., 2012)	US-Twt	CRO	38.1087	-121.6530	2009-2014	(Hatala et al., 2012)
US-UMd DBF 45.5625 -84.6975 2007-2014 (Gough et al., 2013)	US-UMd	DBF	45.5625	-84.6975	2007 - 2014	(Gough et al., 2013)
US-Var GRA 38.4133 -120.9507 2000-2014 (Ma et al., 2007)	US-Var	GRA	38.4133	-120.9507	2000-2014	(Ma et al., 2007)
US-WCr DBF $45.8059 -90.0799 $ 1999-2014 (Cook et al., 2004)	US-WCr	DBF	45.8059	-90.0799	1999-2014	(Cook et al., 2004)

Site code	Veg type	Latitude	Longitude	Period	References
US-Whs	OSH	31.7438	-110.0522	2007-2014	(Scott et al., 2015b)
US-Wi0	ENF	46.6188	-91.0814	2002-2002	(Noormets et al., 2007a)
US-Wi3	DBF	46.6347	-91.0987	2002 - 2004	(Noormets et al., 2007b)
US-Wi4	ENF	46.7393	-91.1663	2002 - 2005	(Noormets et al., 2007c)
US-Wi6	OSH	46.6249	-91.2982	2002-2003	(Noormets et al., 2007d)
US-Wi9	\mathbf{ENF}	46.6188	-91.0814	2004 - 2005	(Noormets et al., 2007e)
US-Wkg	GRA	31.7365	-109.9419	2004 - 2014	(Scott et al., 2010)
ZA-Kru	SAV	-25.0197	31.4969	2000-2010	(Archibald et al., 2009)
ZM-Mon	DBF	-15.4378	23.2528	2000-2009	(Merbold et al., 2009b)

⁹⁰ Acosta, M., Pavelka, M., Montagnani, L., Kutsch, W., Lindroth, A., Juszczak, R. and Janouš, D.: Soil surface

⁹¹ CO2 efflux measurements in Norway spruce forests: Comparison between four different sites across Europe

⁹² from boreal to alpine forest, Geoderma, 192, 295–303, doi:10.1016/j.geoderma.2012.08.027, 2013.

Ammann, C., Spirig, C., Leifeld, J. and Neftel, A.: Assessment of the nitrogen and carbon budget of
 two managed temperate grassland fields, Agriculture, Ecosystems & Environment, 133(3-4), 150–162,
 doi:10.1016/j.agee.2009.05.006, 2009.

Anthoni, P. M., Knohl, A., Rebmann, C., Freibauer, A., Mund, M., Ziegler, W., Kolle, O. and Schulze, E.-D.:
 Forest and agricultural land-use-dependent CO2 exchange in Thuringia, Germany, Global Change Biology,

 $_{98}$ 10(12), 2005–2019, doi:10.1111/j.1365-2486.2004.00863.x, 2004.

⁹⁹ Archibald, S. A., Kirton, A., Merwe, M. R. van der, Scholes, R. J., Williams, C. A. and Hanan, N.: ¹⁰⁰ Drivers of inter-annual variability in net ecosystem exchange in a semi-arid savanna ecosystem, South Africa,

¹⁰¹ Biogeosciences, 6(2), 251–266, doi:10.5194/bg-6-251-2009, 2009.

Ardo, J., Molder, M., El-Tahir, B. A. and Elkhidir, H. A. M.: Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan, Carbon Balance and Management, 3(1), 7, doi:10.1186/1750-0680-3-7, 2008.

Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M. and Laitat, E.: Long term carbon
 dioxide exchange above a mixed forest in the Belgian Ardennes, Agricultural and Forest Meteorology, 108(4),

¹⁰⁶ 293–315, doi:10.1016/s0168-1923(01)00244-1, 2001.

¹⁰⁷ Aurela, M., Lohila, A., Tuovinen, J. P., Hatakka, J., Penttilä, T. and Laurila, T.: Carbon dioxide and energy
 ¹⁰⁸ flux measurements in four northern-boreal ecosystems at Pallas, Boreal Environment Research, 20(4), 455–473,
 ¹⁰⁹ 2015.

Baldocchi, D.: AmeriFlux US-Tw4 Twitchell East End Wetland from 2013-present, doi:10.17190/AMF/1246151,
2016.

Baldocchi, D., Chen, Q., Chen, X., Ma, S., Miller, G., Ryu, Y., Xiao, J., Wenk, R. and Battles, J.: The
dynamics of energy, water, and carbon fluxes in a blue oak (Quercus douglasii) savanna in California, in
Ecosystem function in Savannas, pp. 135–151, CRC Press., 2010.

Baldocchi, D., Sturtevant, C. and Contributors, F.: Does day and night sampling reduce spurious correlation
 between canopy photosynthesis and ecosystem respiration?, Agricultural and Forest Meteorology, 207, 117–126,
 doi:10.1016/j.agrformet.2015.03.010, 2015.

Berbigier, P., Bonnefond, J.-M. and Mellmann, P.: CO2 and water vapour fluxes for 2 years above Euroflux forest site, Agricultural and Forest Meteorology, 108(3), 183–197, doi:10.1016/s0168-1923(01)00240-4, 2001.

120 Bergeron, O., Margolis, H. A., Black, T. A., Coursolle, C., Dunn, A. L., Barr, A. G. and Wofsy, S. C.:

¹²¹ Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada, Global Change Biology,

122 13(1), 89–107, doi:10.1111/j.1365-2486.2006.01281.x, 2007.

Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B. and U, K. T. P.: Patterns and processes of carbon, water and energy cycles across northern Australian landscapes: From point to region, Agricultural and Forest ¹²⁵ Meteorology, 151(11), 1409–1416, doi:10.1016/j.agrformet.2011.05.003, 2011a.

Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B. and U, K. T. P.: Patterns and processes of carbon, water and energy cycles across northern Australian landscapes: From point to region, Agricultural and Forest

water and energy cycles across northern Australian landscapes: From point to region, A Meteorology, 151(11), 1409–1416, doi:10.1016/j.agrformet.2011.05.003, 2011b.

Beringer, J., Hacker, J., Hutley, L. B., Leuning, R., Arndt, S. K., Amiri, R., Bannehr, L., Cernusak, L. A.,
Grover, S., Hensley, C., Hocking, D., Isaac, P., Jamali, H., Kanniah, K., Livesley, S., Neininger, B., U, K. T.
P., Sea, W., Straten, D., Tapper, N., Weinmann, R., Wood, S. and Zegelin, S.: SPECIALSavanna patterns of
energy and carbon integrated across the landscape, Bulletin of the American Meteorological Society, 92(11),

133 1467–1485, doi:10.1175/2011bams2948.1, 2011c.

Beringer, J., Livesley, S. J., Randle, J. and Hutley, L. B.: Carbon dioxide fluxes dominate the greenhouse
gas exchanges of a seasonal wetland in the wetdry tropics of northern Australia, Agricultural and Forest
Meteorology, 182-183, 239-247, doi:10.1016/j.agrformet.2013.06.008, 2013.

Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., Dios, V. R.
de, Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac,

P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A.,

¹⁴⁰ Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee,

¹⁴¹ M. S., Tapper, N. J., Gorsel, E. van, Vote, C., Walker, J. and Wardlaw, T.: An introduction to the Australian

- ¹⁴² and New Zealand flux tower network OzFlux, Biogeosciences, 13(21), 5895–5916, doi:10.5194/bg-13-5895-2016,
- 143 2016a.

Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., Dios, V. R.

de, Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac,

P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A.,

Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee,

¹⁴⁸ M. S., Tapper, N. J., Gorsel, E. van, Vote, C., Walker, J. and Wardlaw, T.: An introduction to the Australian

and New Zealand flux tower network OzFlux, Biogeosciences, 13(21), 5895–5916, doi:10.5194/bg-13-5895-2016,
 2016b.

Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., Dios, V. R.
de, Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac,
P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A.,
Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee,
M. S., Tapper, N. J., Gorsel, E. van, Vote, C., Walker, J. and Wardlaw, T.: An introduction to the Australian
and New Zealand flux tower network OzFlux, Biogeosciences, 13(21), 5895–5916, doi:10.5194/bg-13-5895-2016,

Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., De Dios, V.
R., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac,
P., Kanniah, K., Leuning, R., Liddell, M. J., MacFarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A.,
Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Sun
Yee, M., Tapper, N. J., Van Gorsel, E., Vote, C., Walker, J. and Wardlaw, T.: An introduction to the Australian
and New Zealand flux tower network - OzFlux, Biogeosciences, 13(21), 5895–5916, doi:10.5194/bg-13-5895-2016,
2016d.

Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P., Bonnefond, J.-M., Elbers, J., Longdoz,
B., Epron, D., Guehl, J.-M. and Granier, A.: Impact of severe dry season on net ecosystem exchange in
the neotropical rainforest of French Guiana, Global Change Biology, 14(8), 1917–1933, doi:10.1111/j.13652486.2008.01610.x, 2008.

Bristow, M., Hutley, L. B., Beringer, J., Livesley, S. J., Edwards, A. C. and Arndt, S. K.: Quantifying the
relative importance of greenhouse gas emissions from current and future savanna land use change across
northern Australia, Biogeosciences Discussions, 1–47, doi:10.5194/bg-2016-191, 2016.

¹⁷² Carrara, A., Janssens, I. A., Yuste, J. C. and Ceulemans, R.: Seasonal changes in photosynthesis, res-¹⁷³ piration and NEE of a mixed temperate forest, Agricultural and Forest Meteorology, 126(1-2), 15–31,

- doi:10.1016/j.agrformet.2004.05.002, 2004.
- Cernusak, J. B. A. L. B. H. A. N. J. T. A. L. A.: Savanna fires and their impact on net ecosystem productivity in North Australia, Global Change Biology, 13(5), 990–1004, doi:10.1111/j.1365-2486.2007.01334.x, 2007.

Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. and Turner, B. L.: Photosynthetic physiology of
 eucalypts along a sub-continental rainfall gradient in northern Australia, Agricultural and Forest Meteorology,
 151(11), 1462–1470, doi:10.1016/j.agrformet.2011.01.006, 2011.

Chen, S., Chen, J., Lin, G., Zhang, W., Miao, H., Wei, L., Huang, J. and Han, X.: Energy balance and partition
 in Inner Mongolia steppe ecosystems with different land use types, Agricultural and Forest Meteorology,
 149(11), 1800–1809, doi:10.1016/j.agrformet.2009.06.009, 2009.

- ¹⁸³ Chiesi, M., Maselli, F., Bindi, M., Fibbi, L., Cherubini, P., Arlotta, E., Tirone, G., Matteucci, G. and Seufert,
- 184 G.: Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements,
- Agricultural and Forest Meteorology, 135(1-4), 22–34, doi:10.1016/j.agrformet.2005.09.011, 2005.

¹⁸⁶ Cleverly, J., Boulain, N., Villalobos-Vega, R., Grant, N., Faux, R., Wood, C., Cook, P. G., Yu, Q., Leigh, A.
¹⁸⁷ and Eamus, D.: Dynamics of component carbon fluxes in a semi-arid Acacia woodland, central Australia,
¹⁸⁸ Journal of Geophysical Research: Biogeosciences, 118(3), 1168–1185, doi:10.1002/jgrg.20101, 2013.

- ¹⁸⁹ Cleverly, J., Eamus, D., Van Gorsel, E., Chen, C., Rumman, R., Luo, Q., Coupe, N. R., Li, L., Kljun, N.,
- ¹⁹⁰ Faux, R., Yu, Q. and Huete, A.: Productivity and evapotranspiration of two contrasting semiarid ecosystems
- ¹⁹¹ following the 2011 global carbon land sink anomaly, Agricultural and Forest Meteorology, 220, 151–159,
- ¹⁹² doi:10.1016/j.agrformet.2016.01.086, 2016.

¹⁹³ Cook, B. D., Davis, K. J., Wang, W., Desai, A., Berger, B. W., Teclaw, R. M., Martin, J. G., Bolstad,
¹⁹⁴ P. V., Bakwin, P. S., Yi, C. and Heilman, W.: Carbon exchange and venting anomalies in an upland
¹⁹⁵ deciduous forest in northern Wisconsin, USA, Agricultural and Forest Meteorology, 126(3-4), 271–295,
¹⁹⁶ doi:10.1016/j.agrformet.2004.06.008, 2004.

¹⁹⁷ Delpierre, N., Berveiller, D., Granda, E. and Dufrêne, E.: Wood phenology, not carbon input, controls ¹⁹⁸ the interannual variability of wood growth in a temperate oak forest, New Phytologist, 210(2), 459–470, ¹⁹⁹ doi:10.1111/nph.13771, 2015.

Desai, A. R., Bolstad, P. V., Cook, B. D., Davis, K. J. and Carey, E. V.: Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA, Agricultural and Forest Meteorology, 128(1-2), 33–55, doi:10.1016/j.agrformet.2004.09.005, 2005.

- Dietiker, D., Buchmann, N. and Eugster, W.: Testing the ability of the DNDC model to predict CO2 and water vapour fluxes of a Swiss cropland site, Agriculture, Ecosystems & Environment, 139(3), 396–401,
- ²⁰⁵ doi:10.1016/j.agee.2010.09.002, 2010.
- Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A. and Maher, N.: More extreme precipitation
 in the world's dry and wet regions, Nature Climate Change, 6(5), 508–513, doi:10.1038/nclimate2941, 2016.
- Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L. and Daube, B. C.: A long-term record of carbon exchange in a boreal black spruce forest: Means, responses to interannual variability, and decadal trends, Global Change Biology, 13(3), 577–590, doi:10.1111/j.1365-2486.2006.01221.x, 2007.
- Dušek, J., Čížková, H., Stellner, S., Czerný, R. and Květ, J.: Fluctuating water table affects gross ecosystem production and gross radiation use efficiency in a sedge-grass marsh, Hydrobiologia, 692(1), 57–66, doi:10.1007/s10750-012-0998-z, 2012.
- Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A., Pluess, P., Häsler, R., Eugster, W. and
- ²¹⁵ Buchmann, N.: The carbon balance of two contrasting mountain forest ecosystems in Switzerland: Similar ²¹⁶ annual trends, but seasonal differences, Ecosystems, 14(8), 1289–1309, doi:10.1007/s10021-011-9481-3, 2011.

Fares, S., Savi, F., Muller, J., Matteucci, G. and Paoletti, E.: Simultaneous measurements of above and below canopy ozone fluxes help partitioning ozone deposition between its various sinks in a Mediterranean Oak

- ²¹⁹ Forest, Agricultural and Forest Meteorology, 198-199, 181–191, doi:10.1016/j.agrformet.2014.08.014, 2014.
- ²²⁰ Ferréa, C., Zenone, T., Comolli, R. and Seufert, G.: Estimating heterotrophic and autotrophic soil respiration
- in a semi-natural forest of Lombardy, Italy, Pedobiologia, 55(6), 285–294, doi:10.1016/j.pedobi.2012.05.001,
- 222 2012.
- Fischer, M. L., Billesbach, D. P., Berry, J. A., Riley, W. J. and Torn, M. S.: Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the southern Great Plains,
- Earth Interactions, 11(17), 1–21, doi:10.1175/ei231.1, 2007.
- Frank, J. M., Massman, W. J., Ewers, B. E., Huckaby, L. S. and Negrón, J. F.: Ecosystem CO2/H2O fluxes
 are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles, Journal of
 Geophysical Research: Biogeosciences, 119(6), 1195–1215, doi:10.1002/2013jg002597, 2014.
- Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M., Colombo, R., Filippa, G., Julitta, T., Manca, G.,
- ²³⁰ Siniscalco, C., Cella, U. M. di and Migliavacca, M.: Phenology and carbon dioxide source/sink strength of a
- ²³¹ subalpine grassland in response to an exceptionally short snow season, Environmental Research Letters, 8(2),
- $_{232} \quad 025008, \, doi: 10.1088/1748-9326/8/2/025008, \, 2013.$
- Garbulsky, M. F., Peñuelas, J., Papale, D. and Filella, I.: Remote estimation of carbon dioxide uptake by a
 Mediterranean forest, Global Change Biology, 14(12), 2860–2867, doi:10.1111/j.1365-2486.2008.01684.x, 2008.
- Goldstein, A., Hultman, N., Fracheboud, J., Bauer, M., Panek, J., Xu, M., Qi, Y., Guenther, A. and
- ²³⁶ Baugh, W.: Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a
- ponderosa pine plantation in the Sierra Nevada (CA), Agricultural and Forest Meteorology, 101(2-3), 113–129,
 doi:10.1016/s0168-1923(99)00168-9, 2000.
- Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., Nadelhoffer, K. J. and
- 240 Curtis, P. S.: Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest,
- ²⁴¹ Ecological Applications, 23(5), 1202–1215, doi:10.1890/12-1554.1, 2013.
- 242 Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V. and Elliot, J.
- R.: An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange, Global
 Change Biology, 12(11), 2146–2162, doi:10.1111/j.1365-2486.2006.01251.x, 2006a.
- Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V. and Elliot, J.
- R.: An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange, Global
- $_{247} \quad {\rm Change\ Biology,\ 12(11),\ 2146-2162,\ doi:10.1111/j.1365-2486.2006.01251.x,\ 2006b. }$
- Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V. and Elliot, J.
 R.: An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange, Global
 Change Biology, 12(11), 2146–2162, doi:10.1111/j.1365-2486.2006.01251.x, 2006c.
- Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V. and Elliot, J.
- R.: An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange, Global
- Change Biology, 12(11), 2146-2162, doi:10.1111/j.1365-2486.2006.01251.x, 2006d.
- Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V. and Elliot, J.
 R.: An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange, Global
- ²⁵⁶ Change Biology, 12(11), 2146–2162, doi:10.1111/j.1365-2486.2006.01251.x, 2006e.
- 257 Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V. and Elliot, J.
- R.: An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange, Global Change Biology, 12(11), 2146–2162, doi:10.1111/j.1365-2486.2006.01251.x, 2006f.
- Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V. and Elliot, J. R.: An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange, Global
- ²⁶⁷ Th: The edgy covariance mesoner to measure the energy of breast age on hand atmosphere exchange, Global ²⁶² Change Biology, 12(11), 2146–2162, doi:10.1111/j.1365-2486.2006.01251.x, 2006g.
- $_{262}$ Change Biology, 12(11), 2146–2162, doi:10.1111/j.1365-2486.2006.01251.x, 20
- ²⁶³ Grünwald, T. and Bernhofer, C.: A decade of carbon, water and energy flux measurements of an old spruce

- forest at the Anchor Station Tharandt, Tellus B, 59(3), doi:10.3402/tellusb.v59i3.17000, 2007.
- ²⁶⁵ Guan, D.-X., Wu, J.-B., Zhao, X.-S., Han, S.-J., Yu, G.-R., Sun, X.-M. and Jin, C.-J.: CO2 fluxes over an
- ²⁶⁶ old, temperate mixed forest in northeastern China, Agricultural and Forest Meteorology, 137(3-4), 138–149,
- ²⁶⁷ doi:10.1016/j.agrformet.2006.02.003, 2006.

Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J., Verfaillie, J. and Baldocchi, D. D.: Greenhouse gas
 (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin

- ²⁷⁰ Delta, Agriculture, Ecosystems & Environment, 150, 1–18, doi:10.1016/j.agee.2012.01.009, 2012.
- ²⁷¹ Hinko-Najera, N., Isaac, P., Beringer, J., Gorsel, E. van, Ewenz, C., McHugh, I., Exbrayat, J.-F., Livesley,
- 272 S. J. and Arndt, S. K.: Net ecosystem carbon exchange of a dry temperate eucalypt forest, Biogeosciences,
- ²⁷³ 14(16), 3781–3800, doi:10.5194/bg-14-3781-2017, 2017.
- Hommeltenberg, J., Schmid, H. P., Drösler, M. and Werle, P.: Can a bog drained for forestry be a stronger
 carbon sink than a natural bog forest?, Biogeosciences, 11(13), 3477–3493, doi:10.5194/bg-11-3477-2014, 2014.
- Hoshika, Y., Fares, S., Savi, F., Gruening, C., Goded, I., De Marco, A., Sicard, P. and Paoletti, E.: Stomatal
 conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests,
 Agricultural and Forest Meteorology, 234-235, 212–221, doi:10.1016/j.agrformet.2017.01.005, 2017.
- ²⁶ Hgheulutai and Forest Neteorology, 264 255, 212 221, doi:10.1010/j.agitoimet.2011.01.005
- Hutley, L. B., Beringer, J., Isaac, P. R., Hacker, J. M. and Cernusak, L. A.: A sub-continental scale living
 laboratory: Spatial patterns of savanna vegetation over a rainfall gradient in northern Australia, Agricultural
 and Forest Meteorology, 151(11), 1417–1428, doi:10.1016/j.agrformet.2011.03.002, 2011.
- Imer, D., Merbold, L., Eugster, W. and Buchmann, N.: Temporal and spatial variations of soil CO₂, CH₄ and
 N₂O fluxes at three differently managed grasslands, Biogeosciences, 10(9), 5931–5945, doi:10.5194/bg-10-5931 2013, 2013.
- Irvine, J., Law, B. E. and Hibbard, K. A.: Postfire carbon pools and fluxes in semiarid ponderosa pine in
 central Oregon, Global Change Biology, 13(8), 1748–1760, doi:10.1111/j.1365-2486.2007.01368.x, 2007.
- Irvine, J., Law, B. E., Martin, J. G. and Vickers, D.: Interannual variation in soil CO2 efflux and the response
 of root respiration to climate and canopy gas exchange in mature ponderosa pine, Global Change Biology,
 14(12), 2848–2859, doi:10.1111/j.1365-2486.2008.01682.x, 2008.
- Jacobs, C. M. J., Jacobs, A. F. G., Bosveld, F. C., Hendriks, D. M. D., Hensen, A., Kroon, P. S., Moors, E. J.,
 Nol, L., Schrier-Uijl, A. and Veenendaal, E. M.: Variability of annual CO₂ exchange from Dutch grasslands,
 Biogeosciences, 4(5), 803–816, doi:10.5194/bg-4-803-2007, 2007.
- Kato, T., Tang, Y., Gu, S., Hirota, M., Du, M., Li, Y. and Zhao, X.: Temperature and biomass influences on
 interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau, Global Change
 Biology, 12(7), 1285–1298, doi:10.1111/j.1365-2486.2006.01153.x, 2006.
- Kilinc, M., Beringer, J., Hutley, L. B., Tapper, N. J. and McGuire, D. A.: Carbon and water exchange of the worlds tallest angiosperm forest, Agricultural and Forest Meteorology, 182-183, 215-224, doi:10.1016/j.agrformet.2013.07.003, 2013.
- Knohl, A., Schulze, E.-D., Kolle, O. and Buchmann, N.: Large carbon uptake by an unmanaged 250year-old deciduous forest in central Germany, Agricultural and Forest Meteorology, 118(3-4), 151–167,
 doi:10.1016/s0168-1923(03)00115-1, 2003.
- Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J. and Baldocchi, D.: Biophysical
 controls on interannual variability in ecosystem-scale CO2and CH4exchange in a California rice paddy, Journal
 of Geophysical Research: Biogeosciences, 121(3), 978–1001, doi:10.1002/2015jg003247, 2016.
- Kurbatova, J., Li, C., Varlagin, A., Xiao, X. and Vygodskaya, N.: Modeling carbon dynamics in two adjacent
 spruce forests with different soil conditions in Russia, Biogeosciences, 5(4), 969–980, doi:10.5194/bg-5-969-2008,
 2008.
- Lindauer, M., Schmid, H., Grote, R., Mauder, M., Steinbrecher, R. and Wolpert, B.: Net ecosystem exchange over a non-cleared wind-throw-disturbed upland spruce forestMeasurements and simulations, Agricultural and

- ³¹⁰ Forest Meteorology, 197, 219–234, doi:10.1016/j.agrformet.2014.07.005, 2014.
- Lohila, A.: Annual CO2 exchange of a peat field growing spring barley or perennial forage grass, Journal of Geophysical Research, 109(D18), doi:10.1029/2004jd004715, 2004.
- ³¹³ Loubet, B., Laville, P., Lehuger, S., Larmanou, E., Fléchard, C., Mascher, N., Genermont, S., Roche,
- 314 R., Ferrara, R. M., Stella, P., Personne, E., Durand, B., Decuq, C., Flura, D., Masson, S., Fanucci, O.,
- Rampon, J.-N., Siemens, J., Kindler, R., Gabrielle, B., Schrumpf, M. and Cellier, P.: Carbon, nitrogen and
- greenhouse gases budgets over a four years crop rotation in northern France, Plant and Soil, 343(1-2), 109–137,
- doi:10.1007/s11104-011-0751-9, 2011.
- Lund, M., Falk, J. M., Friborg, T., Mbufong, H. N., Sigsgaard, C., Soegaard, H. and Tamstorf, M. P.: Trends in CO2 exchange in a high Arctic tundra heath, 2000-2010, Journal of Geophysical Research: Biogeosciences, 117(G2), n/a-n/a, doi:10.1029/2011jg001901, 2012.
- Ma, S., Baldocchi, D. D., Xu, L. and Hehn, T.: Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California, Agricultural and Forest Meteorology, 147(3-4), 157–171, doi:10.1016/j.agrformet.2007.07.008, 2007.
- Marchesini, L. B., Papale, D., Reichstein, M., Vuichard, N., Tchebakova, N. and Valentini, R.: Carbon balance assessment of a natural steppe of southern Siberia by multiple constraint approach, Biogeosciences Discussions, 4(1), 165–208, doi:10.5194/bgd-4-165-2007, 2007.
- Marcolla, B., Pitacco, A. and Cescatti, A.: Canopy architecture and turbulence structure in a coniferous forest, Boundary-Layer Meteorology, 108(1), 39–59, doi:10.1023/a:1023027709805, 2003a.
- Marcolla, B., Pitacco, A. and Cescatti, A.: Canopy architecture and turbulence structure in a coniferous forest, Boundary-Layer Meteorology, 108(1), 39–59, doi:10.1023/a:1023027709805, 2003b.
- Marcolla, B., Cescatti, A., Manca, G., Zorer, R., Cavagna, M., Fiora, A., Gianelle, D., Rodeghiero, M.,
- Sottocornola, M. and Zampedri, R.: Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow, Agricultural and Forest Meteorology, 151(9), 1222, 1242, doi:10.1016/j.agrformet.2011.04.015, 2011
- 334 1233–1243, doi:10.1016/j.agrformet.2011.04.015, 2011.
- Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki, H., Kononov, A. V.,
 Molen, M. K. van der, Kodama, Y., Maximov, T. C., Dolman, A. J. and Hattori, S.: Energy consumption
 and evapotranspiration at several boreal and temperate forests in the Far East, Agricultural and Forest
 Meteorology, 148(12), 1978–1989, doi:10.1016/j.agrformet.2008.09.008, 2008a.
- Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki, H., Kononov, A. V.,
 Molen, M. K. van der, Kodama, Y., Maximov, T. C., Dolman, A. J. and Hattori, S.: Energy consumption
 and evapotranspiration at several boreal and temperate forests in the Far East, Agricultural and Forest
 Meteorology, 148(12), 1978–1989, doi:10.1016/j.agrformet.2008.09.008, 2008b.
- Matthes, J. H., Sturtevant, C., Verfaillie, J., Knox, S. and Baldocchi, D.: Parsing the variability in CH4flux at a
 spatially heterogeneous wetland: Integrating multiple eddy covariance towers with high-resolution flux footprint
 analysis, Journal of Geophysical Research: Biogeosciences, 119(7), 1322–1339, doi:10.1002/2014jg002642,
 2014.
- Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H. P., Schmidt, M. and Steinbrecher, R.:
- A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements, Agricultural and Forest Meteorology, 169, 122–135, doi:10.1016/j.agrformet.2012.09.006, 2013.
- McHugh, I. D., Beringer, J., Cunningham, S. C., Baker, P. J., Cavagnaro, T. R., Nally, R. M. and Thompson, R. M.: Interactions between nocturnal turbulent flux, storage and advection at an ideal eucalypt woodland
- site, Biogeosciences, 14(12), 3027–3050, doi:10.5194/bg-14-3027-2017, 2017.
- Merbold, L., Kutsch, W. L., Corradi, C., Kolle, O., Rebmann, C., Stoy, P. C., Zimov, S. A. and Schulze,
- E.-D.: Artificial drainage and associated carbon fluxes (CO2/CH4) in a tundra ecosystem, Global Change
 Biology, 15(11), 2599–2614, doi:10.1111/j.1365-2486.2009.01962.x, 2009a.
- Merbold, L., Ardö, J., Arneth, A., Scholes, R. J., Nouvellon, Y., Grandcourt, A. de, Archibald, S., Bonnefond,

- J. M., Boulain, N., Brueggemann, N., Bruemmer, C., Cappelaere, B., Ceschia, E., El-Khidir, H. A. M., 357
- El-Tahir, B. A., Falk, U., Llovd, J., Kergoat, L., Dantec, V. L., Mougin, E., Muchinda, M., Mukelabai, M. 358
- M., Ramier, D., Roupsard, O., Timouk, F., Veenendaal, E. M. and Kutsch, W. L.: Precipitation as driver of 359 carbon fluxes in 11 African ecosystems, Biogeosciences, 6(6), 1027–1041, doi:10.5194/bg-6-1027-2009, 2009b. 360
- Merbold, L., Eugster, W., Stieger, J., Zahniser, M., Nelson, D. and Buchmann, N.: Greenhouse gas budget 361 (CO2, CH4and N2O) of intensively managed grassland following restoration, Global Change Biology, 20(6),
- 362 1913–1928, doi:10.1111/gcb.12518, 2014. 363
- Meyer, W. S., Kondrlovà, E. and Koerber, G. R.: Evaporation of perennial semi-arid woodland in southeastern 364 Australia is adapted for irregular but common dry periods, Hydrological Processes, 29(17), 3714–3726, 365 doi:10.1002/hyp.10467, 2015. 366
- Migliavacca, M., Meroni, M., Busetto, L., Colombo, R., Zenone, T., Matteucci, G., Manca, G. and Seufert, G.: 367 Modeling gross primary production of agro-forestry ecosystems by assimilation of satellite-derived information 368 in a process-based model, Sensors, 9(2), 922–942, doi:10.3390/s90200922, 2009. 369
- Milly, P. C. D. and Dunne, K. A.: Potential evapotranspiration and continental drying, Nature Climate 370 Change, 6(10), nclimate3046, doi:10.1038/nclimate3046, 2016. 371
- Mkhabela, M., Amiro, B., Barr, A., Black, T., Hawthorne, I., Kidston, J., McCaughey, J., Orchansky, A., 372 Nesic, Z., Sass, A., Shashkov, A. and Zha, T.: Comparison of carbon dynamics and water use efficiency 373 following fire and harvesting in Canadian boreal forests, Agricultural and Forest Meteorology, 149(5), 783–794, 374 doi:10.1016/j.agrformet.2008.10.025, 2009a. 375
- Mkhabela, M., Amiro, B., Barr, A., Black, T., Hawthorne, I., Kidston, J., McCaughey, J., Orchansky, A., 376
- Nesic, Z., Sass, A., Shashkov, A. and Zha, T.: Comparison of carbon dynamics and water use efficiency 377 following fire and harvesting in Canadian boreal forests, Agricultural and Forest Meteorology, 149(5), 783–794, 378
- doi:10.1016/j.agrformet.2008.10.025, 2009b. 379
- Mkhabela, M., Amiro, B., Barr, A., Black, T., Hawthorne, I., Kidston, J., McCaughey, J., Orchansky, A., 380
- Nesic, Z., Sass, A., Shashkov, A. and Zha, T.: Comparison of carbon dynamics and water use efficiency 381 following fire and harvesting in Canadian boreal forests, Agricultural and Forest Meteorology, 149(5), 783–794,
- 382
- doi:10.1016/j.agrformet.2008.10.025, 2009c. 383
- Molen, M. K. van der, Huissteden, J. van, Parmentier, F. J. W., Petrescu, A. M. R., Dolman, A. J., 384
- Maximov, T. C., Kononov, A. V., Karsanaev, S. V. and Suzdalov, D. A.: The growing season greenhouse gas 385
- balance of a continental tundra site in the Indigirka lowlands, NE Siberia, Biogeosciences, 4(6), 985-1003, 386 doi:10.5194/bg-4-985-2007, 2007. 387
- Monson, R. K., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Scott-Denton, L. E., Sparks, K. and Huxman, 388 T. E.: Carbon sequestration in a high-elevation, subalpine forest, Global Change Biology, 8(5), 459–478, 389
- doi:10.1046/j.1365-2486.2002.00480.x, 2002. 390
- Montagnani, L., Manca, G., Canepa, E., Georgieva, E., Acosta, M., Feigenwinter, C., Janous, D., Kerschbaumer, 391
- G., Lindroth, A., Minach, L., Minerbi, S., Mölder, M., Pavelka, M., Seufert, G., Zeri, M. and Ziegler, W.: A 392
- new mass conservation approach to the study of CO2 advection in an alpine forest. Journal of Geophysical 393
- Research, 114(D7), doi:10.1029/2008jd010650, 2009. 394
- Moors, E.: Water Use of Forests in The Netherlands, PhD thesis, Vrije Universiteit Amsterdam., 2012. 395
- Morin, T. H., Bohrer, G., M. Frasson, R. P. d., Naor-Azreli, L., Mesi, S., Stefanik, K. C. and Schäfer, K. V. 396
- R.: Environmental drivers of methane fluxes from an urban temperate wetland park, Journal of Geophysical 397
- Research: Biogeosciences, 119(11), 2188-2208, doi:10.1002/2014jg002750, 2014. 398
- Moureaux, C., Debacq, A., Bodson, B., Heinesch, B. and Aubinet, M.: Annual net ecosystem carbon exchange 300
- by a sugar beet crop, Agricultural and Forest Meteorology, 139(1-2), 25–39, doi:10.1016/j.agrformet.2006.05.009, 400
- 2006.401
- Nakai, T., Kim, Y., Busey, R. C., Suzuki, R., Nagai, S., Kobayashi, H., Park, H., Sugiura, K. and Ito, A.: 402
- Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska, Polar Science, 403

- ⁴⁰⁴ 7(2), 136–148, doi:10.1016/j.polar.2013.03.003, 2013.
- Noormets, A., Chen, J. and Crow, T. R.: Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA, Ecosystems, 10(2), 187–203, doi:10.1007/s10021-007-9018-y, 2007a.
- ⁴⁰⁷ Noormets, A., Chen, J. and Crow, T. R.: Age-dependent changes in ecosystem carbon fluxes in managed
 ⁴⁰⁸ forests in northern Wisconsin, USA, Ecosystems, 10(2), 187–203, doi:10.1007/s10021-007-9018-y, 2007b.
- Noormets, A., Chen, J. and Crow, T. R.: Age-dependent changes in ecosystem carbon fluxes in managed
 forests in northern Wisconsin, USA, Ecosystems, 10(2), 187–203, doi:10.1007/s10021-007-9018-y, 2007c.
- Noormets, A., Chen, J. and Crow, T. R.: Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA, Ecosystems, 10(2), 187–203, doi:10.1007/s10021-007-9018-y, 2007d.
- ⁴¹³ Noormets, A., Chen, J. and Crow, T. R.: Age-dependent changes in ecosystem carbon fluxes in managed ⁴¹⁴ forests in northern Wisconsin, USA, Ecosystems, 10(2), 187–203, doi:10.1007/s10021-007-9018-y, 2007e.
- 415 Oikawa, P. Y., Jenerette, G. D., Knox, S. H., Sturtevant, C., Verfaillie, J., Dronova, I., Poindexter, C. M.,
- 416 Eichelmann, E. and Baldocchi, D. D.: Evaluation of a hierarchy of models reveals importance of substrate
- 417 limitation for predicting carbon dioxide and methane exchange in restored wetlands, Journal of Geophysical
- 418 Research: Biogeosciences, 122(1), 145–167, doi:10.1002/2016jg003438, 2017.
- ⁴¹⁹ Papale, D., Migliavacca, M., Cremonese, E., Cescatti, A., Alberti, G., Balzarolo, M., Marchesini, L. B.,
- 420 Canfora, E., Casa, R., Duce, P., Facini, O., Galvagno, M., Genesio, L., Gianelle, D., Magliulo, V., Matteucci,
- 421 G., Montagnani, L., Petrella, F., Pitacco, A., Seufert, G., Spano, D., Stefani, P., Vaccari, F. P. and Valentini,
- 422 R.: Carbon, water and energy fluxes of terrestrial ecosystems in Italy, in The greenhouse gas balance of italy,
- ⁴²³ pp. 11–45, Springer Berlin Heidelberg., 2014.
- Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelshøj, P. and Jensen, N. O.: Increasing net CO2 uptake
 by a Danish beech forest during the period from 1996 to 2009, Agricultural and Forest Meteorology, 151(7),
 934–946, doi:10.1016/j.agrformet.2011.02.013, 2011.
- Posse, G., Lewczuk, N., Richter, K. and Cristiano, P.: Carbon and water vapor balance in a subtropical pine
 plantation, iForest Biogeosciences and Forestry, 9(5), 736–742, doi:10.3832/ifor1815-009, 2016.
- Post, H., Franssen, H. J. H., Graf, A., Schmidt, M. and Vereecken, H.: Uncertainty analysis of eddy covariance
 CO₂ flux measurements for different EC tower distances using an extended two-tower approach, Biogeosciences,
- $_{431}$ 12(4), 1205–1221, doi:10.5194/bg-12-1205-2015, 2015.
- Powell, T. L., Bracho, R., Li, J., Dore, S., Hinkle, C. R. and Drake, B. G.: Environmental controls over net
 ecosystem carbon exchange of scrub oak in central Florida, Agricultural and Forest Meteorology, 141(1),
 19–34, doi:10.1016/j.agrformet.2006.09.002, 2006.
- ⁴³⁵ Prescher, A.-K., Grünwald, T. and Bernhofer, C.: Land use regulates carbon budgets in eastern Germany: From
 ⁴³⁶ NEE to NBP, Agricultural and Forest Meteorology, 150(7-8), 1016–1025, doi:10.1016/j.agrformet.2010.03.008,
 ⁴³⁷ 2010a.
- ⁴³⁸ Prescher, A.-K., Grünwald, T. and Bernhofer, C.: Land use regulates carbon budgets in eastern germany: From
- NEE to NBP, Agricultural and Forest Meteorology, 150(7-8), 1016–1025, doi:10.1016/j.agrformet.2010.03.008,
 2010b.
- Prober, S. M., Thiele, K. R., Rundel, P. W., Yates, C. J., Berry, S. L., Byrne, M., Christidis, L., Gosper,
 C. R., Grierson, P. F., Lemson, K., Lyons, T., Macfarlane, C., O'Connor, M. H., Scott, J. K., Standish,
 R. J., Stock, W. D., Etten, E. J. van, Wardell-Johnson, G. W. and Watson, A.: Facilitating adaptation of
 biodiversity to climate change: A conceptual framework applied to the world's largest Mediterranean-climate
 woodland, Climatic Change, 110(1-2), 227–248, doi:10.1007/s10584-011-0092-y, 2012.
- Rambal, S., Joffre, R., Ourcival, J. M., Cavender-Bares, J. and Rocheteau, A.: The growth respiration component in eddy CO2 flux from a Quercus ilex mediterranean forest, Global Change Biology, 10(9),
- ${}^{_{448}} \quad 1460-1469, \, doi: 10.1111/j.1365-2486.2004.00819.x, \, 2004.$
- ⁴⁴⁹ Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A. and Torn, M.

- S.: Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains, Agriculture,
 Ecosystems & Environment, 213, 209–218, doi:10.1016/j.agee.2015.07.021, 2015a.
- 452 Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A. and Torn, M.
- 453 S.: Vulnerability of crops and native grasses to summer drying in the U.S. southern Great Plains, Agriculture,
- 454 Ecosystems & Environment, 213, 209–218, doi:10.1016/j.agee.2015.07.021, 2015b.
- Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A. and Torn, M.
 S.: Vulnerability of crops and native grasses to summer drying in the U.S. southern Great Plains, Agriculture,
- $_{457}$ Ecosystems & Environment, 213, 209–218, doi:10.1016/j.agee.2015.07.021, 2015c.
- 458 Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A. and Torn, M.
- 459 S.: Vulnerability of crops and native grasses to summer drying in the U.S. southern Great Plains, Agriculture,
- 460 Ecosystems & Environment, 213, 209–218, doi:10.1016/j.agee.2015.07.021, 2015d.
- ⁴⁶¹ Reverter, B. R., Sánchez-Cañete, E. P., Resco, V., Serrano-Ortiz, P., Oyonarte, C. and Kowalski, A. S.:
 ⁴⁶² Analyzing the major drivers of NEE in a Mediterranean alpine shrubland, Biogeosciences, 7(9), 2601–2611,
 ⁴⁶³ doi:10.5194/bg-7-2601-2010, 2010.
- Rey, A., Pegoraro, E., Tedeschi, V., Parri, I. D., Jarvis, P. G. and Valentini, R.: Annual variation in soil
 respiration and its components in a coppice oak forest in central Italy, Global Change Biology, 8(9), 851–866,
 doi:10.1046/j.1365-2486.2002.00521.x, 2002.
- Ruehr, N. K., Martin, J. G. and Law, B. E.: Effects of water availability on carbon and water exchange in a
 young ponderosa pine forest: Above- and belowground responses, Agricultural and Forest Meteorology, 164,
 136–148, doi:10.1016/j.agrformet.2012.05.015, 2012.
- 470 Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo, C., Djomo, S. N., Gioli, B., Matteucci,
- 471 G. and Papale, D.: Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice,
- 472 Biogeosciences, 13(1), 95–113, doi:10.5194/bg-13-95-2016, 2016a.
- 473 Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo, C., Djomo, S. N., Gioli, B., Matteucci,
- G. and Papale, D.: Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice, Biogeosciences, 13(1), 95–113, doi:10.5194/bg-13-95-2016, 2016b.
- ⁴⁷⁶ Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo, C., Djomo, S. N., Gioli, B., Matteucci,
- 477 G. and Papale, D.: Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice,
- ⁴⁷⁸ Biogeosciences, 13(1), 95–113, doi:10.5194/bg-13-95-2016, 2016c.
- Schmidt, M., Reichenau, T., Fiener, P. and Schneider, K.: The carbon budget of a winter wheat field: An
 eddy covariance analysis of seasonal and inter-annual variability, Agricultural and Forest Meteorology, 165,
 114–126, doi:10.1016/j.agrformet.2012.05.012, 2012.
- ⁴⁸² Schroder, I., Kuske, T. and Zegelin, S.: Eddy Covariance Dataset for Arcturus (2011-2013), Geoscience
 ⁴⁸³ Australia, Canberra., 2014.
- Scott, R. L., Jenerette, G. D., Potts, D. L. and Huxman, T. E.: Effects of seasonal drought on net carbon
 dioxide exchange from a woody-plant-encroached semiarid grassland, Journal of Geophysical Research, 114(G4),
 doi:10.1029/2008jg000900, 2009.
- ⁴⁸⁷ Scott, R. L., Hamerlynck, E. P., Jenerette, G. D., Moran, M. S. and Barron-Gafford, G. A.: Carbon dioxide
 ⁴⁸⁸ exchange in a semidesert grassland through drought-induced vegetation change, Journal of Geophysical
 ⁴⁸⁹ Research, 115(G3), doi:10.1029/2010jg001348, 2010.
- 490 Scott, R. L., Biederman, J. A., Hamerlynck, E. P. and Barron-Gafford, G. A.: The carbon balance pivot point
- ⁴⁹¹ of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought, Journal of Geophysical
 ⁴⁹² Research: Biogeosciences, 120(12), 2612–2624, doi:10.1002/2015jg003181, 2015a.
- ⁴⁹³ Scott, R. L., Biederman, J. A., Hamerlynck, E. P. and Barron-Gafford, G. A.: The carbon balance pivot point ⁴⁹⁴ of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought, Journal of Geophysical

- ⁴⁹⁵ Research: Biogeosciences, 120(12), 2612–2624, doi:10.1002/2015jg003181, 2015b.
- ⁴⁹⁶ Serrano-Ortiz, P., Marañón-Jiménez, S., Reverter, B. R., Sánchez-Cañete, E. P., Castro, J., Zamora, R. and
- ⁴⁹⁷ Kowalski, A. S.: Post-fire salvage logging reduces carbon sequestration in Mediterranean coniferous forest,
- ⁴⁹⁸ Forest Ecology and Management, 262(12), 2287–2296, doi:10.1016/j.foreco.2011.08.023, 2011.
- Shao, C., Chen, J., Li, L., Dong, G., Han, J., Abraha, M. and John, R.: Grazing effects on surface energy fluxes
 in a desert steppe on the Mongolian Plateau: Ecological Applications, 27(2), 485–502, doi:10.1002/eap.1459,
 2017.
- Shi, P., Sun, X., Xu, L., Zhang, X., He, Y., Zhang, D. and Yu, G.: Net ecosystem CO2 exchange and
 controlling factors in a steppeKobresia meadow on the Tibetan Plateau, Science in China Series D: Earth
 Sciences, 49(S2), 207–218, doi:10.1007/s11430-006-8207-4, 2006.
- Stevens, R. M., Ewenz, C. M., Grigson, G. and Conner, S. M.: Water use by an irrigated almond orchard,
 Irrigation Science, 30(3), 189–200, doi:10.1007/s00271-011-0270-8, 2011.
- ⁵⁰⁷ Stiegler, C., Lund, M., Christensen, T. R., Mastepanov, M. and Lindroth, A.: Two years with extreme and ⁵⁰⁸ little snowfall: Effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem,
- ⁵⁰⁹ The Cryosphere, 10(4), 1395–1413, doi:10.5194/tc-10-1395-2016, 2016.
- Sulman, B. N., Desai, A. R., Cook, B. D., Saliendra, N. and Mackay, D. S.: Contrasting carbon dioxide
 fluxes between a drying shrub wetland in northern Wisconsin, USA, and nearby forests, Biogeosciences, 6(6),
- $_{512}$ 1115–1126, doi:10.5194/bg-6-1115-2009, 2009.
- Suni, T., Rinne, J., Reissel, A., Altimir, N., Keronen, P., Rannik, Ü., Maso, M., Kulmala, M. and Vesala, T.:
 Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, southern Finland, Boreal
 Environ. Res., 4, 287–301, 2003.
- Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M. O., Huber, S., Mbow, C., Garcia, M., Horion, S., Sandholt,
- I., Holm-Rasmussen, B., Göttsche, F. M., Ridler, M.-E., Olén, N., Olsen, J. L., Ehammer, A., Madsen,
 M., Olesen, F. S. and Ardö, J.: Ecosystem properties of semiarid savanna grassland in West Africa and its
 relationship with environmental variability, Global Change Biology, 21(1), 250–264, doi:10.1111/gcb.12734,
- ⁵²⁰ 2014.
- Tedeschi, V., Rey, A., Manca, G., Valentini, R., Jarvis, P. G. and Borghetti, M.: Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing, Global Change Biology, 12(1), 110, 121, doi:10.1111/j.1265.2486.2005.01081.m. 2006
- ⁵²³ 110–121, doi:10.1111/j.1365-2486.2005.01081.x, 2006.
- Thum, T., Aalto, T., Laurila, T., Aurela, M., Kolari, P. and Hari, P.: Parametrization of two photosynthesis models at the canopy scale in a northern boreal Scots pine forest, Tellus B, 59(5), doi:10.3402/tellusb.v59i5.17066, 2007.
- ⁵²⁷ Ulke, A. G., Gattinoni, N. N. and Posse, G.: Analysis and modelling of turbulent fluxes in two ⁵²⁸ different ecosystems in Argentina, International Journal of Environment and Pollution, 58(1/2), 52, ⁵²⁹ doi:10.1504/ijep.2015.076583, 2015.
- Valentini, R., Angelis, P., Matteucci, G., Monaco, R., Dore, S. and Mucnozza, G. E. S.: Seasonal net
 carbon dioxide exchange of a beech forest with the atmosphere, Global Change Biology, 2(3), 199–207,
 doi:10.1111/j.1365-2486.1996.tb00072.x, 1996.
- Vitale, L., Tommasi, P. D., D'Urso, G. and Magliulo, V.: The response of ecosystem carbon fluxes to
 LAI and environmental drivers in a maize crop grown in two contrasting seasons, International Journal of
 Biometeorology, 60(3), 411–420, doi:10.1007/s00484-015-1038-2, 2015.
- Wen, X. F., Wang, H. M., Wang, J. L., Yu, G. R. and Sun, X. M.: Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003-2007, Biogeosciences, 7(1), 357–369, doi:10.5194/bg-7-357-2010, 2010.
- Westergaard-Nielsen, A., Lund, M., Hansen, B. U. and Tamstorf, M. P.: Camera derived vegetation greenness
 index as proxy for gross primary production in a low Arctic wetland area, ISPRS Journal of Photogrammetry

- and Remote Sensing, 86, 89–99, doi:10.1016/j.isprsjprs.2013.09.006, 2013.
- ⁵⁴² Wick, B., Veldkamp, E., Mello, W. Z. de, Keller, M. and Crill, P.: Nitrous oxide fluxes and nitrogen cycling
- along a pasture chronosequence in central Amazonia, Brazil, Biogeosciences, 2(2), 175–187, doi:10.5194/bg-2-
- 544 175-2005, 2005.
- ⁵⁴⁵ Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U. and Cernusca, A.: Seasonal and ⁵⁴⁶ inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: Effects of ⁵⁴⁷ weather and management, Journal of Geophysical Research, 113(D8), doi:10.1029/2007jd009286, 2008.
- WorldClim: WorldClim Version2, [online] Available from: http://worldclim.org/version2/ (Accessed 9 January
 2018), 2016.
- Yan, J., Zhang, Y., Yu, G., Zhou, G., Zhang, L., Li, K., Tan, Z. and Sha, L.: Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China, Agricultural and Forest
- ⁵⁵² Meteorology, 182-183, 257–265, doi:10.1016/j.agrformet.2013.03.002, 2013.
- Yee, M. S., Pauwels, V. R., Daly, E., Beringer, J., Rüdiger, C., McCabe, M. F. and Walker, J. P.: A comparison
 of optical and microwave scintillometers with eddy covariance derived surface heat fluxes, Agricultural and
 Forest Meteorology, 213, 226–239, doi:10.1016/j.agrformet.2015.07.004, 2015.
- Zeller, K. and Nikolov, N.: Quantifying simultaneous fluxes of ozone, carbon dioxide and water vapor above a
 subalpine forest ecosystem, Environmental Pollution, 107(1), 1–20, doi:10.1016/s0269-7491(99)00156-6, 2000.
- ⁵⁵⁸ Zielis, S., Etzold, S., Zweifel, R., Eugster, W., Haeni, M. and Buchmann, N.: NEP of a Swiss subalpine
- forest is significantly driven not only by current but also by previous years weather, Biogeosciences, 11(6),
- ⁵⁶⁰ 1627–1635, doi:10.5194/bg-11-1627-2014, 2014.