

Supplement of

Niche differentiation of ammonia and nitrite oxidizers along a salinity gradient from the Pearl River estuary to the South China Sea

Lei Hou et al.

Correspondence to: Yao Zhang (yaozhang@xmu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Station	Water Depth (m)	ter Sampling	Archaeal <i>amo</i> A g (copies L ⁻¹)		<i>β</i> -pr	β-proteobacterial <i>amo</i> A (copies L ⁻¹)			<i>Nitrospira</i> 16S rRNA (copies L ⁻¹)			<i>Nitrospina</i> 16S rRNA (copies L ⁻¹)						
		Depth (m)	FL ^a	SD	PA ^b	SD	FL ^a	SD	PA ^b	SD	FL ^a	SD	PA ^b	SD	FL ^a	SD	PA ^b	SD
D1	0.0	1	0		1501	40	0		1338	799	1533	446	33025	525	909	747	4537	691
PI	8.9	7	0		1248	57	228	56	528	17	776	76	53287	1086	121	6	3902	179
D 2	0.8	1		NS°				NS°			NS°				NS°			
P2	9.8	7	2768	27	4462	1243	526	6	7441	562	29374	5945	328697	15430	4851	447	45997	2792
D2	10.2	1		NS°				NS°			NS°				NS ^c			
F 3	10.2	8	2556	251	11321	85	298	14	8239	482	25360	1478	573425	12573	5103	850	85027	9576
P4	21.5	1		١	٩Sc]	NS°				NS ^c]	NS°	
	21.3	18	657	22	12080	516	308	49	34158	2469	9175	1541	2024263	198739	3068	441	380537	14232
D <i>5</i>	22.5	1	4104	80	6535	30	961	58	5532	428	40070	3306	365741	18556	13556	1852	84860	3967
15		19	3263	109	9162	327	672	70	12341	292	38076	5273	763345	93318	12186	1715	125427	10142
D 6	18.8	1	3617	305	11219	241	488	71	4136	208	21516	2437	482519	13994	3763	250	56974	2244
10	10.0	16	NS ^c			NS ^c			NS°				NS ^c					
P7	12	1	40742	2180	108877	4425	2012	245	14259	3443	69806	5991	735150	42882	7820	652	95572	4870
Γ/	12	10	10212	2234	8267	677	221	11	974	171	11393	3342	46220	3334	950	103	7540	399
D8	5	1	2614	47	64350	3095	150	40	1024	72	16111	1427	70874	15050	3368	539	7479	625
10	5	3.5	2904	272	49549	4515	201	117	1228	92	26179	3334	83656	10345	5913	668	11065	1838
ÞQ	8	1	20355	1102	35409	2540	70		553	127	3536	475	40278	3435	8309	1501	75342	10147
19	8	6	10081	442	681539	25091	0		1392	64	0		47889	10565	769	139	296757	20048
D 10	12.0	1	72002	20991	25516	4630	0		121		506	128	1663	946	1814	98	2033	214
F 10	12.9	11	113345	4922	185761	31978	298	71	165	29	63	23	973	292	2340	256	14241	2378
P11	14.2	1	14384	2520	775	81	0		172	118	43		495	135	412	151	51	

Table S1. Abundances of the archaeal and β -proteobacterial *amo*A genes and *Nitrospira* and *Nitrospina* 16S rRNA genes in the PRE.

		12	130393	6302	137480	14835	0	224	14	154	101	2542	750	3400	315	12913	2894
P12	16	1	12087	1917	4724	984	0	0		68		0		6945	3360	362	
	10	14	302349	78106	240640	4899	0	1423	74	227	110	5294	807	6635	851	20858	530

^a, Free-living; ^b, Particle-associated; ^c, No sample

Table S2. Primer set sequences, PCR reaction mixtures and conditions for each gene.

Target gene	Primer	Sequence (5'-3')	PCR mixture	PCR conditions	References	
l motochostorial	amoA-34F	GCGGCRAAAATGCCGCCGGAAGCG	50 μL reaction mixture: Failsafe Premix F (Epicentre Biotechnologies, Madison, WI,	95 °C for 2 min; hot start	Kim et al.,	
p-proteobacterial amoA	amoA-2R	CCCCTCKGSAAAGCCTTCTTC	U.S.A.) 25 μL, primers 0.5 μM, plantium Taq DNA polymerase (Invitrogen, Carlsbad, CA, U.S.A.) 1 U, DNA template 1 μL	at 80°C, and 25 x (95°C for 30 s, 57 °C for 30 s, 73 °C for 3 min).	2008; Hu et al., 2010	
	Arch-amoAF	STAATGGTCTGGCTTAGACG	50 μ L reaction mixture: Failsafe Premix F	95 °C for 5 min; 30 x	Francis et al.,	
Archaeal amoA	Arch-amoAR	GCGGCCATCCATCTGTATGT	(Epicentre Biotechnologies) 25 μL, primers 0.5μM, plantium Taq DNA polymerase(Invitrogen) 1 U, DNA template 1 μL	(94 °C for 45 s, 53 °C for 60 s, and 72 °C for 60 s); and 72 °C for 15 min.	2005; Hu et al., 2010	
	nxrBF706 AAGACCTAYTTCAACTGGTC		50 µL reaction mixture: Ex Taq DNA	95 °C for 5 min; 35 x		
Nitrobacter and Nitrococcus nxrB	nxrBR1431	CGCTCCATCGGYGGAACMAC	polymerase 0.25 μL (TaKaRa), 10×Buffer 5 μL, dNTP 4 μL, Mg ²⁺ 4 μL, primers 1 μM, BSA (20 μg/uL) 0.125 μL, DNA template 2 μL	(95 °C for 40 s, 56 °C 30 s, 72 °C 30 s), 72 °C for 10 min.	Koch, 2009	
	nxrB169F	TACATGTGGTGGAACA	25 μ L reaction mixture: Platinum Taq DNA	95 °C for 5 min; 35 x	Modified from	
Nitrospira nxrB	nxrB638R	CGGTTCTGGTCRATCA	polymerase 0.1 μ L (Invitrogen), 10×Buffer 2.5 μ L, dNTP 2 μ L, Mg ²⁺ 4 μ L, primers 1 μ M, BSA (200 ng/ μ L) 2.5 μ L, DNA template 1 μ L	(95 °C for 40 s, 56.2 °C 40 s, 72 °C 90 s), 72 °C for 10 min.	Pester et al., 2013	
	nxrBNF	GGGCGACCAGATGGAAAC	25 μL reaction mixture: LA Taq DNA	95 °C for 5 min; 35 x		
Nitrospina nxrB			polymerase 0.25 µL (TaKaRa), 10×Buffer 2.5	(95 °C for 40 s, 56.2 °C	This study	
	nxrBNR	GGGCCGGACATAGAAAGG	μ L, dNTP 1 μ L, Mg ²⁺ 5 μ L, primers 1 μ M,	40 s, 72 °C 90 s), 72 °C		
			BSA (200 ng/ μ L) 2.5 μ L, DNA template 1 μ L	for 10 min.		

References

2	Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B. B.:
3	Ubiquity and diversity of ammonia-oxidizing archaea in water columns and
4	sediments of the ocean, Proc. Natl. Acad. Sci. USA, 102, 14683-14688, 2005.
5	Hu, A., Yao, T., Jiao, N., Liu, Y., Yang, Z., and Liu, X.: Community structures of
6	ammonia-oxidizing archaea and bacteria in high-altitude lakes on the Tibetan
7	Plateau, Freshw. Biol., 55, 2375–2390, 2010.
8	Kim, O. S., Junier, P., Imhoff, J. F., and Witzel, K. P.: Comparative analysis of
9	ammonia monooxygenase (amoA) genes in the water column and sediment-water
10	interface of two lakes and the Baltic Sea, FEMS Microbiol. Ecol., 66, 367-378,
11	2008.
12	Koch, H.: Ecophysiological investigation of nitrite-oxidizing bacteria of the genus
13	Nitrospira, Ph.D. thesis, University of Vienna, Austria, 123pp., 2009.
14	Pester, M., Maixner, F., Berry, D., Rattei, T., Koch, H. and Lücker, S.: NxrB encoding
15	the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for
16	nitrite-oxidizing Nitrospira, Environ. Microbiol., 16, 3055–3071, 2013.
17	

Table S3. Primer pair sequences, qPCR mixtures and conditions for each gene.

Target gene	Primer	Sequence (5'-3')	PCR mixture	PCR conditions	Efficiency	Detection limits	References	
β -proteobacterial	amoA-1F	GGGGHTTYTACTGGTGGT	25 μL reaction mixture: SYBR® Premix Ex Taq TM (TakaRa, Dalian,	94 °C for 30 s; 45 × (94 °C for 15 s, 60 °C	96-104%	2 copies	Rotthauwe et al., 1997: Hu et al., 2011:	
amoA	amoA-2R	CCCCTCKGSAAAGCCTTCTTC	China) 12.5 μL, BSA 5 μg, primers 0.4 μM, DNA template 1 μL	for 60 s, and 72 °C for 90 s).		μl ⁻¹	Mincer et al., 2007	
Archaeal amoA	Arch-amoAF Arch-amoAR	STAATGGTCTGGCTTAGACG	25 μL reaction mixture: SYBR® Premix Ex Taq [™] (TakaRa) 12.5 μL, BSA 5 μg, primers 0.4 μM, DNA template 1 μL	95 °C for 30 s; 40 × (95 °C for 30 s, 53 °C for 60 s, and 72 °C for 45 s).	91-98%	3 copies μl ⁻¹	Francis et al., 2005; Hu et al., 2011	
Archaeal amoA ^a	Arch-amoA-for Arch-amoA-rev	CTGAYTGGGCYTGGACATC TTCTTCTTTGTTGCCCAGTA	25 μL reaction mixture: SYBR® Premix Ex Taq [™] (TakaRa) 12.5 μL, BSA 10 μg, primers 1 μM, DNA template 1 μL	95 °C for 30 s; 41 × (95 °C for 30 s, 58.5 °C for 40 s, and 72 °C for 30 s and 80°C for 25 s).	94-99%	2 copies μl ⁻¹	Wuchter et al., 2006 Bergauer et al., 2013	
Nitrospira 16S rRNA	Nspra-675f Nspra-746r	GCGGTGAAATGCGTAGAKATCG TCAGCGTCAGRWAYGTTCCAGAG	25 μL reaction mixture: SYBR® Premix Ex Taq [™] (TakaRa) 12.5μL, BSA 15 μg, primers 0.2 μM, DNA template 1 μL	95 °C for 10 min; 45 × (94 °C for 30 s, 64 °C for 30 s, 72 °C for 60 s).	92-98%	2 copies μl ⁻¹	Graham et al., 2007; Attard et al., 2010	
Nitrospina 16S rRNA	NitSSU_130F NitSSU_282R	GGGTGAGTAACACGTGAATAA TCAGGCCGGCTAAMCA	25 μL reaction mixture: SYBR® Premix Ex Taq TM (TakaRa) 12.5μL, BSA 1 μg, primers 0.4 μM, DNA template 1 μL	94 °C for 15 min; 45 × (94 °C for 15 s, 57.5 °C for 15 s, 72 °C for 30 s, 77 °C for 1 s).	90-100%	3 copies μl ⁻¹	Mincer et al., 2007	

^a, The primer set was used in the samples from the lower reaches (sites P9–12) of the estuary.

1 **References**

2	Attard, E., Poly, F., Commeaux, C., Laurent, F., Terada, A., Smets, B. F., Recous, S.,
3	Le Roux, X.: Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers
4	underlie the response of soil potential nitrite oxidation to changes in tillage
5	practices, Environ. Microbiol., 12, 315–326, 2010.
6	Graham, D. W., Knapp, C. W., Van Vleck, E. S., Bloor, K., Lane, T. B., and Graham,
7	C. E.: Experimental demonstration of chaotic instability in biological nitrification,
8	ISME J., 1, 1–9, 2007.
9	Hu, A., Jiao, N., and Zhang, C.: Community structure and function of planktonic
10	Crenarchaeota: changes with depth in the South China Sea, Microb. Ecol., 62,
11	549–563, 2011.
12	Mincer, T. J., Church, M. J., Taylor, L. T., Preston, C., Karl, D. M., and DeLong, E. F.:
13	Quantitative distribution of presumptive archaeal and bacterial nitrifiers in
14	Monterey Bay and the North Pacific Subtropical Gyre, Environ. Microbiol., 9,
15	1162–1175, 2007.
16	Rotthauwe, J. H., Witzel, K. P., and Liesack, W.: The ammonia monooxygenase
17	structural gene amoA as a functional marker: molecular fine-scale analysis of
18	natural ammonia-oxidizing populations, Appl. Environ. Microbiol., 63, 4704-4712,
19	1997.
20	Wuchter, C., Abbas, B., Coolen, M. J., Herfort, L., van Bleijswijk, J., Timmers, P.,
21	Strous, M., Teira, E., Herndl, G. J., Middelburg, J. J., Schouten, S., and Sinninghe
22	Damste, J. S.: Archaeal nitrification in the ocean, Proc. Natl. Acad. Sci. USA, 103,

1 12317–12322, 2006.

2	Bergauer, K., Sintes, E., van Bleijswijk, J., Witte, H., and Herndl, G. J.: Abundance
3	and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes
4	indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's
5	interior, FEMS Microbiol. Ecol., 84, 461–473, 2013.

Genes	No. of Libraries	n	No. of OTUs	C (%)	Η'	1/D	Chao1
AOA amoA (SCS)	4/4	392	60	0.94	3.04	10.64	49.46
AOA amoA (PRE)	4/4	127	23	0.90	2.13	4.87	42.5
β-AOB amoA (PRE)	2/4	26	3	0.96	0.43	1.28	3
Nitrospira nxrB (PRE)	4/4	345	29	0.96	1.79	3.57	42
Nitrospina nxrB (PRE & SCS)	4/8	185	12	0.98	1.79	4.83	12.75
Nitrobacter nxrB (PRE)	2/4	48	3	0.98	0.78	2.13	3

Nitrobacter nxrB genes based on 5% nucleic acid sequences cutoff.

n, number of sequences; OTU, operational taxonomic unit; C, coverage; H',
Shannon-Wiener Index; 1/D, Simpson's diversity Index; SCS, South China Sea; PRE,
Pearl River estuary. Numbers before slash indicate successful libraries; numbers after

6 slash indicate all amplified samples.

Cono	C	Water m	eters	Subst	rate paran	neters	Parameters influencing substrate availability			
Gene	Community	Temperature	Salinity	SiO ₃ ²⁻	\mathbf{NH}_{4}^{+}	NO ₂ -	NO ₃ -	TSM	DO	рН
		(n = 20)	(n = 20)	(n = 20)	(n = 15)	(n = 20)	(n = 20)	(n = 19)	(n = 20)	(n = 20)
	FL ^a	0.302	-0.441	0.439	-0.108	<mark>0.527*</mark>	0.759 ^{**}	-0.053	-0.425	<mark>-0.512*</mark>
AOB amoA	PA ^b	0.332	<mark>-0.474*</mark>	<mark>0.475*</mark>	-0.048	<mark>0.706^{**}</mark>	<mark>0.464*</mark>	<mark>0.520*</mark>	<mark>-0.525*</mark>	<mark>-0.496*</mark>
unioit	FL+PA	0.341	<mark>-0.471*</mark>	<mark>0.487*</mark>	-0.053	<mark>0.718^{**}</mark>	<mark>0.491*</mark>	<mark>0.504*</mark>	<mark>-0.536*</mark>	<mark>-0.513*</mark>
404	FL ^a	<mark>-0.754**</mark>	<mark>0.691**</mark>	<mark>-0.709^{**}</mark>	-0.376	<mark>-0.461*</mark>	<mark>-0.728^{**}</mark>	-0.203	0.412	<mark>0.585**</mark>
amoA	PA ^b	-0.528^{*}	<mark>0.539*</mark>	<mark>-0.524*</mark>	-0.407	-0.361	<mark>-0.486*</mark>	<mark>0.498*</mark>	0.348	0.434
	FL+PA	<mark>-0.717**</mark>	0.703**	<mark>-0.697**</mark>	-0.468	-0.470^{*}	<mark>-0.673**</mark>	0.330	0.441	0.577**
N7:4	FL ^a	0.426	<mark>-0.580**</mark>	<mark>0.537*</mark>	-0.205	<mark>0.643**</mark>	0.772^{**}	-0.099	<mark>-0.464*</mark>	-0.625**
Nurospira 16S rRNA	PA ^b	0.356	<mark>-0.474*</mark>	<mark>0.491*</mark>	-0.073	<mark>0.730**</mark>	<mark>0.518*</mark>	<mark>0.504*</mark>	<mark>-0.541*</mark>	<mark>-0.524*</mark>
	FL+PA	0.367	<mark>-0.475*</mark>	<mark>0.503*</mark>	-0.080	<mark>0.743**</mark>	<mark>0.539*</mark>	<mark>0.493*</mark>	<mark>-0.550*</mark>	<mark>-0.540*</mark>
N 7°4 °	FL ^a	0.097	-0.167	0.158	-0.268	0.436	0.253	-0.315	-0.190	-0.230
<i>Nurospina</i> 16S rRNA	PA ^b	0.108	-0.134	0.162	-0.105	<mark>0.453*</mark>	0.173	0.822**	-0.276	-0.221
	FL+PA	0.111	-0.140	0.167	-0.115	<mark>0.468*</mark>	0.182	<mark>0.811^{**}</mark>	-0.282	-0.229

Table S5. *r* values for the relationship between gene abundances of nitrifiers and environmental parameters in the PRE.

^a, Free-living; ^b, Particle-associated; ^{*}, P < 0.05; ^{**}, P < 0.01; TSM, Total suspended material; DO, Dissolved oxygen

3

Figure S1. Depth profiles of biogeochemical parameters at SEATS.

Figure S2. Rarefaction curves of (a) AOA and β-AOB amoA gene sequences and (b) *Nitrospira*, *Nitrospina*, and *Nitrobacter nxr*B gene sequences. The curves were
generated at 95% DNA sequence identity.

0.050

1	Figure S3. Unrooted neighbor-joining (NJ) phylogenetic tree of the archaeal amoA
2	gene sequences (expanded view for group Ba and Bb (LAC)). Clone sequences from
3	this study are shown in bold and sequences sharing 95% DNA identity are grouped.
4	Phylogenetic relationships were bootstrapped 1000 times, and bootstrap values greater
5	than 50% are shown. The scale bar indicates 5% estimated sequence divergence.
_	