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1 Details of marginal distribution sampling (MDS) for
gap-filling

The marginal distribution (section 2.2.3) combines the two
methods look-up-table (LUT) and mean diurnal course
(MDC). Depending on the availability of the meteorologi-5

cal data, three different conditions are identified for each
half-hourly NEE flux:

1. The data of the three meteorological variables (Rg, Tair,
and VPD) are available.

2. Tair or VPD are missing, but Rg is available.10

3. Also Rg is missing.

Case 1): The missing value is replaced by the average
value under similar meteorological conditions with respect
to Rg, Tair and VPD in a LUT approach. If no similar
meteorological conditions (minimum of two half-hourly15

fluxes) are present within the starting time window of 7 days,
the window size is increased to 14 days.

Case 2): The same LUT approach is taken, but similar
meteorological conditions can only be defined via Rg within20

a time window of 7 days.

Case 3): The missing value is replaced with the mean diurnal
course (MDC). The number of days start with one day, thus
a linear interpolation of available data at adjacent hours (±125

hour) at the same day. The number is then increased to ±1
and ±2 days.

If after these steps the NEE values could not be filled, the
procedure is repeated with increased window sizes until the30

value can be filled, see flow diagram in Fig. 1.

The provided quality flag depends on both, the number of
meteorological conditions present, nc, and the number of
days in the window, nd. When using LUT, the flag equals
1 when nc is either 1 or 3 and nd ≤ 7. It equals 3 if either35

nc = 3 and nd > 28, or nc = 1 and nd > 14. In all other LUT
cases, it equals 2. When using MDC, i.e. nc = 0, the quality
flag equals 1 if it is the same day, it equals 3 if nd > 2, and it
equals 2 in all other cases.

The three default variables and margins are Rg with ±5040

Wm−2, Tair with ±2.5 °C, and VPD with ±5.0 hPa. These
can be also be specified by the user.

2 Details of daytime flux-partitioning

This section reports details of the steps for daytime flux-
partitioning (section 2.3.2).45

In step 1, parameterE0 is estimated for 12 day windows. Only
records with temperature above -1 °C are valid for estimation.
Reference temperature TRef in eq. 1 of the paper is set to
the median temperature of the window in order to decrease
correlation between estimates of RRef and E0. A missing 50

estimate is reported for non-valid windows with too few valid
records (minNRecInDayWindow = 10), non-convergence of
the fitting procedure, or an E0 estimate outside the bounds
[50,400]. Missing estimates are filled during the smoothing in
step 2. 55

In step 2, the Gaussian Process takes into account the uncer-
tainty of the E0 fit from night-time in each window. However,
if the correlation of E0 across subsequent windows is high,
the uncertainty is reduced similar as with repeated measure-
ments. The respiration RRef for windows where no fit could 60

be obtained is set to the value from the previous valid window.
Again, only records with temperature above -1 °C are used.

In step 3, fitting of other parameters is done for each window
centered at the same record as the windows of step 1. By
default the fit uses the same weak prior on parameters as 65

BGC16 (Lasslop et al., 2010). The optimization minimizes
a cost function using the "BFGS" method, which is a quasi-
Newton method as published by Shanno (1970). The cost
function assumes normally distributed model-data-residuals
and normally distributed vague priors (eq. 1) (Lasslop et al., 70

2010, eq. 5).

c=
∑
i

(NEEpred,i−NEEobs,i)
2

σ2
NEEadj,i

+
∑
j

(θj − θprior,j)
2

σ2
θ,j

,

(1)

where NEEpred,i is computed by the LRC equation, and
parameters θ = (k,α,RRef ,β) have prior locations of k =
0.05, α= 0.1, RRef = night-time estimate, and β = range of 75

NEE values, i.e. the difference between 97% and 3% quantile.
The prior uncertainty is σk = 50, σβ = 600, σα = 10, and
σRRef

= 80.

The uncertainty of NEE by default is assigned a lower bound
(eq. 1). This lower bound differs from Lasslop et al. (2010) 80

and assigns low influence to records with high uncertainty in
order to avoid the problem of high leverage of a few records
with very low estimates of NEE-uncertainty.

σ2
NEEadj,i =max[σ2

NEE,i, q0.3(σ
2
NEE)], (2)

where q0.3(σ2
NEE) is the 30% quantile of the vector of esti- 85

mated standard deviations of NEE.

There are several quality criteria and fall-backs during the
daytime fitting in order to obtain reasonable fits. If there are
too few valid records (minNRecInDayWindow < 10), or the
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Figure 1. Flow diagram of the MDS gap-filling algorithm as implemented in REddyProc. See table 1 in the main paper for abbreviations.

fitting did not converge, or VPD parameter k < 0, then the
fit is repeated without the VPD effect, because often there
are records where VPD is missing but other variables are
available. If fitting did not converge or parameter estimate of
α is larger than 0.22, the fit is repeated with α fixed to the5

last valid value of α from fits in previous windows. If there
are still too few records or the fitting was not valid, a missing
result is reported for the window. In addition a missing result
is reported if estimated α < 0 or RRef < 0 or β0 < 0 or β0 >
250, or if β0 > 100 and at the same time estimated standard10

deviation sdβ0
>= β0 (Table A1 in Lasslop et al., 2010). The

Variance-Covariance matrix of the parameter uncertainty is
estimated by bootstrapping the day-time fit. In each sample,
the prescribed temperature sensitivity E0 is drawn from a
normal distribution with standard deviation estimated in step 2.15

In this way also the uncertainty of the night-time fit propagates
to the uncertainty of the day-time parameters and subsequently
to the inferred gross fluxes.

In step 4, variance of the flux estimates are computed based
on the Variance-Contrivance matrices obtained in step 3 with20

each parameter estimate (Lasslop et al., 2010, eq. 6). The two
standard deviations based either on the previous and subse-
quent valid estimates of the Variance-Contrivance matrices
are linearly interpolated with respect to the time difference to
the estimates. 25

3 General design of REddyProc

There are some general principles and choices in the design
of REddyProc which may lead to some trade-offs.

Preventing accidental errors is one goal of the package.
Therefore, there is extensive checking on formatting and data 30

availability when importing the data and also throughout post-
processing steps. Especially, the high-level routines will issue
warnings or stop post-processing if they detect inconsistencies
or lack of sufficient data, or changes in specification of critical
standard parameters. These checks reinforce a sound standard 35

post-processing also for non-expert users. On the other hand,
these checks will render the standard routines not usable for
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datasets where not enough data are available. It is still possible
to use REddyProc with sparse data for some purposes by
using lower-level routines. But this requires experience in
both, post-processing and R programming.

Smooth inter-annual processing is the next goal. The data is5

not partitioned into annual chunks for post-processing to avoid
artificial discontinuities between years. The user can still
specify different periods or seasons, e.g. when meteorological
conditions change after harvest, but the boundaries do not
need to align with years. REddyProc therefore works with10

the entire dataset in memory. Potentially this can lead to longer
post-processing times when working with many years of EC
data but still can be handled on a usual notebook.

Memory efficient processing required some extended R pro-
gramming. Specifically we used R5 classes1 to avoid fre-15

quently copying the entire dataset in memory. Users should
be aware that calling functions on the sEddyProc class not
only provides a return value but also changes the data of the
R5 class (Chapter ’OO field guide’ in Wickham, 2014). Users
who want to integrate the post-processing in their own codes20

are encouraged to learn about R5 classes, however, it is not a
prerequisite.

Continuity with other tools ensures that switching to
REddyProc does not introduce discontinuities with results
obtained from other tools. Specifically, we reproduced the u∗25

threshold estimation of the C implementation by Dario Papale
(DP06), and the gap-filling, night-time flux partitioning, and
day-time flux-partitioning from BGC16, the 2016 version of
the BGC online tool (Reichstein et al., 2005). In some details,
the standard parameterization differs from BGC16, e.g. using30

seasons that span across calendar years in u∗ threshold esti-
mation, but it is usually possible to set compatible parameters
with REddyProc.

4 Additional benchmark statistics

This section provides figures, in addition to the main figures35

presented in the paper’s benchmark section, that require the
reader being comfortable with histograms and probability
distribution functions.

The histograms display how often a certain value occurs
across all the site-months. A centering of a difference away40

from zero or for a ratio away from one denotes a bias.

4.1 u∗ threshold estimation

There was a bias in u∗ estimation compared to DP06 (Fig.
2). However, the bias and the differences were only a small

1 www.rdocumentation.org/packages/methods/versions/3.4.3/topics/
ReferenceClasses
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Figure 2. Histogram of differences between u∗ threshold estimates
of different methods (DP06 - REddyProc) normalized by the un-
certainty range (90% quantile - 10% quantile estimated by DP06).
Absolute values are smaller than one meaning that the difference
between the methods is smaller than range of estimates by the DP06
method only. The clustering of values on the positive side suggests a
bias towards larger values with DP06.
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Figure 3. Histogram of differences between annual NEE based on
u∗ estimates of different methods (DP06 - REddyProc) normal-
ized by the uncertainty range of NEE due to u∗ (NEE based on 90%
u∗ quantile - NEE based on 10% u∗ quantile estimated by DP06).
Absolute values are mostly smaller than one, meaning that the differ-
ence in annual NEE between methods is smaller than the uncertainty
due to uncertainty of u∗ threshold from DP06 only.

fraction of the uncertainty of the estimate itself. Moreover, the 45

bias did not propagate to estimated NEE based on different
u∗ values (Fig. 3).

There was a significant difference in the estimate of uncer-
tainty of the u∗ thresholds (Fig. 4). The uncertainty estimated
by REddyProc was only half as high as the one estimated 50

by DP06. It resulted from acknowledging the seasons of simi-
lar conditions also during bootstrap. The lower u∗ threshold
uncertainty propagated to the uncertainty estimates of NEE
(Fig. 5).
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Figure 4. Histogram of ratio (REddyProc / DP06) of uncertainty
ranges of u∗ (90% quantile - 10% quantile). The clustering around
0.5 shows that the estimated uncertainty with REddyProc is only
about half the uncertainty estimated by DP06.
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Figure 5. Histogram of ratio (REddyProc / DP06) of uncertainty
ranges of annual NEE (NEE based on 90% quantile of u∗ threshold -
NEE based on 10% quantile of u∗ threshold). The clustering below a
value of one indicates that the lower uncertainty in u∗ threshold with
REddyProc also propagates to lower uncertainty in annual NEE.

4.2 Gap-filling

The evaluation of annual aggregated NEE data obtained with
REddyProc and BGC16 showed good agreement across
sites.

Note, that the aggregated NEE data contained both, measured5

and gap-filled data for the purpose of evaluating the impact
of the processing on the aggregated NEE. The determination
coefficient (R2) showed a very good agreement between the
two methods both at annual and monthly time scale (Table 1).
The relative mean absolute error (RMAE) is low: about -3 %10

for annual aggregation and -0.47 % for monthly aggregation.
Both Modeling Efficiency (EF) and Mean Bias Error (MBE)
showed a very low bias between the two products for both
monthly and annual aggregations (Table 1).

Table 1. Gap-filling evaluation statistics of yearly and monthly cu-
mulated and gap-filled NEE data obtained with REddyProc and
BGC16. Statistic abbreviations are explained in the paper’s bench-
marking section

Yearly Monthly
N 25 281

pearson 0.99 1.00
MBE -0.02 0.00

RMBE 2.8% -0.08%
MAE 0.02 0.00

RMAE -3.0% -0.5%
RMSE 0.09 0.01

R2 0.98 1.00
EF 0.98 1.00

4.3 Night-time partitioning 15

The results show good agreement between Reco estimated
using REddyProc and BGC16 for R2 and modelling ef-
ficiency (Table 2). The relative RMSE is 6.56 and 13.45 %
for yearly and monthly aggregation, respectively. The high
RRMSE is due to few site years as reported in Table 3, and 20

this is confirmed by the lower RMAE (3.87 % and 6.33 % for
yearly and monthly, respectively), which is less sensitive to
outliers.

The difference in Reco related to the selection of night-time
data are not negligible: the differences in RRMSE of 1.03% 25

and negligible differences in R2. Also, the use of E0 pre-
scribed from BGC16 lead to negligible difference in R2 of
about 0.02. Therefore, though very small, the selection of
night-time data is the most important difference introduced
by REddyProc . 30

Table 2. Nighttime partitioning evaluation statistics across sites
of annually and monthly aggregated ecosystem respiration (Reco)
estimated with REddyProc and BGC16.

Yearly Monthly
N 25 297

pearson 0.99 0.99
MBE 25.4 2.15

RMBE 2.2% 2.2%
MAE 44.8 6.17

RMAE 3.8% 6.3%
RMSE 75.6 13.2

RRMSE 6.5% 13.5%
R2 0.99 0.98
EF 0.99 0.97

4.4 Day-time partitioning

The time-variable estimate of temperature sensitivity of
ecosystem respiration with day-time partitioning is a signif-



Wutzler: REddyProc Supplement 5

RMBE RMAE RRMSE R2 EF
CA-NS7 15.12 16.29 32.64 0.96 0.86
CA-TP3 -1.99 25.10 38.59 0.87 0.82
DE-Hai 6.00 6.48 10.40 0.99 0.96
DE-Tha 2.83 3.52 6.19 0.99 0.99
DK-Sor 3.50 4.45 7.34 1.00 0.99
ES-ES1 1.68 3.34 4.59 0.93 0.92

ES-VDA 3.96 9.98 15.93 0.95 0.93
FI-Hyy 2.72 3.05 4.47 1.00 1.00
FI-Kaa -4.52 5.51 9.07 0.99 0.99
FR-Gri 3.96 4.14 6.35 1.00 0.99
FR-Hes 4.11 5.06 9.06 0.99 0.99
FR-Lq1 -2.89 5.76 7.24 0.99 0.99
FR-Lq2 -8.27 9.49 11.49 0.99 0.97
FR-Pue 0.65 1.27 1.55 1.00 1.00
IE-Dri -0.03 2.41 3.24 1.00 1.00
IL-Yat 1.66 2.89 3.72 0.99 0.99

IT-Amp 24.34 29.38 45.33 0.91 0.48
IT-MBo 2.03 3.00 4.49 1.00 1.00
IT-SRo -1.46 1.86 2.10 1.00 0.99
PT-Esp 9.06 12.08 19.94 0.62 0.45

RU-Cok -0.76 28.54 38.98 0.27 -0.07
SE-Nor -1.05 2.09 3.62 1.00 1.00
US-Ton 2.93 7.45 11.82 0.93 0.92
VU-Coc 0.73 2.64 3.83 0.93 0.93

Table 3. Nighttime partitioning evaluation statistics at sites level of
the of ecosystem respiration (Reco) estimated with REddyProc and
BGC16.

icant source of uncertainty for gross fluxes GPP and Reco.
REddyProc accounts for the previously unaccounted un-
certainty for estimating uncertainty of these gross fluxes by a
bootstrap (Fig. 6). The BGC16 estimate of annual uncertainty
in Fig. 6 is a low estimate compared to a full quantification,5

because it assumes no correlation between half-hourly errors.
An improved quantification of correlations requires the full
variance-covariance matrix of the LRC parameter fits (Lasslop
et al., 2010; Menzer et al., 2013), which were not available
for BGC16.10

The introduced uncertainty is reduced by smoothing the tem-
perature sensitivity estimates (E0) across several successive
windows (Fig. 7 top) before estimating parameters of the LRC.
This smoothing has also an effect on predicted half-hourly
gross fluxes (Fig. 7 bottom).15

Results of daytime partitioning are sensitive to subtle details
of the procedure. Hence, there is quite much scatter intro-
duced by the differences of REddyProc processing with
default options or with options that maximize compatibility
with BGC16 (Fig. 8 top). One such a subtle options is to de-20

crease or not to account for the unreasonably high leverage of
some observations during the fit to the light-response curve by
some records having a very small estimate of its uncertainty
(Fig. 8 bottom). Due to the sensitivities of the day-time parti-
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Figure 6. Density plot of estimated standard deviation of uncertainty
of the annually aggregated GPP across sites due to uncertainty in pa-
rameters estimation during day-time based flux partitioning. Higher
estimates with REddyProc are caused by taking into account the
uncertainty in temperature sensitivity, E0.

tioning, there are still differences between REddyProc with 25

compatibility options and BGC16 (Fig. 9).
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Figure 7. Effects of smoothing (top) successive estimates of tem-
perature sensitivity, E0, on predicted GPP (bottom) for site PT-Esp.
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Figure 8. Sensitivity of estimated monthly GPP fluxes to specific
processing details results in scatter between GPP predictions based
on different REddyProc options. Most of the differences between
default options and compatibility options (top) are caused by differ-
ences in weighting different records during the fit (bottom.)
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of REddyProc with Lasslop10 compatibility options BGC16.



8 Wutzler: REddyProc Supplement

References

Lasslop, G., Reichstein, M., Papale, D., Richardson, A., Arneth, A.,
Barr, A., Stoy, P., and Wohlfahrt, G.: Separation of net ecosystem
exchange into assimilation and respiration using a light response
curve approach: critical issues and global evaluation, Global5

Change Biology, 16, 187–208, https://doi.org/10.1111/j.1365-
2486.2009.02041.x, 2010.

Menzer, O., Moffat, A. M., Meiring, W., Lasslop, G., Schukat-
Talamazzini, E. G., and Reichstein, M.: Random errors in
carbon and water vapor fluxes assessed with Gaussian Pro-10

cesses, Agricultural and Forest Meteorology, 178-179, 161–172,
https://doi.org/10.1016/j.agrformet.2013.04.024, 2013.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet,
M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T.,
Granier, A., et al.: On the separation of net ecosystem ex-15

change into assimilation and ecosystem respiration: review and
improved algorithm, Global Change Biology, 11, 1424–1439,
https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005.

Shanno, D. F.: Conditioning of quasi-Newton methods for func-
tion minimization, Mathematics of Computation, 24, 647–647,20

https://doi.org/10.1090/s0025-5718-1970-0274029-x, 1970.
Wickham, H.: Advanced R, Taylor & Francis Inc, 2014.


