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Abstract. CO2 production in soils responds strongly to
changes in temperature and moisture, but the magnitude of
such responses at different timescales remains difficult to
predict. Knowledge of the mechanisms leading to the often
observed interactions in the effects of these drivers on soil
CO2 emissions is especially limited. Here we test the ability
of different soil carbon models to simulate responses mea-
sured in soils incubated at a range of moisture levels and
cycled through 5, 20, and 35 ◦C. We applied parameter op-
timization methods while modifying two structural compo-
nents of models: (1) the reaction kinetics of decomposition
and uptake and (2) the functions relating fluxes to soil mois-
ture. We found that the observed interactive patterns were
best simulated by a model using Michaelis–Menten decom-
position kinetics combined with diffusion of dissolved car-
bon (C) and enzymes. In contrast, conventional empirical
functions that scale decomposition rates directly were un-
able to properly simulate the main observed interactions. Our
best model was able to explain 87 % of the variation in the
data. Model simulations revealed a central role of Michaelis–
Menten kinetics as a driver of temperature sensitivity varia-
tions as well as a decoupling of decomposition and respira-
tion C fluxes in the short and mid-term, with general sensi-
tivities to temperature and moisture being more pronounced
for respiration. Sensitivity to different model parameters was
highest for those affecting diffusion limitations, followed by
activation energies, the Michaelis–Menten constant, and car-
bon use efficiency. Testing against independent data strongly
validated the model (R2

= 0.99) and highlighted the impor-

tance of initial soil C pool conditions. Our results demon-
strate the importance of model structure and the central role
of diffusion and reaction kinetics for simulating and under-
standing complex dynamics in soil C.

1 Introduction

Soils are a main component of the global carbon (C) cycle,
storing ca. 2200 Pg of C in the top 100 cm according to re-
cent estimates (Batjes, 2014). This soil C pool is dynamic and
often exists in a non-equilibrium state as the result of an im-
balance between input and output C fluxes, in which case it
will act either as a C sink or as a C source over time. Changes
in the speed at which soil organisms decompose soil organic
matter (SOM) and mineralize soil organic carbon (SOC) into
CO2 are one way in which an imbalance can occur, produc-
ing a net sink or source of atmospheric CO2.

It is well known that SOC mineralization and resulting
CO2 fluxes are highly sensitive to variations in soil tem-
perature and moisture (Hamdi et al., 2013; Moyano et al.,
2013). As a result, feedback effects, either positive or nega-
tive, are expected to occur from the interaction between cli-
mate change and global soil C stocks (Crowther et al., 2016;
Davidson and Janssens, 2006; Kirschbaum, 2006). However,
the direction and magnitude of such feedbacks at the global
scale remain uncertain. Increased soil respiration with a re-
sulting net loss of soil C, and thus a positive climate feed-
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back, is expected with the warming of permafrost soils and
the drying of wetland soils. But there is still large uncertainty
and a lack of consensus regarding the long-term response to
climate variability of soils that are non-saturated, non-frozen,
and dominated by a mineral matrix (Crowther et al., 2016),
i.e. soils found under most forests, grasslands, and agricul-
tural lands.

Future predictions of soil C dynamics require the use of
mathematical models. Early soil C models and most still in
use are based on first-order decay of multiple C pools, with
temperature and moisture having general non-interactive ef-
fects on decay rates (Rodrigo et al., 1997). When appropri-
ately calibrated, these models do well at simulating soil respi-
ration fluxes of soils under relatively stable conditions. They
are often developed to approximate long-term steady-state
conditions under specific land uses. They are also capable of
fitting long-term trends of soil C loss, such as data from long-
term bare fallow where all litter input has stopped (Barré et
al., 2010). However, they lack a theoretical basis justifying
their basic assumptions of pool partitioning and decay mech-
anisms. They also generally need calibration for specific soil
types or land cover types and often fail to properly simulate
observed short- and mid-term variability in soil respiration.
Some of the most relevant observations these models have
failed to reproduce include changes (typically a dampen-
ing) of temperature sensitivities of decomposition over time
(Hamdi et al., 2013), non-linear responses to soil moisture
content (Borken and Matzner, 2009), and changes in decom-
position rates in response to variations in concentrations of
organic matter (Blagodatskaya and Kuzyakov, 2008). Such
model shortcomings, which reflect missing or wrongly sim-
ulated processes, create a difficult-to-quantify uncertainty in
global long-term predictions of soil C and its feedback to cli-
mate change. It is therefore unclear if first-order models can
predict long-term changes in C stocks under more dynamic
(and therefore realistic) environmental conditions.

Second-order models have a more realistic basic structure
compared to conventional first-order models, since they sim-
ulate organic matter decomposition as a reaction between
SOC and decomposers (i.e. a microbial or enzyme pool).
This single but fundamental change in decomposition kinet-
ics strongly affects predicted long-term changes in soil C,
largely as a result of the dynamics of the decomposer pool,
which itself can respond to temperature in a number of ways
(Wutzler and Reichstein, 2008). Second-order models also
lead to more complex dynamics of short- to mid-term soil
respiration, with apparent temperature sensitivities that vary
over time, more in line with many observations.

The temporal variability in the response of decomposition
to moisture is most evident in the strong respiration pulses af-
ter dry soils are re-wetted, known as the Birch effect (Birch,
1958). But studies have shown that a successful simulation
of such pulses requires the incorporation of additional mech-
anisms, namely the explicit representation of a bio-available
C pool, such as dissolved organic matter (DOC), and a mois-

ture regulation of decomposer’s access to this pool that may
differ from the moisture regulation on the decomposition re-
action itself (Lawrence et al., 2009; Zhang et al., 2014).

The response of soil respiration to temperature and mois-
ture is highly dynamic, both spatially and temporally (Hamdi
et al., 2013; Moyano et al., 2012). Moisture and temperature
interactions have been observed in a number of experimen-
tal studies (Craine and Gelderman, 2011; Rey et al., 2005;
Suseela et al., 2012; Wickland and Neff, 2008), but neither
consistent trends nor general explanatory theories have been
identified. Improving our understanding of these interactions
is a crucial step towards increasing confidence in models and
important for interpreting modelling and experimental results
(Crowther et al., 2016; Tang and Riley, 2014). Identifying the
model structures and parameterizations that can best repre-
sent these interactive effects has been attempted by very few
studies (Sierra et al., 2015, 2017).

The objectives of this study are to compare the ability of
different soil C modelling approaches to reproduce temper-
ature and moisture interactive effects on soil carbon fluxes
and thus to gain insight into mechanisms underlying the ob-
served responses. With the hypothesis that a more mecha-
nistic model will be better capable of simulating such inter-
actions, we compare different model structures, testing first-
order, second-order, and Michaelis–Menten reaction kinet-
ics in combination with an explicit simulation of diffusion
fluxes. We then compare the best diffusion model with ver-
sions based on common empirical moisture relationships.

2 Observational data

Measurements of the interaction effects of temperature and
moisture on soil respiration fluxes were obtained by incubat-
ing a crop field soil at several fixed levels of soil moisture and
variable levels of temperature over a period of ca. 6 months,
as detailed in the following.

Soils from 0 to 20 cm depth were sampled at Versailles,
France, from the “Le Closeaux” experimental field plot, cul-
tivated with wheat until 1992 and with maize since 1993.
Mean annual temperature and rainfall are 10 ◦C and 640 mm,
respectively. The soil is classified as Luvisol (FAO) silt loam
(26 % sand, 59 % silt, 15 % clay) containing no carbonates.
Organic carbon contents at the start of the incubation were
1.2 % in weight. Soil samples were prepared for elemental
analysis (C, N) using a planetary ball mill (3 min at 500 rpm).
C concentrations were measured using a CHN auto-analyser
(NA 1500, Carlo Erba).

Sampled soils were thoroughly mixed, sieved at 2 mm, and
stored moist at 4 ◦C in plastic bags with holes for aeration
for 10 days. Soils were then put in small plastic cylinders
containing the equivalent of 90 g dry soil. To ensure a high
and equal water conductivity, all samples were compacted to
a bulk density of 1.4 g cm−3. The resulting soil porosity was
0.45.
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All samples were brought to a pF of 4.2, corresponding to
about 12.5 % volumetric moisture. Three replicate samples
were then adjusted to each of the moisture levels (2 %, 5.5 %,
12.5 %, 16 %, 20 %, 23.5 %, 27 %, 30.5 %, 34 %, 38 %, and
45 %) by adding water or air drying. These values range from
air-dry to saturated. Immediately thereafter, the plastic cylin-
ders were put in 500 mL jars containing a small amount of
water on the bottom (except for the 2 % and 5.5 % moisture)
to prevent soil drying and equipped with a lid and a rub-
ber septum for gas sampling. Because of the extremely low
respiration rates, samples with 2 % moisture were placed in
125 mL jars containing 170 g of soil.

To minimize post-disturbance effects, samples were pre-
incubated at 4 ◦C for 10 days. The samples were then cy-
cled through incubation temperatures following the sequence
5–20–35–5–20–35 ◦C, thus applying two temperature cycles
to each sample. This was done in order to capture possible
hysteresis of temperature effects and to reduce the covari-
ance between a temperature response and substrate deple-
tion (helping constrain model parameters). Soil respiration
was calculated at every temperature step by measuring the
amount of CO2 accumulated in flask headspace. For this,
samples were flushed with CO2-free air and left to accumu-
late CO2 for 3 to 74 days. The variable accumulation time
was chosen so that sufficient CO2 accumulated for the micro
gas chromatographer measurements (at least 100 ppm), thus
depending on the soil temperature and moisture content. Af-
ter the accumulation time, an air sample was taken from each
soil sample headspace, and respiration rates were calculated
as the accumulated amount over the accumulation time. Sam-
ples were incubated for a total period of ca. 6 months (Fig. 1).

As shown in Fig. 1, the timing of temperature treatments
was not equal for all samples, with some temperature steps
missing at low moisture levels. This was partly due to the
time required for CO2 concentrations in the flask headspace
to reach detectable limits, the time necessary for carrying out
measurements and human error. However, while important
for a statistical comparison between treatments, such differ-
ences are of little consequence when looking at model per-
formance and the fit between model and data, which is the
focus of this study.

3 Modelling approach

3.1 Structure and state variables

We started with a basic soil C model with the following state
variables: a bio-unavailable polymeric C pool (CP); a bio-
available dissolved C pool (CD); a microbial C pool (CM);
and two extracellular enzyme C pools (CE), one represent-
ing the enzyme fraction at the decomposition site (CED ) and
one the fraction at the microbial site (CEM ). With this model
we assume two conceptual soil spaces that are separated by
a diffusion barrier, one being the site of decomposition and
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Figure 1. Graphical representation of the incubated soil samples
showing the fixed levels of moisture content and the times at differ-
ent temperatures.

the other the site of microbial uptake and enzyme produc-
tion (Fig. 2). This model thus closely follows Manzoni et
al. (2016) and otherwise builds on other published microbial
models (Allison et al., 2010; Schimel and Weintraub, 2003).
We refer to those studies for general assumptions and appli-
cation of this type of model. Aspects specific to this study are
described below.

The rates of change of the model state variable were de-
fined as

dCP

dt
= FLSP+FMP−FPD, (1)

dCD

dt
= FLMD+FPD+FEDD+FEMD−FDM

−FDRG −FDEM , (2)
dCM

dt
= FDM−FMP−FMRM , (3)

dCED

dt
= FEMED −FEDD, (4)

dCEM

dt
= FDEM −FEMED −FEMD, (5)

where F represents the flux of C from one pool to another as
indicated by the subscripts, so that FPD is the flux from the
polymeric pool to the dissolved pool. The subscripts LS and
LM denote input of structural and metabolic litter (as defined
by Parton et al., 1987), which for simulating the incubated
soils were set to zero, and RM and RG are microbial growth
and maintenance respiration.

3.2 Decomposition and microbial uptake

The flux of CP to CD, FPD, represents decomposition of or-
ganic matter, a process that in soils is largely driven by the
activity of microorganisms, which produce exo-enzymes that
catalyse the decomposition reaction. UD represents the to-
tal uptake flux by microbes of the water-soluble decomposed
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Figure 2. Diagram showing C pools and fluxes, as well as the
points of diffusion limitations. Second-order decay may refer also
to Michaelis–Menten reaction kinetics. Variations of this scheme
were tested in this study.

pool CD (microbes being the reaction “catalysers”). Conven-
tional soil C models simulate decomposition as a first-order
decay reaction. However, more realistic models can be built
by using either simple second-order or Michaelis–Menten re-
action kinetics. Thus, optional ways of modelling both FPD
and UD include

F = V [R] , (6)
F = V [R] [C] , (7)

F =
V [R] [C]
K + [R]

, (8)

F =
V [R] [C]
K + [C]

, (9)

where F is the flux, V a base reaction rate, K the half-
saturation constant, R the reactant, and C the catalyst. The
“reverse” Michaelis–Menten (Eq. 9) was applied by Schimel
and Weintraub (2003) as an alternative for improving model
stability and is included here for completeness.

The value for V is not equivalent among these equations,
differing by several orders of magnitude. As a result, differ-
ent parameters were used for V in each case, namely VDm,
VDmr, VD1, and VD2. Similarly, parametersKD andKDe were
used for K in Eqs. (8) and (9), respectively. The terms [R]
and [C] are concentrations of CP and CED . In the case of up-
take, the parameters are respectively VU, KU, CD, and CM.
The four approaches for reaction kinetics were tested in or-
der to find the best fit between model and data, as described
in Sect. 4.

3.3 Diffusive fluxes

Diffusion fluxes depend on a concentration difference, a dif-
fusivity term, and the distance over which diffusion occurs
(Manzoni et al., 2016). For the purpose of modelling diffu-
sion in soils, values of diffusivity and diffusion distances are
required that best average or represent the actual underlying
soil complexity. For practical purposes, we combined these
two values into a single calibrated parameter, a conductance
(g0), representing the compound effects of diffusivity and
distance. This was done because the values of the latter are
unconstrained (from lack of information), and their effects
are inversely correlated, so simultaneous calibration would
lead to a problem of parameter identifiability. The moisture-
scaled conductance (g), which in our model is assumed equal
for the CD and CE pools, is then given by

g = g0dθ , (10)

where dθ is a function of soil volumetric water content (VWC
or θ ):

dθ = (φ− θth)
m

(
θ − θth

φ− θth

)n
, (11)

where φ is pore space, and n andm are calibrated parameters
(Hamamoto et al., 2010; Manzoni et al., 2016), which are
variable and were also calibrated in this study. θth is the per-
colation threshold for solute diffusion, for which Manzoni
and Katul (2014) reported a value of −15 MPa. This value
was not optimal in our case, so θth was also calibrated. The
diffusive flux of enzyme C between the microbial and the
decomposition spaces is then calculated as

FEMED = g(CEM −CED). (12)

Diffusion limitations also affect the amount of the dissolved
pool (CD) available for microbial uptake. Instead of dividing
CD into a pool for each space, the conductance, g, was used
as a multiplier of the base uptake rate, VU (Eqs. 6–9). This
served to reduce the number of model pools and parameters
while still retaining a diffusivity limitation on this flux.

3.4 Microbial and enzyme dynamics

UD is split into FDM, FDRG , and FDEM , representing the
fluxes of CD going to CM, RG, and CEM , respectively. These
fluxes are defined as

FDM = UDfug
(
1− fge

)
, (13)

FDRG = UD
(
1− fug

)
, (14)

FDEM = UDfugfge, (15)

where fug represents the fraction of uptake going to growth,
otherwise known as microbial growth efficiency or carbon
use efficiency, and fge is the fraction of growth going to
enzyme production. Enzyme production thus depends here
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on uptake rather than on microbial biomass. This approach
follows the assumption that microbes produce enzymes only
when new carbon is available and save resources otherwise.
CM goes to either maintenance respiration or the CP pool ac-
cording to

FMP = CMrmd (1− fmr) , (16)
FMRM = CMrmr, (17)

where rmd is the rate of microbial death and rmr is the rate
of microbial maintenance respiration. The breakdown of en-
zymes going to the CD pool is determined by the rate of en-
zyme decay, red, as

FEDD = CEDred, (18)
FEMD = CEMred. (19)

3.5 Temperature effects

Reaction rates (VU,VD,KU,andKD in Eqs. 6–9), decay and
respiration rates (red, rmd, rmr) are temperature sensitive and
calculated from their reference values following an Arrhe-
nius type temperature response:

r = rref exp
(
−
Ea

R

(
1
T
−

1
Tref

))
, (20)

where r is the temperature-modified rate, rref the reference
rate at temperature Tref, T temperature in kelvin, Ea the ac-
tivation energy, and R the universal gas constant. Three pa-
rameters were used for Ea: Ea_m and Ea_e for microbial and
enzyme decay rates, respectively, andEa_V for other reaction
rates. Temperature thus affects the rates of decomposition
and uptake, the half-saturation constant in the Michaelis–
Menten equation, and the rates of microbial and enzyme de-
cay. Apparent activation energies – describing the observed
temperature relationship, both in measurements and model
data – were obtained by fitting an Arrhenius equation to the
temperature–flux relationship at each level of moisture. Ea
was calculated for measured respiration, modelled respira-
tion (RG+RM), and modelled decomposition (FPD).

4 Model calibration and comparisons

Calibrated and non-calibrated parameters for all models are
given in the Supplement (Tables S1, S2, and S3). Whenever
possible, fixed parameters as well as lower and upper bounds
for calibrated parameters (Table S1) were set according to
values reported in the literature (e.g. Hagerty et al., 2014;
Li et al., 2014; Price and Sowers, 2004). Equilibrium con-
ditions were not assumed at the start of the experimental
procedure, as such a state is unlikely for samples that have
been processed and disturbed. Therefore, initial conditions
were obtained by also optimizing the fractions of initial car-
bon pool sizes (fP, fD, fM). Total organic C was set equal

to the measured value. Models were calibrated by optimiz-
ing parameters to best fit the measured soil respiration data
described in Sect. 2. Each model was calibrated by fitting a
single set of parameters simultaneously to all the incubation
data (Table S3). For this, the model was run to reproduce
each sample treatment, i.e. the applied incubation times and
temperatures for each level of moisture (Fig. 1). Accumu-
lated soil respiration amounts were then calculated to match
those from the observed data. Measured and simulated data
from all samples were then combined, and an overall model
cost was calculated using the root mean square error (RMSE)
and a weighting term, as described below.

Parameter optimization was carried out in two steps. We
first explored parameter spaces using a Latin hypercube of
parameter values. For this we randomly selected unique pa-
rameter sets from a uniform distribution over each parameter
range (R function randomLHS, package lhs; Stein, 1987) to
obtain 30 000 parameter sets. Model costs were then obtained
by running models with each set. In the second step we used
the Nelder–Mead algorithm (as implemented in the function
modFit in package FME of the R programming language; R
Development Core Team, 2016; Soetaert and Petzoldt, 2010)
with initial parameter values being the set from the previous
step with the lowest model cost. For the cost calculations we
used an error term (“err” argument to FME function mod-
Cost) to weight the residuals. The error was calculated as
the normalized (0–1) standard deviation of measured values
at each combination of temperature and moisture, with 0.1
added to avoid an unreasonable weighting of measurements
with near-zero errors.

For a visual inspection of the model–data fits, we plotted
both the measured and the model relationship between soil
respiration and moisture, soil respiration and temperature,
and apparent activation energy (Ea) and moisture content.

4.1 Comparison of reaction kinetics

Models were named according to their decomposition kinet-
ics followed by the uptake kinetics and the moisture function,
using the abbreviations: 1 for first order, 2 for second order,
M for Michaelis–Menten, Mr for reverse Michaelis–Menten,
dif for diffusion, psi for water potential function, and sat
for water saturation function. Alternative reaction kinetics
leading to fluxes FPD and UD were compared in diffusion-
based models using different combinations of Eqs. (6)–(9).
Specifically, we compared first order for decomposition and
uptake (11-dif), second order for decomposition and uptake
(22-dif), and Michaelis–Menten decomposition with all com-
binations of uptake (M1-dif, M2-dif, and MM-dif). In ad-
dition, we tested reverse Michaelis–Menten decomposition
with second-order uptake (Mr2-dif). We then evaluated the
model–data fit based on RMSE values as well as on a visual
inspection of the plotted relationships. A “best” model was
then selected for further analysis.
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Table 1. Different model versions with their weighted and unweighted root mean squared errors (RMSEs, in units mg C kg soil−1 h−1) and
R2 after parameter calibration. FPD: decomposition flux; UD: dissolved C uptake flux; 1: first-order kinetics; 2: second-order kinetics; M:
Michaelis–Menten kinetics; Mr: reverse Michaelis–Menten kinetics.

Model name FPD UD Moisture effect RMSE (weighted) RMSE (unweighted) R2

11-dif 1 1 Diffusion 0.28 0.080 0.81
22-dif 2 2 Diffusion 0.28 0.080 0.82
M1-dif M 1 Diffusion 0.22 0.065 0.87
M2-dif M 2 Diffusion 0.22 0.069 0.87
MM-dif M M Diffusion 0.25 0.078 0.84
M2-sat M 2 Eq. (21): f (θS) 0.32 0.109 0.65
M2-wp M 2 Eq. (22): f (9) 0.27 0.093 0.78
Mr2-dif Mr 2 Diffusion 0.24 0.070 0.85

4.2 Comparison of moisture regulations:
diffusion vs. empirical

A second model comparison was carried out to test the im-
pact of different approaches for modelling moisture effects.
For this we modified the model M2-dif (Table 1), remov-
ing diffusion fluxes and adding empirical moisture functions.
This consisted in removing all diffusion effects (so that CEM

and CED were replaced by a single CE pool and the uptake
rate, VU, was no longer modified by g) and adding a function
to scale (i.e. multiply) the decomposition flux, FPD. This ap-
proach is equivalent to the conventional way used to model
moisture effects on soil C fluxes. Two alternative moisture
scaling functions were tested (Moyano et al., 2013), one
based on relative water saturation (M2-sat) and the other on
water potential (M2-wp):

f (θS)= aθS− bθ
2
S , (21)

f (9)=max

 min

 1−

[
log10 (9)− log10(9opt)

][
log10(9th)− log10(9opt)

]
1

0

, (22)

where θS is relative water saturation; 9 is soil water poten-
tial; and a, b, 9opt, and 9th are fitted parameters. The lat-
ter two represent the optimal water potential for decompo-
sition and a threshold water potential with values of −0.03
and −15 MPa, respectively. Water potential was calculated
based on Campbell (1974) and Cosby et al. (1984). a and b
are empirical parameters and were calibrated.

4.3 Model steady state, sensitivity analysis, and
validation

Equations for steady state were derived by setting the rate of
change in the state variables to zero in Eqs. (1)–(5) (where
the flux terms are replaced by their respective equations) and
then solving for the state variables. This was performed in
Python using the “SymPy” package (Meurer et al., 2017).

A sensitivity analysis was carried out on model param-
eters using the “sensFun” function from the R package

FME, which perturbs each parameter individually by a small
amount. We ran the model as above, i.e. simulating the incu-
bation and using daily output. Daily sensitivities were then
averaged to obtain an overall value. Sensitivity values were
calculated for the CP pool alone, as this pool represents the
largest fraction of soil C.

For model validation, we used soil respiration data from
the study by Rey et al. (2005), where a Mediterranean oak
forest soil was incubated for 1 month in a full factorial design
at 100 %, 80 %, 60 %, 40 %, and 20 % of water holding ca-
pacity and at 30, 20, 10, and 4 ◦C. This soil differed from the
one used for model calibration in at least three aspects: the
amount of organic C (7 %), soil pore space (65 %), and tex-
ture (classified as silty clay loam). The optimized set of pa-
rameters from the model M2-dif was used with the exception
of the initial fraction of C pools (fP, fD, fM) and the percola-
tion threshold (θth), which we calibrated against the new data
(Nelder–Mead calibration). The former was required since
we had no information with which to estimate the microbial,
dissolved, and enzyme C for this study and information re-
garding an initial soil steady state was also lacking. In the
case of θth, we assumed that this parameter is especially sen-
sitive to variations in soil texture and structure. Although in
previous studies it has been determined to be equal to a water
potential of −15 MPa (Manzoni and Katul, 2014), this value
did not provide a good fit when applied to the validation data.

5 Results

5.1 Reaction kinetics

The calibrated values for all models are shown in Ta-
ble S3. Using different reaction kinetics resulted in varia-
tions in model performance as measured by RMSE (Table 1).
Changes in RMSE were more sensitive to the kinetics of de-
composition (FPD), with models using M and Mr decompo-
sition kinetics resulting in lower RMSE values compared to
first- and second-order kinetics. In terms of uptake kinetics,
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Figure 3. Model vs. measured accumulated CO2 of incubated soil
samples. Colour depicts the range of volumetric water content
(VWC). The model R2 is 0.87.

both first- and second-order kinetics performed better than
Michaelis–Menten kinetics.

Models M1-dif, M2-dif, and Mr2-dif all showed a good
fit to the data, with the first two having a slightly higher R2.
Thus, selecting a “best” model necessarily remains partially
subjective. A visual comparison shows some weaknesses and
strengths in each case. M1-dif and Mr2-dif better captured
the variability in the data along the respiration axis at 35 ◦C
(Fig. S1 in the Supplement), while M2-dif more closely cap-
tured the relationship at 20 ◦C and thus the temperature sensi-
tivities (Fig. S2). We selected the model M2-dif (R2

= 0.87,
Fig. 3) as the “best” model, since it better represents the ac-
tual mediation of uptake by microbial biomass when com-
pared to the model M1-dif. We also had no theoretical rea-
son to prefer Mr to M decomposition. The decomposition and
uptake equations of the model M2-dif are then

FPD = VDCEDCP/(KD+CP) (23)
UD = CDCMVUg. (24)

5.2 Moisture regulation

Replacing diffusion effects with empirical moisture scalars
followed by recalibration decreased model performance
compared to a diffusion-based model, both when using rela-
tive water saturation (M2-sat) and when using water poten-
tial (M2-wp) functions (Table 1). Although empirical func-
tions were able to approximate the shape of the respiration–
moisture relationship at 20 ◦C, they were unable to capture
the variation of this response at higher and colder tempera-
tures, as seen in the measurements and simulated by diffu-
sion base models (Fig. 4). Diffusion-based models more ac-
curately simulated a linear relationship between respiration
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and M2-sat). Lines are smooth loess fits depicting the mean rela-
tionship.

and moisture at lower temperatures and a steep increase fol-
lowed by a plateau at high temperatures, with an intermediate
response seen at 20 ◦C.

5.3 Temperature sensitivities

Figures 5 and 6 show the apparent temperature sensitivi-
ties fitted to observations and modelled fluxes at different
moisture levels and for two temperature ranges, 5–20 and
20–35 ◦C. Figure 5 compares different reaction kinetics, and
Fig. 6 different moisture functions. Michaelis–Menten de-
composition outperformed first- and second-order kinetics
when simulating the variability in Ea observed along the
moisture axis as well as the differences observed between
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Figure 5. Temperature sensitivities of respiration and decomposi-
tion fluxes, showing activation energy (Ea) fitted using two temper-
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colder (5–20 ◦C) and warmer (20–35 ◦C) temperature ranges.
The model M2-dif closely followed the observed Ea values,
which were near 100 kJ at colder temperatures and in the
30–70 kJ range at warmer temperatures. Models M2-sat and
M2-wp captured the large differences between temperature
ranges but did not simulate the variability along the moisture
axis as well as diffusion-based models.

6 Model steady state, sensitivity analysis, and
validation

Model steady-state equations are provided in the Supple-
ment. For 20 ◦C, 30 % VWC, 1.2 g d−1 C input, and 30 cm
soil depth (z), the equilibrium sizes of the model pools are
2560, 37, 120, and 4 g C for the CP, CD, CM, and CED pools,
respectively. These values are stable over most of the mois-
ture range and increase exponentially only at very low soil
moisture (data not shown). A similar pattern was observed
for temperature, with the CP pool increasing towards high
values only at temperatures near 0 ◦C. The same pool showed
little sensitivity to changes in C input.
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Table 2 shows the averaged values from the sensitivity
analysis done on the model CP pool. High sensitivities were
found for g0 and n, indicating the importance of diffusion
fluxes. Large effects were also seen for the activation energy
parameters, denoting a strong general effect of temperature.
Also high were the sensitivities to KD and fug, reflecting
the importance of Michaelis–Menten kinetics for decomposi-
tion and carbon use efficiently, respectively. Low sensitivities
were found for rates of microbial and enzyme decay.

Simulation of the incubated soil from the study of Rey et
al. (2005) resulted in a very high fit to the validation data
after calibration of initial SOC fractions and θth, with an
RMSE of 0.09 in fluxes that were almost an order of magni-
tude higher than those used for calibration and a model R2 of
0.99 (Fig. 7). This was reflected in a generally good agree-
ment between the relationships of model and observations
with moisture (Fig. 8) and temperature (Fig. 9).

7 Discussion

The interaction often observed in the effects of temperature
and moisture on the cycling of soil C is an indicator of the
complex nature of soil systems. Such responses are often ig-
nored, particularly by modellers trying to minimize model
complexity and derive functions that are easy to parameter-
ize, but also by experimentalists focusing on finding an in-
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Table 2. Parameters of the model M2-diff, calibrated and non-
calibrated, with results of a sensitivity analysis (sens). Sens shows
a relative measure of the sensitivity of the model CP pool to small
perturbations in the parameter values. Values are rounded to two
significant digits.

Name Value Units Sens

Calibrated parameters

g0 0.98 h−1 3.5
Ea_V 94 kJ −1.2
fD 9.1× 10−5 kg kg−1 0.00
fE 6.8× 10−4 kg kg−1

−0.05
fM 0.08 kg kg−1 0.37
fge 0.034 kg kg−1 0.07
KD_ref 62 kg C m−3 2.7
n 2.3 – 0.6
m 1.1 – 0.00
red_ref 5.6e-4 h−1 0.04
rmd_ref 9.9e-4 h−1 0.03
rmr_ref 1.5e-5 h−1 0.00
VDm_ref 0.37 h−1

−0.64
VU_ref 0.11 h−1 0.5
θth 0.063 m3 m−3 0.00

Non-calibrated parameters

Ea_m 10 kJ 0.61
Ea_e 10 kJ 1.7
fug 0.7 kg kg−1 1.3

variable response to a single factor. But a careful considera-
tion of the nature of soils suggests that interactions should be
expected, something that becomes evident in multi-factorial
experiments as well as in field measurements. Here we found
clear interactive effects in our experimental observations,
adding to the evidence that fixed empirical temperature and
moisture scalars, as used in conventional soil C models, are
inappropriate for simulating the variability often found in
natural conditions.

Since the total amount of soil C was equal among sam-
ples and its relative change in the 6 months of incubation
was small, we expected that second-order kinetics would do
as well as Michaelis–Menten kinetics. But using Michaelis–
Menten increased the R2 by ca. 5 % compared to second-
and first-order kinetics. This combined with the fact that the
model was highly sensitive to a change in KD, more than
to VD, would indicate that Michaelis–Menten kinetics are in
fact important for explaining soil C flows. Indeed, even in
this case where the CP pool is relatively invariant, the out-
come of a strong temperature effect modifying KD (Ea of
94 kJ) cannot be reproduced by second-order kinetics.

The relative importance of different processes was also
shown by the model parameter sensitivity values. It is per-
haps not surprising that some of the highest values were
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related to diffusion and temperature, since these were the
two factors that varied in our experiment. However, these
factors also vary considerably in natural ecosystems and
largely drive changes in decomposition rates. No strong cor-
relations between the effects of different parameters were
found, with most being below 0.6 (Fig. S4), thus giving a
degree of confidence in the estimated values. While we did
not obtain statistical confidence intervals, kernel density es-
timations (Figs. S5–S12) suggest differing degrees of likeli-
hood for different parameters. Activation energies in partic-
ular showed narrow ranges of optimal values with a strong
dependence on model structure.
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Since optimizing all parameters against our data resulted
in anR2 of 0.87, it was surprising to obtain anR2 of 0.99 dur-
ing model validation. We note that few studies were found
with data on moisture and temperature interactions under
controlled conditions, and this was the only validation at-
tempt carried out. This very high R2 is partially thanks to the
recalibration of initial pool sizes and may have to do with the
reduced amount of data coming from a simpler experimental
design compared to our study. There were only 20 data points
in the validation data, one for each temperature and moisture
combination. In contrast, we had 3 replicates, 11 moisture
levels, and 2 temperature cycles, and therefore more data and
associated variability. Despite these points and this being an
initial validation step, such a close agreement using indepen-
dent data and a soil that differed considerably in C content
provides strong support for the model structure we used.

Model steady state or equilibrium is attained when the rate
of change of all state variables equals zero, reflecting the state
towards which the system will tend under invariant input and
forcing conditions. Even though external drivers are in con-
stant change in natural systems, steady-state information can
indicate the approximate model behaviour under specific av-
erage conditions. Results here showed that the model M2-dif
gives realistic values in the range of temperature for which
it was calibrated but leads to unrealistic values under colder
conditions. In addition, the CP pool shows little sensitivity to
changes in C input. While the model fitted well the validation
data, it may not be suitable when applied outside the condi-
tions used for development and may need further changes for
field applications. The limitations encountered are character-
istic of non-linear microbial models and mark their current
limitations as predictive tools. However, such limitations are
most likely the result of missing processes that still need to be
adequately represented. For example, recent work has shown

that a density-dependent mortality rate of the microbial pool
can lead to much more realistic long-term simulations (Geor-
giou et al., 2017).

It is important to point out that our approach was to use
a simple model with few processes and C pools and modify
only those components we tested. This allowed us to distin-
guish the effects of each modification and minimize param-
eter identifiability problems arising from having too many
parameters with effects that may correlate. While this al-
lowed us to focus on specific processes, it also meant that
important mechanisms were left out. Some of these mecha-
nisms are oxygen limitations in saturated conditions, leach-
ing of CD, the coupling of the C and N cycles (introducing
SOC quality and microbial stoichiometry limitations), and
organo-mineral interactions. Our model thus needs further
development to extend its application and general predic-
tive capacity. In its current form, it cannot be extended to
litter decomposition (Cotrufo et al., 2015) or organic soils,
which will be much more dependent on substrate quality and
less affected by carbon diffusion (Manzoni et al., 2012b).
Also, peatlands and other saturated soils (Clymo, 1984; Frol-
king et al., 2001) will show different dynamics, reflecting
the critical role of oxygen as a limiting factor. We did not
include mineral adsorption of carbon as an active mecha-
nism in this study. This is contrary to recent studies that
used adsorption–desorption fluxes to explain the variability
in temperature responses (Tang and Riley, 2014). However,
some values of mineral desorption rates found in the litera-
ture (Ahrens et al., 2015) suggest that these rates, although
important in the long term, are too slow to have a noticeable
impact on the timescale of this or similar experiments, and
thus on most estimates of soil respiration temperature sen-
sitivities. Finally, nitrogen requirements will impose limits
on the growth of microbial communities, which in models
with microbial driven uptake and/or decomposition will also
regulate C fluxes (Grant et al., 1993; Manzoni et al., 2012a).
Despite such limitations, we demonstrated the effects and rel-
evance of combining Michaelis–Menten kinetics with diffu-
sion in mineral soils, with model results being well supported
by the data.

7.1 Temperature effects

Unlike other calibrated parameters, the activation energy val-
ues for microbial (Ea_m) and enzyme (Ea_e) decay were fixed
at 10 kJ, representing a positive but low temperature sensitiv-
ity. This value was used in order to be consistent with two
main observations:

a. The effect ofEa_m on the amount of microbial carbon. A
high Ea_m results in large changes of microbial biomass
C with temperature. However, observations often show
a negative but moderate effect of temperature on micro-
bial biomass (Grisi et al., 1998; Salazar-Villegas et al.,
2016).
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b. The effect of Ea_e on carbon decomposition rates. High
Ea_e values result in increasing accumulations of soil
C with warming (Allison et al., 2010; Tang and Riley,
2014) as a consequence of a decrease in the enzyme
pool caused by accelerated turnover. This is a critical
aspect of enzyme-driven soil carbon models and largely
determines simulated responses to long-term warming.
Experimental evidence for Ea_e is lacking, but the lat-
est observations of mid-term responses to warming are
compatible with low values (Crowther et al., 2016).

The optimized Ea_V value of models with first- and second-
order decomposition kinetics were in the range 40–50 kJ,
translating to aQ10 of ca. 2. In contrast, for all but one model
using M decomposition, values were above 90 kJ, translat-
ing to a Q10 of nearly 4. This high value was apparent in
the modelled respiration fluxes only at lower temperatures,
while at temperatures higher than 20 the apparent Q10 ap-
proximated the more commonly observed value of 2. Such
results followed closely our observations and agree well with
general trends in Q10 along the temperature axis reported
by Hamdi et al. (2013). These values were mostly stable at
high levels of soil moisture but increased sharply under drier
conditions. This moisture relationship, however, is not nec-
essarily the norm and seems to depend on initial conditions
and/or pool dynamics, as demonstrated by the validation step
(Fig. 9), where the apparent Ea remained close to 90 kJ and
thus near the parameterized value. Also the change inEa with
moisture content followed a different trend in the validation
data, although again values increased with lower moisture.

The difference between prescribed and observed temper-
ature sensitivities may be related to two factors. First, the
apparent sensitivities do not represent the instantaneous sen-
sitivities dictated by the prescribed values but reflect also the
effects of other limiting factors that change with time. Pool
sizes, including CM and CE, may differ from the initial con-
ditions as time progresses, making measurements at different
temperatures not strictly comparable. The observation that
Q10 values from studies using short incubation times (hours
to days) are higher compared to those using longer incuba-
tion times (Hamdi et al., 2013) is consistent with this idea.
The second factor is related to the temperature sensitivity
of the K constant of Michaelis–Menten kinetics. Our results
are well in line with the theory discussed by Davidson and
Janssens (2006), who stated that “because the Km of most
enzymes increases with temperature, the temperature sensi-
tivities of Km and Vmax can neutralize each other, creating
very low apparent Q10 values”. Indeed, this seems to be the
most important effect of introducing Michaelis–Menten ki-
netics in our simulations – not, as first assumed, the effects
of concentrations of either the CP or CED pools, since the
choice of using M vs. Mr kinetics had only a small impact on
the results.

The model results described above are thus emergent ef-
fects leading to apparent temperature sensitivities that vary

in time but are based on constant model parameter (Ea) val-
ues. These results demonstrate how apparent sensitivities are
the result of the offsetting effects of different processes (e.g.
sensitivities of Michaelis–Menten parameters V vs.Km) and
how different values can be measured when soil pool dy-
namics change (e.g. through changes in diffusion limitations)
even when the underlying temperature sensitivities are the
same. Much of the variability in reported temperature sen-
sitivities of soil respiration, and in particular its relationship
with soil moisture (Craine and Gelderman, 2011), may be the
result of the changing dynamics in microbial, enzyme, and
dissolved C pools during measurement times. Clearly, mis-
leading conclusions regarding an intrinsic temperature sensi-
tivity of soil C decomposition are often reached by the usual
procedure of fitting a simple function to respiration vs. tem-
perature data.

Decomposition, which was only modelled, consistently
showed a lower apparent temperature sensitivity than respi-
ration, with a Q10 between 1 and 2 for our experiment and
just below 3 for the validation study. These values may be
the most relevant for predicting long-term changes, since up-
take and respiration ultimately depend on C made available
by decomposition. These rather low sensitivities are consis-
tent with some integrative studies at the ecosystem level (Ma-
hecha et al., 2010) and again likely respond to the temper-
ature sensitivities of Km and Vmax neutralizing each other.
Such results raise the question of what Ea or Q10 values –
i.e. those apparent for respiration, those apparent for decom-
position, or those parameterized – are best suited for conven-
tional first-order empirical soil models. Since these models
will tend to have similar apparent and intrinsic behaviour,
the answer is not clear and will require further research. Ul-
timately, the best option may be to abandon such models and
develop better validated mechanistic alternatives for predic-
tion purposes.

7.2 Moisture effects and diffusion limitations

Diffusion fluxes are a function of water content, diffusiv-
ity coefficients, and pool concentrations. Different equations
have been used to calculate diffusion as a function of wa-
ter content in soils (Hamamoto et al., 2010; Hu and Wang,
2003). All these equations generally predict a strong positive
near-exponential effect of water content on diffusion. Fol-
lowing previous studies (Manzoni et al., 2016), we chose the
function from Hamamoto et al. (2010). This equation allows
for an adjustment of the percolation threshold (θth) in differ-
ent soils. We note that when using the θth obtained during
calibration (0.063) we also obtained a high fit to the valida-
tion data (R2

= 0.97, data not shown), so the recalibration
of θth led to a noticeable but small improvement. While the
value 0.063 for our soil came close to the water potential
of −15 MPa found in previous studies (Manzoni and Katul,
2014), this relationship did not hold for the soil used for vali-
dation, where we assumed a higher clay and silt content from
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its classification. Thus, a prerequisite for applying our model
to other soils is finding a relationship between θth and soil
type that holds in all cases.

Diffusion regulations can be implemented either by sim-
ulating two separate pools between which diffusion takes
place or by determining the available amount of a pool as
a function of diffusivity (or conductance in our case) at each
time step. In our model we used a combination, simulating
a diffusion flux between enzyme pools and calculating how
much CD is available for uptake at each time step. We did
not assume a diffusion regulation of available polymeric C,
an approach that is closer to empirical functions scaling the
decomposition flux directly and that has been implemented
in other microbial models (Davidson et al., 2012).

In our study especially, but also in the validation data, the
moisture response tended to become less linear and have a
larger plateau at higher temperatures. The mechanisms lead-
ing to such interactions are still unclear, but our model com-
parison indicates that solute diffusion limitations play a cen-
tral role. The plateau behaviour, a decrease near saturation,
and even near-linear responses all contrast with the near-
exponential relationship between moisture and conductance
given by Eq. (11) and with the fact that no oxygen limita-
tions at high moisture levels were modelled. They may, how-
ever, result from a faster depletion of available carbon at high
moisture levels and at high temperatures, driving down the
accumulated fluxes over time.

While a low supply of O2 usually limits respiration rates
in saturated soils under field conditions, O2 seemed to have
a negligible effect in our study. At 35 ◦C, where fluxes were
highest, no clear drop in respiration was observed near sat-
uration, as is expected when O2 becomes limiting. Rather,
the general behaviour was well simulated by our models us-
ing solute diffusion limitations only. Schurgers et al. (2006)
found that the anaerobic fraction in soils with air O2 con-
centrations over 10 % is low until very close to saturation.
The minimum flask air O2 concentrations (corresponding to
56 000 ppm of CO2, the maximum accumulated by a sam-
ple before changing headspace air) was over 15 % O2, which
next to the small sample sizes would not indicate an O2 lim-
itation.

In models where decomposition and respiration are sep-
arated processes, these fluxes can show different responses.
This decoupling is especially evident when diffusion limita-
tions come into play. Plots of modelled fluxes against tem-
perature and moisture (Fig. S3) showed a different relation-
ship when comparing respiration and decomposition. Fig-
ure 10 shows modelled decomposition against respiration
(using M2-dif) as accumulated values, each line being a sam-
ple at a different water content. Without any diffusion limita-
tion, the relationship follows a slope of ca. 0.3, determined
by 1− fug, where fug is the fraction of uptake to growth
(the C use efficiency). This slope, however, changes as diffu-
sion becomes limiting, with temperature also playing a role
as evidenced by the shifts in the slope occurring at various
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Figure 10. Modelled decomposed vs. respired C shown as accu-
mulated values over the entire simulated incubation, including tem-
perature steps. Each line is a sample at a different moisture content
level.

intervals. With time these fluxes will tend to equilibrate as
the CD and CED pools adjust. But the proportionality be-
tween these fluxes is not constant and will depend on mois-
ture, temperature, and time, even after months of incubation.
These results show that, without a proper modelling frame-
work and when assuming a constant proportionality, interpre-
tations based only on respiration activity may lead to wrong
conclusions about the dynamics of organic matter decompo-
sition, especially at low moisture content levels and in short-
and mid-term experiments.

8 Conclusions

As the main mechanism linking water content with the move-
ment of substrates, microbes, and enzymes, diffusion plays a
central role in soil organic matter decomposition. We here
showed that integrating it into models can significantly im-
prove our understanding of soil C dynamics. Diffusion-based
models were better at simulating the effects of moisture and
improved the simulated temperature responses, thus allowing
for a better interpretation of the observed temperature sensi-
tivities. This and similar studies indicate that measured tem-
perature sensitivities cannot be generalized or correctly in-
terpreted without having a full understanding of the relevant
mechanisms, their interactions, and the state of soil carbon
and microbial pools.

We also found evidence that Michaelis–Menten kinetics
plays an important role in soil C dynamics, explaining the
strong differences in temperature sensitivities across temper-
ature ranges. Our results are consistent with relatively high
activation energies for both the V and K Michaelis–Menten
parameters and generally lower apparent values.

Biogeosciences, 15, 5031–5045, 2018 www.biogeosciences.net/15/5031/2018/



F. E. Moyano et al.: Modelling temperature and moisture effects on soil C fluxes 5043

Creating models that capture the variability in the response
of C dynamics across different soils and at different levels
of driving factors remains challenging. However, process-
based models are of central importance for establishing con-
fidence in C cycle predictions and soil–climate feedbacks. As
seen here, the structure and process representation of models
can be critical for simulating the complex response of soil
C fluxes to combined changes in temperature and moisture.
Diffusion as a moisture regulation of soil C fluxes has not
been used in large scale predictions, which still rely on em-
pirical scaling functions. Evidence of interactions seen in ex-
periments and presented from a mechanistic model perspec-
tive indicates that these simpler approaches do not always
hold. Further research should focus on more extensive vali-
dation and finding the relationships necessary for extending
the application of models to diverse soil types.
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