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Abstract. Soils in Arctic and boreal ecosystems store twice
as much carbon as the atmosphere, a portion of which may
be released as high-latitude soils warm. Some of the uncer-
tainty in the timing and magnitude of the permafrost–climate
feedback stems from complex interactions between ecosys-
tem properties and soil thermal dynamics. Terrestrial ecosys-
tems fundamentally regulate the response of permafrost to
climate change by influencing surface energy partitioning
and the thermal properties of soil itself. Here we review how
Arctic and boreal ecosystem processes influence thermal dy-
namics in permafrost soil and how these linkages may evolve

in response to climate change. While many of the ecosystem
characteristics and processes affecting soil thermal dynam-
ics have been examined individually (e.g., vegetation, soil
moisture, and soil structure), interactions among these pro-
cesses are less understood. Changes in ecosystem type and
vegetation characteristics will alter spatial patterns of inter-
actions between climate and permafrost. In addition to shrub
expansion, other vegetation responses to changes in climate
and rapidly changing disturbance regimes will affect ecosys-
tem surface energy partitioning in ways that are important for
permafrost. Lastly, changes in vegetation and ecosystem dis-
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tribution will lead to regional and global biophysical and bio-
geochemical climate feedbacks that may compound or off-
set local impacts on permafrost soils. Consequently, accurate
prediction of the permafrost carbon climate feedback will re-
quire detailed understanding of changes in terrestrial ecosys-
tem distribution and function, which depend on the net ef-
fects of multiple feedback processes operating across scales
in space and time.

1 Introduction

Permafrost, or perennially frozen ground, underlies approx-
imately 24 % of Northern Hemisphere land masses, primar-
ily in Arctic and boreal regions (Brown et al., 1998). Soils
in permafrost ecosystems have a seasonally thawed active
layer that develops each summer. Organic carbon and nu-
trients in the active layer are seasonally subjected to min-
eralization, uptake by plants and microbes, and lateral hy-
drological transport. Carbon and nutrients locked in perenni-
ally frozen ground are considerably less active, often remain-
ing isolated from global biogeochemical cycles for millen-
nia (Froese et al., 2008). However, increases in temperature,
associated with recent climatic change are warming soils in
many high-latitude regions (Romanovsky et al., 2010), intro-
ducing permafrost carbon and nutrients to modern biogeo-
chemical cycles (Schuur et al., 2015). Microbial activity may
release some carbon and nutrients to the atmosphere in the
form of carbon dioxide, methane, and nitrous oxide, green-
house gases that contribute to further warming (e.g., Abbott
and Jones, 2015; Koven et al., 2011; Voigt et al., 2017).
While the magnitude of this permafrost-climate feedback re-
mains uncertain, it is considered one of the largest terrestrial
feedbacks of climate change, potentially enhancing human-
induced emissions by 22 %–40 % by the end of the century
(Comyn-Platt et al., 2018; Schuur et al., 2013, 2015).

A major source of uncertainty in estimating the timing and
magnitude of the permafrost–climate feedback is the com-
plexity of the soil thermal response of permafrost ecosystems
to atmospheric warming. Permafrost soil temperature and its
response to climatic change are highly variable across space
and time (Jorgenson et al., 2010), owing to multiple biophys-
ical interactions that modulate soil thermal regimes across
Arctic and boreal regions (Romanovsky et al., 2010). Moving
northward, permafrost temperature and active layer thickness
generally decrease, while permafrost thickness and spatial
extent increase. In more northern locations, the areal distribu-
tion of permafrost may be continuous (> 90 % areal extent),
whereas at lower latitudes discontinuous, sporadic, and iso-
lated permafrost (> 50 %–90%, 10 %–50 %, and < 10 % areal
extent, respectively) (Brown et al., 1998) have large areas
that are not perennially frozen. This general latitudinal gra-
dient is interrupted by considerable local variability in active
layer and permafrost thickness and temperature due to differ-

ences in local climate, vegetation, soil properties, hydrology,
topography, and snow characteristics. These factors can in-
crease or decrease the responsiveness of permafrost soil tem-
peratures to climate, mediating a high degree of spatial and
temporal variability in the relationship between air and per-
mafrost soil temperatures (Jorgenson et al., 2010; Shur and
Jorgenson, 2007). Understanding how ecosystem character-
istics influence local and regional permafrost temperature is
critical to interpreting variability in rates of recent permafrost
temperature increases (Romanovsky et al., 2010), and to pre-
dicting the magnitude and timing of the permafrost–climate
feedback. However, links between permafrost and climate
could fundamentally change as Arctic and boreal vegetation
(e.g., Pearson et al., 2013) and disturbance regimes (e.g., Ka-
sischke and Turetsky, 2006) respond to climate change.

In this paper, we review how ecosystem structural and
functional properties influence permafrost soil thermal dy-
namics in Arctic and boreal regions. We focus on how
ecosystem responses to a changing climate alter the thermal
balance of permafrost soils (energy moving into and out of
permafrost soil) and how these thermal dynamics translate
into seasonal and interannual temperature shifts. Our objec-
tives are to (1) identify and review the key mechanisms by
which terrestrial ecosystem structure and function influence
permafrost soil thermal dynamics; (2) characterize changes
in these ecosystem properties associated with altered cli-
mate and disturbance regimes; (3) identify and character-
ize potential feedbacks and uncertainties arising from multi-
ple opposing processes operating across spatial and temporal
scales; and (4) identify key challenges and research questions
that could improve understanding of how continued climate-
mediated ecosystem changes will affect soil thermal dynam-
ics in the permafrost zone.

2 Ecosystem controls on permafrost soil thermal
dynamics

Permafrost soil thermal regimes can be characterized by four
seasonal phases annually. In spring, soil thaw onset occurs as
day length increases energy inputs and air temperatures, and
snow melts. Thaw onset occurs fairly rapidly, typically over
a period of several days to weeks. During the summer, thaw
period soils accumulate energy resulting in deepening of the
active layer and warming of both frozen and unfrozen mate-
rial. In autumn, soil freeze-back occurs as day length and air
temperatures decrease. The length of the freeze-back period
varies widely, from days to several months, and is heavily de-
pendent on soil moisture content. Finally, the winter freezing
period is characterized by energy losses to the atmosphere
and declining soil temperatures until day length increases
available energy in the spring and the annual cycle begins
again. The permafrost soil thermal regime is complex be-
cause it varies with depth, and the four phases are connected.
Key metrics used to characterize the soil thermal regime in-
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clude the length of the freeze-back and summer thaw periods,
mean annual temperature, the annual amplitude of mean tem-
perature, and the ratio of air to soil freezing/thawing degree
days (i.e., n-factors), among others. (e.g., Cable et al., 2016;
Romanovsky and Osterkamp, 1995).

Soil thermal dynamics in the permafrost zone are governed
by ground-atmosphere energy exchange and internal energy
transfers associated with phase changes of water and temper-
ature gradients within the soil. The simplified thermal bal-
ance at the ground surface is the difference between net ra-
diation (RN) absorbed by a vegetation-, snow-, and ice-free
land surface, and energy loss via turbulent sensible (H ), la-
tent (LE), and ground (G) heat fluxes. RN is the difference
between incoming and outgoing longwave (LW) and short-
wave (SW) radiation where net LW is a function of atmo-
spheric and surface temperatures, and net SW is a function
of incoming solar radiation and surface albedo. In terrestrial
ecosystems G is thus modulated by vegetation function and
structure, snow cover, topography, and hydrology (Betts and
Ball, 1997; Eaton et al., 2001; Helbig et al., 2016b; Smith,
1975; Stiegler et al., 2016a; Zhang, 2005). Vegetation exerts
strong controls on albedo, surface conductance, and surface
temperature (Betts and Ball, 1997; Betts et al., 1999; Hel-
big et al., 2016b), and consequently partitioning of the sur-
face energy balance into its component fluxes (Eugster et al.,
2000). These energy balance controls vary diurnally, season-
ally, and spatially across Arctic and boreal ecosystems (e.g.,
Beringer et al., 2005), and are sensitive to natural and anthro-
pogenic disturbances (Helbig et al., 2016a).

Unlike lower-latitude ecosystems where G constitutes a
relatively small fraction of the surface energy balance, G in
permafrost regions is comparable in magnitude to gross soil-
atmospheric heat fluxes (H and LE) due to relatively large
temperature gradients between the ground surface and per-
mafrost table (Eugster et al., 2000; Langer et al., 2011a, b).
G is important because it is the transfer of heat between the
ground surface and the active layer and permafrost. G oc-
curs primarily through thermal conduction, and is a function
of the temperature gradient between the ground surface and
the permafrost table (see Fan et al., 2011; Kane et al., 2001),
and the thermal conductivity (KT) of the soil. Thus, variabil-
ity in thermal dynamics of active layer and permafrost soils
are most generally controlled by factors influencing (1) the
temperature gradient between the ground surface and per-
mafrost at a given depth, and (2) the KT of active layer and
permafrost soil substrates (Fig. 1). The amount of energy
available for G is governed by energy dynamics of the atmo-
sphere and overlying plant canopies, ground cover influences
on albedo, H , and LE (Fig. 1). Ground surface temperature
TSG is different from the land surface temperature (TSL), a
measure typically used to assess ecosystem-climate interac-
tions (e.g., Urban et al., 2013), because TSL includes tall-
statured overlying vegetation canopies, whereas TSG includes
only ground-cover vegetation (e.g., mosses and lichens), bare
soil, or plant litter that functionally represents the ground sur-

face. Once energy is absorbed at the ground surface and TSG
is elevated, soil KT, and the surface-permafrost temperature
gradient will dictate how much of this energy is transferred
downward into the soil. Here we focus on TSG and KT be-
cause they are more dynamic than permafrost temperature
and will mediate permafrost responses to climate and asso-
ciated carbon cycle consequences, particularly in the coming
decades to centuries. It is also important to note that G varies
on diurnal, seasonal, and annual timescales. We focus on fac-
tors that affect G on seasonal and annual timescales because
they are indicative of permafrost warming and thawing, and
are thus most relevant for understanding changes to the ther-
mal regime that will impact greenhouse gas fluxes from the
soil in the coming decades. In the following subsections we
review the ecological factors that affect individual phases of
the soil thermal regime and then consider interactions across
the annual cycle.

2.1 Vegetation canopy effects on G

Vegetation canopies attenuate incoming solar radiation
(Juszak et al., 2014, 2016), thereby reducing radiation at the
ground surface and subsequently TSG. Canopy removal and
addition experiments illustrate that shrub canopies insulate
tundra soils in summer, maintaining soil temperatures up-
wards of 2 ◦C cooler than adjacent tall shrub-free areas (Be-
wley et al., 2007; Blok et al., 2010; Myers-Smith and Hik,
2013; Nauta et al., 2014). Canopy shading decreases soil
temperatures in both evergreen (Fisher et al., 2016; Jean and
Payette, 2014a, b; Roy-Léveillée et al., 2014) and deciduous
(Fedorov et al., 2016; Iwahana et al., 2005) needleleaf boreal
forests. Canopy removal experiments have resulted in sub-
stantial soil warming, permafrost thaw and subsidence in ice-
rich tundra (Blok et al., 2010; Myers-Smith and Hik, 2013;
Nauta et al., 2014) and deciduous needleleaf forests (Fedorov
et al., 2016; Iwahana et al., 2005). In the latter case, ecosys-
tem recovery and winter processes lead to permafrost stabi-
lization in the decades after clearing (Fedorov et al., 2016).
However, manipulation experiments may increase soil mois-
ture and thus KT (described below) via reductions in tran-
spiration that may not occur when vegetation change occurs
naturally. Increases in vegetation stature will tend to decrease
TSG resulting in local soil cooling during the summer months
when plant canopies are present.

Whereas increases in tree and shrub cover reduce solar ra-
diation at the ground surface, the increased canopy stature
and complexity generally reduces canopy albedo, leading to
an overall increase of the canopy RN (Beringer et al., 2005;
Chapin III et al., 2005; Loranty et al., 2011; Sturm et al.,
2005). However, albedo may increase when shrubs replace
bare ground or wet tundra (Blok et al., 2011b; Gamon et al.,
2012) or depending on changes in community composition
or structure (Williamson et al., 2016). During the growing
season these albedo differences are relatively small (Juszak
et al., 2016). Increased surface roughness with shrub or tree
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Figure 1. Key ecosystem controls on surface energy partitioning in relation to permafrost soil thermal dynamics (energy fluxes are indicated
by orange arrows). Net radiation (RN) is balanced by sensible (H ), latent (LE), and ground (G) heat fluxes. Ground surface temperature
(TSG) and soil thermal conductivity (KT) exert strong controls on G and are strongly influenced by a variety of ecosystem controls (indicated
in dark gray boxes; red and blue text denote soil cooling and warming effects, respectively). Controls on air (TA) and permafrost (TPf)
temperatures are driven largely by climate, and we assume that ecosystem impacts on these variables are negligible on short timescales (e.g.,
seasonal to annual) and small spatial scales (e.g., m2 to km2) relative to factors highlighted in dark boxes.

expansion also enhances heat transfer to the atmosphere;
however, changes in RN and H have not yet been linked to
soil thermal dynamics at the ecosystem scale (Beringer et
al., 2005; Göckede et al., 2017; Helbig et al., 2016b). Veg-
etation canopies may enhance LW radiation inputs at the
ground surface by re-radiating absorbed SW radiation; how-
ever, most research has focused on LW enhancement effects
on snowmelt (Webster et al., 2016), thus the growing season
effects of LW enhancement on G in permafrost ecosystems
remain largely unstudied. Observations of lower TSL for bo-
real forest canopies relative to adjacent non-forested lands
due to higher LE flux (Helbig et al., 2016b; Li et al., 2015)
highlight the importance of canopy controls on transpiration
when considering how vegetation change affects land surface
energy partitioning and atmospheric temperatures. Within
vegetation types, growing seasons with higher LE reduce the
amount of energy available for H and G (Boike et al., 2008);
however, this is also related to variability in moisture inputs
and can alter soil moisture dynamics, both of which also af-
fect G, as discussed in following sections. In summary, dur-
ing the growing season there is no clear evidence for altered
ecosystem scale G associated with local evaporative cooling
(Li et al., 2015) or increased sensible heating as a function of
canopy albedo (Beringer et al., 2005), likely because these
effects are overwhelmed by canopy light attenuation.

Snow covers much of the Arctic and boreal regions for
long periods each year and is a critical driver of ground tem-
perature (Goodrich, 1982; Stieglitz, 2003). Deep and/or low-
density snow has low KT and thus reduces heat flux from

the ground to the atmosphere during the non-growing sea-
son when air temperatures are typically colder than soil tem-
peratures. Snow depth is initially controlled by the timing
and intensity of snowfall, but wind can redistribute snow ac-
cording to local topography, vegetation structure, landscape
position, and wind direction, leading to high heterogeneity
in snow cover and depth (Kershaw and McCulloch, 2007;
Walker et al., 2001). Snow physical and insulative properties
can also vary on the scale of broad ecoregions as a result of
differences in air temperature, wind, precipitation, and vege-
tation cover (Sturm et al., 1995). For example, high thermal
conductivity and density of snow in tundra relative to boreal
ecosystems has been linked to differences in soil tempera-
tures (Gouttevin et al., 2012; Mamet and Kershaw, 2013).
Snow cover in the shoulder seasons (freeze-back and thaw
periods) can cool soils as a result of albedo effects, but gener-
ally ground insulation from snow cover during the extended
winter period dominates the snow effects on G. For exam-
ple, across the Alaskan Arctic, ground surface temperatures
are estimated to be 4 to 9 ◦C warmer as a result of higher
snow cover (Zhang, 2005).

In tundra, shrub canopies trap blowing snow, leading to lo-
calized deepening of snow cover and higher winter soil tem-
peratures (Domine et al., 2015; Liston et al., 2002; Marsh
et al., 2010; Myers-Smith and Hik, 2013; Sturm et al., 2001,
2005). However, shrub canopies can bend in winter under the
snowpack potentially leading to different amounts of snow
trapping in years with heavy wet snow vs. dry snow in early
winter (Marsh et al., 2010; Ménard et al., 2014). Even buried
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vegetation can lead to turbulent airflow that transports snow
in complex patterns (Filhol and Sturm, 2015), which cre-
ates spatially variable ground temperatures in a given year.
In some cases vegetation-snow interactions can also have a
negative effect on winter ground temperature, leading to soil
cooling. In northeast Siberia, large graminoid tussocks ex-
posed above the snowpack in early winter create gaps in the
insulating snow layer, which leads to lower ground tempera-
tures, earlier active layer freezing and cooling of surface per-
mafrost (Kholodov et al., 2012).

In the boreal forest, the presence of trees reduces the
wind regime and snow redistribution (Baldocchi et al., 2000).
While there is less wind-distribution in boreal forests than in
the tundra, tree composition and density affect snow distri-
bution and depth through interception of snow by the canopy
branches and subsequent evaporation and sublimation. This
results in lower snow inputs in dense forests and areas of
shallow snow underneath individual trees (Rasmus et al.,
2011). This winter effect of tree density on snow cover may,
in part, explain the negative relationship found between larch
stand density and ground thaw (Webb et al., 2017) and is
consistent with the effects of winter warming experiments
on summertime active layer dynamics (e.g., Natali et al.,
2011). However, at the treeline or areas with patchy tree
cover, forests can trap blowing snow, leading to decreased
heat loss from soil in winter (Roy-Léveillée et al., 2014)

Tall-statured vegetation canopies that protrude above the
snowpack decrease land surface albedo. While the accompa-
nying increases in RN will lead to sensible heating of the at-
mosphere at regional to local scales (Chapin III et al., 2005),
they do not have a direct first order effect on TSG or KT. In
the spring thaw period when snow covers the landscape and
solar radiation is high, this increase in RN is largest (Lis-
ton et al., 2002; Marsh et al., 2010; Pomeroy et al., 2006)
and may accelerate snow melt (Loranty et al., 2011; Sturm
et al., 2005). This could lead to a longer snow-free season
and greater G during the summer thaw period; however, this
snow-reducing effect can be offset by the snow-trapping ef-
fects of vegetation (Sturm et al., 2005). Changes in the length
of the snow-free season because of altered canopy albedo
could lead to changes in G; however, such an effect has not
been observed. While canopy albedo does not directly influ-
ence G at the ecosystem scale, regional climate feedbacks
associated with albedo changes (described below) may in-
fluence permafrost thermal dynamics (Bonfils et al., 2012;
Lawrence and Swenson, 2011).

Across the annual cycle, the net effect of vegetation
canopies on soil thermal regimes remains unclear. Rela-
tively few studies have simultaneously examined the role
of summer energy partitioning and winter snow trapping
on G or soil temperatures. Myers-Smith and Hik (2013)
found that winter warming associated with snow-trapping
by shrub canopies elevated soil temperatures by 4–5 ◦C,
whereas canopy shading led to 2 ◦C cooling in summer. Sim-
ilarly, relative to non-forested palsas, forested palsas in east-

ern Canada exhibited winter soil warming associated with
snow trapping but slower rates of permafrost thaw due to
summer cooling associated with thicker organic layers and
canopy shading (Jean and Payette, 2014a, b). Additionally,
these studies observed delayed freeze-up and later spring
thaw associated with late fall precipitation that resulted in
complex relationships between annual air and soil temper-
atures and active layer depths (Jean and Payette, 2014b).
Canopy snow trapping influences on winter soil temperature
or G is likely affected by shrub or forest patch size; how-
ever, this has not been explicitly examined. Conversely, the
influence of canopy shading and LW enhancement on sum-
mer soil temperature should increase with vegetation stature
and density, but vary little with patch size. At the ecosystem
scale canopy influences on albedo have not been shown to
impact the ground thermal regime. Thus it is likely that the
magnitude of vegetation canopy influences on the annual per-
mafrost soil thermal regime will be controlled jointly by veg-
etation stature, density, and patch size influences on snow-
redistribution. The studies mentioned above also highlight
the importance covariation in over-story and under-story veg-
etation and canopy influences on soil moisture, which will be
addressed in the following sections.

2.2 Groundcover impacts on ground surface
temperature

Ground cover in permafrost ecosystems may include bare
soil, plant litter, lichens, and mosses. Unlike vascular plant
canopies, moss and lichen are in close thermal contact with
the underlying soil layers so heat can be transferred from the
vegetation into the soil (and vice versa) via conduction (e.g.,
O’Donnell et al., 2009a; Yi et al., 2009). During the growing
season, differences in albedo and LE are the primary causes
of variability in TSG among ground cover types. During win-
ter ground cover is masked by snow, and KT is the dominant
factor affecting G (described below). Under moist snow-
free conditions, non-vascular evaporation rates are generally
high, leading to surface cooling (Heijmans et al., 2004a, b).
Under dry conditions taxonomic level differences in physi-
ological responses to drought (Heijmans et al., 2004a), can
lead to large differences in TSG (Stoy et al., 2012). Increased
LE from bare soil after experimental (Blok et al., 2011a) and
disturbance induced (Rocha and Shaver, 2011) moss removal
illustrates the importance of non-vascular plant physiology,
and highlights the relatively high potential for evaporative
cooling from bare soil surfaces. Low hydraulic conductivity
in mosses relative to organic and mineral soils may result in
suppression of LE once moisture held in surface vegetation is
depleted, whereas higher hydraulic conductivity in underly-
ing soil layers may allow for evaporation of deeper soil mois-
ture and increased LE observed with moss removal (Blok et
al., 2011a; Rocha and Shaver, 2011). Albedo differences be-
tween common moss and lichen species may also contribute
to large differences in TSG in ways that either amplify or
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decrease the effects of physiological differences in evapora-
tive cooling (Higgins and Garon-Labrecque, 2018; Loranty
et al., 2018; Stoy et al., 2012). Variability in ground cover
can correspond to large differences in TSG that depend on the
joint effects of albedo and LE, and are strongly dependent on
available moisture. However, the extent to which an increase
in TSG leads to an increase in G depends upon KT of the
groundcover and soil as well their soil moisture/ice content.

2.3 Impacts of ground cover and soil properties on
thermal conductivity

Soil KT, which often includes the moss layer where present,
affects the rate of heat transfer through the soil profile across
a temperature gradient between the ground surface and the
soil at a given depth. KT varies throughout the soil profile
with soil moisture and composition. Under dry conditions,
mosses have very low KT, followed by organic and then min-
eral soils (Hinzman et al., 1991; O’Donnell et al., 2009a).
Moss and organic soil layers have low KT owing to high
porosity, and KT typically increases with soil bulk density
(Hinzman et al., 1991; O’Donnell et al., 2009a). Mineral soils
typically have higher KT than organic soils (Hinzman et al.,
1991; Kane et al., 1989; Romanovsky and Osterkamp, 2000),
and fine textured clay mineral soils have lower KT than silt
or sand (Johansen, 1977). In general, ecosystems with thick
moss and organic soil (e.g., peat) layers with low bulk den-
sity tend to have low G and shallow active layers with all else
held equal (Fisher et al., 2016; Woo et al., 2007).

Moisture content influences the thermal dynamics of soil
and moss in a variety of important ways. Linear increases
in KT with moisture content (O’Donnell et al., 2009a;
Soudzilovskaia et al., 2013) have strong impacts on G, soil
temperatures, and active layer dynamics. Under saturated
conditions, KT values of mineral soils remain higher than in
organic soils and mosses (Hinzman et al., 1991; O’Donnell
et al., 2009a; Romanovsky and Osterkamp, 2000), so the
general pattern of increasing KT with depth and bulk den-
sity is maintained. Local- and ecosystem-scale observations
of warmer soil temperatures and deeper thaw depths in ar-
eas of perennially elevated soil moisture (e.g., Curasi et al.,
2016; Hinkel and Nelson, 2003; Hinkel et al., 2001; Shik-
lomanov et al., 2010) indicate increases in KT outweigh the
concurrent increase in specific heat capacity associated with
increasing moisture content. Similarly, interannual variabil-
ity in soil moisture and active layer thickness are positively
related across a range of spatial scales (Iijima et al., 2010;
Park et al., 2013). Across soil types, KT increases in win-
ter when soils freeze (Romanovsky and Osterkamp, 1997),
and also with soil ice content meaning that increased soil
moisture will increase summer and winter KT (Langer et al.,
2011a).

Liquid water and water vapor can also warm soils through
non-conductive heat transfer (Hinkel and Outcalt, 1994; i.e.,
water movement; Kane et al., 2001). Here, the timing and

source of water is important. For example, infiltration of
snowmelt in spring does not deliver substantial heat to the
soil because the water temperature is very close to freez-
ing (Hinkel et al., 2001) and near-surface soil horizons are
mostly frozen. Alternatively, condensation of water vapor in
frozen soils can lead to fairly rapid temperature increases
during spring melt (Hinkel and Outcalt, 1994). Heat deliv-
ery from groundwater flow has been implicated as a cause
for permafrost degradation in areas of discontinuous per-
mafrost in interior Alaska (Jorgenson et al., 2010). The hy-
draulic properties of soil horizons are especially important in
this regard. Unsaturated peat and organic-soil horizons with
large interconnected pore spaces generally promote non-
conductive transport of heat in soils unless the substrate is
dry enough that it absorbs water.

The relative importance of non-conductive heat transfer on
permafrost thermal dynamics is difficult to determine. Obser-
vations of elevated soil temperature, active layer thickness,
and thermal erosion in areas with poorly drained or inun-
dated soils (e.g., Curasi et al., 2016; Jorgenson et al., 2010;
Woo, 1990) suggest the effects of soil moisture on KT may
have stronger influences than convective processes on soil
thermal dynamics. However, several recent studies indicate
that heat advected in groundwater may promote permafrost
thaw (de Grandpré et al., 2012; Sjöberg et al., 2016). This
process is likely most important in fens, water tracks, and ar-
eas of discontinuous permafrost, and less important in areas
of continuous permafrost with thin organic layers because
mineral soils generally have low hydraulic conductivity. Soil
moisture distribution within the soil profile is important as
well; dry surface organic layers with low KT may buffer
against warmer air temperatures even though deeper soils
may have high KT associated with moisture and soil com-
position (Göckede et al., 2017; Rocha and Shaver, 2011).
Observations of co-varying heterogeneity in soil structure,
temperature, and moisture also illustrate the importance of
spatio-temporal variability in soil moisture and KT for un-
derstanding permafrost soil thermal dynamics (Boike et al.,
1998).

In wet soils the large latent heat content of soil moisture
can delay freezing of the active layer (i.e., extend the freeze-
back duration; Romanovsky and Osterkamp, 2000). The pe-
riod during which soil active layer temperatures remain con-
stant near 0 ◦C as latent heat is released form soil moisture
is commonly referred to as the “zero-curtain” (Outcalt et
al., 1990). Longer zero-curtain periods promote warmer win-
ter active layer and permafrost temperatures (Morse et al.,
2015; Outcalt et al., 1990). Soil thaw during spring tends
to occur more rapidly than freeze-back during autumn, de-
spite the high latent heat required to thaw ground ice, likely
due to increases in KT associated with snowmelt infiltration
and/or latent heat released by condensation of water vapor
(Hinkel and Outcalt, 1994). Excess ground ice deeper in the
active layer or permafrost requires larger amounts of latent
heat energy to melt, and so typically buffer permafrost soils
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against thaw (Halsey et al., 1995). However, when this type
of ground ice does melt, it can lead to an array of physical and
ecological changes via thermokarst development (Mamet et
al., 2017), which further alter the soil thermal regime and
can promote further warming (Kokelj and Jorgenson, 2013;
Osterkamp et al., 2009).

Across the seasonal cycle soil and ground cover thermal
properties interact to affect the thermal regime in complex
ways that vary across ecosystem types. For example, a com-
parison of wet and dry microsites within tundra ecosystems
found warmer surface soils in dry microsites due to lower
heat capacity; however, deeper soil layers in the dry microsite
remained cooler because of lower thermal conductivity of
dry surface soils (Göckede et al., 2017). In wet microsites
greater soil moisture lengthened the fall freeze-back period
meaning that soils were warmer than dry microsites; how-
ever, once soils froze, temperatures in the wet microsites
dropped rapidly and became cooler than dry microsites be-
cause of higher KT (Göckede et al., 2017). This example
illustrates how covariation in vegetation and soil properties
within a single ecosystems affect the soil thermal regimes in
complex ways across the annual cycle.

2.4 Interacting ecosystem influences on the soil
thermal regime

The mechanisms described in the previous sections are
relatively well understood individually and at seasonal
timescales. When considered in concert, the net effect of spe-
cific processes on annual ground temperatures and thermal
regimes is often unclear. This is particularly true when eco-
logical processes co-vary or have opposing effects on per-
mafrost soil thermal dynamics. For example, is the effect of
canopy shading mitigated by LW enhancement, or amplified
by reductions in soil KT resulting from plant utilization of
soil moisture? Using successional gradients to answer such
questions is complicated by concurrent accumulation of or-
ganic soil, canopy leaf area, and soil moisture (Jorgenson et
al., 2010). Likewise, manipulative experiments nearly always
involve side effects and artefacts, for example, canopy ma-
nipulations affect soil moisture, changing soil thermal prop-
erties and surface energy inputs simultaneously (Fedorov et
al., 2016). In contrast, carefully designed manipulations and
gradient studies still provide the best avenue for studying sin-
gle and interactive processes, and for parameterizing models.
While there are a number of studies that have examined the
role of variation in vegetation canopy cover, soil moisture,
and ground/soil thermal properties on the permafrost ther-
mal regime, few have fully isolated the relative contribution
of each process to variation in active layer thickness or soil
temperatures (Jiang et al., 2015). A recent study by Fisher
et al. (2016) examined the impact of multiple factors on ac-
tive layer thickness in Canadian boreal forest and found over-
story leaf area to be most important, followed by moss thick-
ness and under-story leaf area. Further, this study revealed

that moisture in deeper soil layers modified the impacts of
vegetation, whereas surface soil moisture did not (Fisher et
al., 2016). However, this study did not explicitly consider
how active vegetation canopy effects on snow-cover, or soil
moisture influences on freeze-back and winter soil tempera-
ture might contribute to variability in active layer depth.

Further complexity is added when processes are consid-
ered across the annual cycle. The extent to which vegetation
canopy effects on snow-distribution impact growing season
soil moisture, either via direct moisture inputs or affects on
growing season length, has not been thoroughly investigated.
A study examining interannual variability in snow cover
found that growing season energy partitioning was similar in
a wet-fen after winters with above- and below-average snow-
fall (Stiegler et al., 2016b). However, in a nearby dry heath,
below average snowfall resulted in earlier snowmelt and re-
duced soil moisture during the lengthened growing season,
which in turn suppressed LE and G (Stiegler et al., 2016b).
Future research should focus on disentangling complex se-
ries of interactions between vegetation, soil properties, snow
redistribution, and soil moisture across annual cycles of the
soil thermal regime. Covariation in vegetation and soil char-
acteristics and their influences on soil thermal regimes within
ecosystems (Boike et al., 2008) and regions (Cable et al.,
2016) may help to interpret empirical relationships between
ecological and thermal variables at a range of scales.

Disentangling the relative impacts of multiple ecosystem
characteristics on G will become increasingly important be-
cause ecological responses to continued climate warming
may lead to shifts in ecosystem distribution (Abbott et al.,
2016; Pearson et al., 2013), potentially resulting in novel
ecosystems with no current eco-climatic analogs (Macias-
Fauria et al., 2012). Because ecosystems influence per-
mafrost soil thermal dynamics in a variety of ways, shifts in
ecosystem distribution will fundamentally alter rates of per-
mafrost thaw with projected future warming. This will occur
directly via altered ecosystem surface energy dynamics that
affect G and indirectly through changes to the surface en-
ergy balance that feed back to climate (e.g., Fig. 1). The fol-
lowing sections describe ongoing and anticipated ecosystem
responses to climate and associated changes to soil thermal
regimes via impacts on G, and then the associated regional
to global scale atmospheric feedbacks.

3 Implications of environmental change for permafrost
thermal dynamics

Vegetation productivity and community composition are
changing in response to longer and warmer growing seasons
associated with amplified climate warming across the Arc-
tic and boreal regions. Relationships between air tempera-
ture and soil thermal regimes vary with ecosystem proper-
ties and will thus evolve as ecosystems respond to climate
change. Ecosystem structural and functional characteristics
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Figure 2. Summary of key drivers of ecosystem change, and the as-
sociated ecosystem responses observed (solid lines) or hypothesized
(dashed lines) in permafrost ecosystems. Arrows (è) indicate tran-
sition from the current (left) to a new (right) ecosystem type, and
the symbol delta (1) indicates a change in the associated ecosys-
tem property. Ecosystem types are defined as follows. DBF: decid-
uous broadleaf forest; DNF: deciduous needleleaf forest; ENF: ev-
ergreen needleleaf forest; GRM: graminoid dominated ecosystem;
SHR: shrub dominated ecosystem; WET: wetland ecosystem; All:
any initial ecosystem type. Ecosystem properties are as follows.
LAI: leaf area index; and SOC: soil organic carbon.

that influence soil thermal dynamics may be altered directly
by ecosystem responses to climate change, or indirectly by
climatic alteration of disturbance processes that in turn mod-
ify ecosystems (e.g., O’Donnell et al., 2011a). In this section,
we outline key ecosystem changes arising from direct and in-
direct climate responses (summarized in Fig. 2), and describe
how these changes are likely to affect permafrost soil thermal
regimes via impacts on processes described above.

3.1 Vegetation change in response to climate

In tundra ecosystems, increases in vegetation productivity in-
ferred from satellite observations (Beck and Goetz, 2011; Jia
et al., 2003) have been linked to shrub expansion and ac-
celerated annual growth at locations throughout the Arctic
(Forbes et al., 2010; Frost and Epstein, 2014; Macias-Fauria
et al., 2012; Tape et al., 2006). However, warming experi-
ments indicate that productivity increases may occur with-
out shifts in the dominant vegetation type (Elmendorf et al.,
2012b; Walker et al., 2006), and dendroecological observa-
tions illustrate that shrub responses to temperature are mod-
erated by moisture and nutrient availability and are highly
heterogeneous in space and time (Ackerman et al., 2017;
Myers-Smith et al., 2015; Zamin and Grogan, 2012). De-
spite the high degree of heterogeneity in tundra vegetation
responses to warming (Elmendorf et al., 2012a), there are
several consistent changes that include increased vegetation
height, increased litter production, decreased moss cover (El-

mendorf et al., 2012b), and increased graminoid cover in
lowland permafrost features (Johansson et al., 2006; Malho-
tra and Roulet, 2015; Malmer et al., 2005). However, reduc-
tions in greenness in some regions (referred to as “brown-
ing”) driven by, for example, reduced summer warmth in-
dex (Bhatt et al., 2013) or acute “browning events” from dis-
turbances such as winter frost droughts (Bjerke et al., 2014;
Phoenix and Bjerke, 2016) add complexity to predicting veg-
etation change and hence subsequent impacts on permafrost.

Below-ground vegetation dynamics are more difficult to
study, but recent observations indicate that the below ground
growing season length (period of unfrozen temperatures al-
lowing for plant growth) can be greater than that above
ground (Blume-Werry et al., 2015; Radville et al., 2016).
These differences likely vary with depth due to effects re-
lated to the progression of soil freezing and thawing (Rydén
and Kostov, 1980). Thus, rooting depth and lateral root distri-
butions will influence the below-ground phenology differen-
tially for deep-rooted (e.g., sedge) vs. shallow-rooted (e.g.,
shrub) species (Bardgett et al., 2014; Iversen et al., 2015),
which may alter soil moisture via plant water uptake un-
der future warming related vegetation changes. The changing
above- and below-ground growth phenology of tundra plants
(Blume-Werry et al., 2015; Iversen et al., 2015; Radville et
al., 2016) could also favor the proliferation of certain func-
tional groups or species creating potential feedbacks to veg-
etation change. In addition to below-ground phenology, total
root production could also increase in response to warming
(e.g., Xue et al., 2015). However, increased nutrient availabil-
ity from warming could decrease root production relative to
above-ground production (Keuper et al., 2012; Poorter et al.,
2012). Improved understanding of interactions between root
dynamics and soil moisture may help to understand thermal
changes in permafrost soils during the summer thaw and fall
freeze-back periods.

Determining the net effect of tundra vegetation productiv-
ity changes on soil thermal regimes requires improved un-
derstanding of the magnitude and spatial extent of changes
in vegetation stature and rooting dynamics. Enhanced tun-
dra vegetation productivity may reduce summer soil temper-
atures via ground shading and increase winter soil temper-
atures via effects on snow depth and density. The effect of
declining moss cover will depend on the balance between re-
duced insulation (i.e., KT) and latent cooling associated with
increased soil evaporation. Vegetation change may also alter
organic soil accumulation rates via altered litter quality and
quantity (Cornelissen et al., 2007). This overall effect on soil
KT will depend on the net effects of changing litter inputs, la-
bility, and decomposition rates with warming (Christiansen
et al., 2018; Cornelissen et al., 2007; Hobbie, 1996; Hob-
bie and Gough, 2004; Lynch et al., 2018). Overall the effects
of vegetation change on snow redistribution and soil mois-
ture will likely have the strongest influence on soil thermal
regimes.
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Boreal forest responses to climate in recent decades were
generally more heterogeneous than those observed in tundra
ecosystems, due to a variety of interacting factors including
species differences in physiology, disturbance regimes, and
successional dynamics. Initial satellite observations of bo-
real forest productivity increases (Myneni et al., 1997) have
slowed or even reversed in recent decades (Beck and Goetz,
2011; Guay et al., 2014). Tree ring analyses confirm produc-
tivity declines associated with temperature induced drought
stress in interior Alaska boreal forests (Barber et al., 2000;
Juday et al., 2015; Walker and Johnstone, 2014; Walker et
al., 2015), and have been used to corroborate satellite obser-
vations (Beck et al., 2011). Similarly, drought-induced mor-
tality has been observed at the southern margins of Canadian
boreal forests (Peng et al., 2011), where correspondence be-
tween satellite and tree ring records have also been observed
(Berner et al., 2011). In Siberia, positive forest responses
to air temperatures observed in tree rings and satellite ob-
servations near latitudinal tree lines give way to declines in
tree growth further south (Berner et al., 2013; Lloyd et al.,
2010). These results are in line with ecosystem-scale obser-
vations of suppressed transpiration under high vapor pressure
deficits and low soil moisture conditions (Kropp et al., 2017;
Lopez C et al., 2007). More generally, forests growing on
continuous permafrost exhibit more widespread productivity
increases (Loranty et al., 2016), suggesting that permafrost
may buffer against drought stress. However, waterlogged soil
resulting from permafrost thaw can also lead to unstable soils
and forest mortality (Baltzer et al., 2014; Helbig et al., 2016a;
Iijima et al., 2014).

The extent to which ongoing boreal forest productivity
changes influence permafrost soil thermal dynamics is not
entirely clear. If forest canopy cover changes with productiv-
ity (e.g., canopy infilling or increased leaf area), then changes
in ground shading and LW dynamics could alter ground ther-
mal regimes. Increases in forest cover have been observed in
northern Siberia (Frost and Epstein, 2014); however, it is un-
clear whether the cause is climate warming or ecosystem re-
covery after a fire. Conversely, productivity declines are more
pronounced in high-density forests (Bunn and Goetz, 2006)
and, consequently, browning trends associated with mortality
in southern boreal forests (Peng et al., 2011) may increase ra-
diation at the ground surface. Additionally, if browning is in-
dicative of drought stress, vegetation may enhance the insula-
tion of organic soils by further depleting of soil moisture via
plant water uptake (Fisher et al., 2016). Forest mortality and
declines in canopy cover in southern boreal forests as a con-
sequence of permafrost thaw (Helbig et al., 2016a) may feed-
back positively to permafrost thaw. Functional changes (e.g.,
stomatal suppression of transpiration in response to drought)
occur more quickly than structural changes, so boreal forest
effects on soil moisture will likely be an important driver of
changes in soil thermal regimes. In addition there has been
relatively little work on how the effects of forest distribution

on snow cover alters G in winter, and this will also become
increasingly important as forests change.

3.2 Wildfire disturbance

Wildfire is the dominant disturbance in boreal forests and is
increasingly present in Arctic tundra. Wildfire influences sur-
face energy dynamics via impacts on vegetation and surface
soil properties, likely accelerating permafrost thaw (Brown
et al., 2015; Burn, 1998; Jafarov et al., 2013; Jones et al.,
2015; O’Donnell et al., 2011a; Viereck et al., 2008).Vege-
tation combustion and mortality increases radiation at the
ground surface. The combustion and charring of moss and or-
ganic soil lowers albedo and increases KT, leading to warmer
soils with deeper active layers in the decades following a
fire (French et al., 2016; Liljedahl et al., 2007; Rocha and
Shaver, 2011; Yoshikawa et al., 2003). In boreal forests, loss
of canopy cover increases albedo during the snow-covered
period (Jin et al., 2002, 2012; Lyons et al., 2008), which may
result in local atmospheric cooling (Lee et al., 2011). How-
ever, such atmospheric cooling has not been linked to soil
climate, and canopy loss may also result in a deeper snow-
pack, which inhibits ground cooling during winter (Kershaw,
2001). In general, wildfire effects on permafrost soil climate
are primarily the result of altered growing season surface en-
ergy dynamics.

The magnitude of wildfire effects on soil temperature is
closely linked to burn severity, as indicated by the degree
of organic soil combustion and the post-fire organic horizon
thickness (Kasischke and Johnstone, 2005). Post-fire recov-
ery of the organic-soil horizon can allow recovery of soil
temperature and active layer thickness to pre-fire conditions
(Rocha et al., 2012). However, relatively warm discontinuous
zone permafrost is often ecosystem-protected by vegetation
and organic horizons (Shur and Jorgenson, 2007), thus loss
or reduction of organic soil may result in the irreversible thaw
or loss of permafrost (Jiang et al., 2015; Romanovsky et al.,
2010). Site-based model simulations suggest that fire-driven
change in organic-horizon thickness is the most important
factor driving post-fire soil temperature and permafrost dy-
namics (Jiang et al., 2015).

Wildfire impacts on permafrost also vary spatially with
ecosystems and topography. For instance, south-facing for-
est stands tend to burn more severely than north-facing
stands (Kane et al., 2007). Further, poorly drained toe-slopes
burn less severely than more moderately drained upslope
landscapes. These topographic effects on burn severity can
strongly influence the response of soil temperature and per-
mafrost to fire (O’Donnell et al., 2009b). The loss of tran-
spiration due to the combustion of trees may result in wetter
soils in recently burned stands compared to unburned stands
(O’Donnell et al., 2011a). However, other studies have docu-
mented drier soils in burned relative to unburned stands (Jor-
genson et al., 2013), particularly at sites underlain by coarse-
grained, hydrologically conductive soils. Post-fire thawing of
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permafrost can increase the hydraulic conductivity of min-
eral soils due to ice loss, leading to enhanced infiltration of
soil water and soil drainage. Post-fire changes in soil mois-
ture and drainage can function as either a positive or negative
feedback to permafrost thaw (O’Donnell et al., 2011b). Re-
cent evidence also indicates that mineral soil texture is an
important control on post-fire permafrost dynamics (Nossov
et al., 2013).

While the magnitude of fire effects on G and active layer
depth is typically governed by burn severity, the persistence
of these changes depends on ecosystem recovery (Jorgenson
et al., 2013). Albedo returns to pre-fire levels within several
years after a fire (Jin et al., 2012), due to the fairly rapid re-
covery of vegetation (Mack et al., 2008). Recovery of moss
and re-accumulation of the organic-soil horizon further facil-
itate recovery of soil temperatures and permafrost, and may
occur within several decades (e.g., Loranty et al., 2014b). Fi-
nally, recovery of vegetation canopies over decades to cen-
turies gradually reduces incident radiation at the ground sur-
face to pre-fire levels. The effects of fire on TSG and per-
mafrost are well understood, and it may be reasonable to ex-
pect similar effects in the future that are amplified as fire ex-
poses permafrost soils to increasingly warmer atmospheric
temperatures. However, changes in the severity and extent of
wildfires can result in new ecosystem dynamics with implica-
tions for permafrost that do not confer linearly from current
eco-climatic conditions.

Recent warming at high latitudes has increased the spatial
extent, frequency, and severity of wildfires in North America
(Rocha et al., 2012; Turetsky et al., 2011) to levels that are
unprecedented in recent millennia (Hu et al., 2010; Kelly et
al., 2013). Fire regimes in boreal forests in Eurasia remain
poorly characterized (Kukavskaya et al., 2012), though sev-
eral studies indicate that fire extent and frequency are likely
increasing with climate warming (Kharuk et al., 2008, 2013;
Ponomarev et al., 2016). Circumpolar wildfire in the boreal
forest and Arctic tundra are projected to substantially in-
crease by the end of the century due to direct climate forc-
ing and ecosystem responses (Abbott et al., 2016). Recovery
of soil thermal regimes and permafrost after fire is strongly
influenced by ecosystem recovery, and recent studies have
established links between burn severity and post-fire succes-
sion (Alexander et al., 2018; Johnstone et al., 2010). Conse-
quently, in North America burn severity is likely the domi-
nant factor controlling the effects of wildfire on permafrost
soil thermal regimes both through direct influences on soil
thermal regimes and indirectly through influences on post fire
succession.

In boreal North America, low-severity fires in upland
black spruce forest typically foster self-replacing post-fire
vegetation trajectories while high-burn severity fosters a tran-
sition to deciduous dominated forests. (Johnstone et al.,
2010). In addition to changes in canopy effects on ground
shading, this transition also leads to reductions in post-fire
accumulation of the soil organic layer (Alexander and Mack,

2015). Observations of mean annual soil temperatures that
are 1–2 ◦C colder in soils underlying black spruce forests
compared to deciduous forests (Fisher et al., 2016; Jorgenson
et al., 2010) indicate that burn severity influences on post-fire
succession will lead to alternate soil temperature and per-
mafrost recovery pathways as well.

In Siberian larch forests, post-fire recovery is impacted by
fire severity and seed dispersal (Fig. 3). High burn severity
fires promote high rates of seedling recruitment and subse-
quent forest stand density (Alexander et al., 2018; Sofronov
and Volokitina, 2010) when dispersal is not limited. How-
ever, as larch are not serotinous and seed rain varies from
year to year, high burn severity does not guarantee succes-
sion to high-density forests. Recovery tends to be slow and
highly variable (Alexander et al., 2012b; Berner et al., 2012).
Wide ranges of post-fire moss accumulation and forest re-
growth have been observed, though consequences for per-
mafrost are unclear (Furayev et al., 2001). Observed de-
clines in permafrost thaw depth with increasing canopy cover
(Webb et al., 2017) support the notion of a link between
fire severity and permafrost soil thermal dynamics. How-
ever, the combined effects of fire and climatic warming and
drying could lead to widespread conversion of larch forests
to steppe (Tchebakova et al., 2009), whereas declines in
fire could result in increased cover of evergreen needleleaf
species (Schulze et al., 2012). Thus the impacts of fire on
permafrost in Siberia will depend on the combined effects of
climate and fire severity.

In tundra ecosystems fire is becoming increasingly com-
mon (Rocha et al., 2012). Fire-induced transitions from
graminoid- to shrub-dominated ecosystems have been ob-
served in several instances (Jones et al., 2013; Landhäusser
and Wein, 1993; Racine et al., 2004), while in others recov-
ery of graminoid-dominated ecosystems has occurred, espe-
cially when fire leads to ponding (Barrett et al., 2012; Lo-
ranty et al., 2014b; Vavrek et al., 1999). If unusually large
tundra fires with high burn severity (e.g., Jones et al., 2009)
occur more regularly fire induced transitions from graminoid
to shrub tundra may become more common (Jones et al.,
2013; Lantz et al., 2013). A shift to shrub dominance could
buffer permafrost soils from continued climate warming dur-
ing summer (e.g Blok et al., 2010; Myers-Smith and Hik,
2013) or promote warmer soils in winter (Lantz et al., 2013;
Myers-Smith and Hik, 2013) at the ecosystem-scale, depend-
ing on how topography and the spatial distribution of shrubs
impact snow redistribution (Essery and Pomeroy, 2004; Mé-
nard et al., 2014). In addition, there is evidence that thermal
erosion as a consequence of fire may facilitate shrub transi-
tions, especially in areas of ice-rich permafrost (Bret-Harte
et al., 2013; Jones et al., 2013), and the associated changes in
local hydrology and topography will also impact soil thermal
regimes.

Across Arctic and boreal ecosystems increased fire extent
and severity will increase summer G leading to warmer soils
with deeper active layers that take longer to freeze-back in
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Figure 3. Impacts of fire on ecosystem structure in Siberian larch forests. A firebreak near the town of Cherskii (a) shows the contrast
between burned and unburned areas ∼ 10 years post-fire, where apparent larch and shrub recruitment failure has resulted a transition to
graminoid dominance (b; detail of burned area). Nearby in a ∼ 70 year old burn scar high-density (c) and low-density (d) forests illustrate
the impacts of fire severity on canopy cover, and correspond to large differences in soil thermal regimes and active layers depths of ∼ 40 cm
in the high-density stand and ∼ 90 cm in the low-density stand (Loranty and Alexander, 2014). Photos Michael M. Loranty.

fall and thus reduce the time for heat loss in winter across
larger portions of the permafrost region. Post-fire ecosystem
recovery will determine the trajectory of soil thermal regimes
in coming decades to centuries. In tundra and Siberian larch
forests shifts toward increased canopy cover may help ther-
mal regimes recover more quickly and buffer against contin-
ued warming. However, the link between fire severity and
increased canopy cover is not certain. In North American
boreal forests increased deciduous cover after high severity
soils may prevent full recovery of the soil thermal regime af-
ter severe fires (i.e., warmer soils) and loss of permafrost in
areas where discontinuous permafrost is ecosystem protected
(Jorgenson et al., 2010).

3.3 Permafrost thaw, thermokarst disturbance, and
hydrologic change

Permafrost thaw can occur in two primary modes, depend-
ing on pre-thaw ground ice content. In terrain underlain by
low ground ice content (typically < 20 % by volume), the
soil profile can thaw from the top down without disturb-
ing the surface in what is termed thaw-stable permafrost
degradation (Jorgenson et al., 2001). Alternatively, in ice-
rich terrain, when ground ice volume exceeds unfrozen soil

pore space (usually > 60 %), permafrost thaw causes surface
subsidence or collapse, termed thermokarst (Kokelj and Jor-
genson, 2013). Thermokarst is the predominant disturbance
in Arctic tundra and is an important disturbance in boreal
forests underlain by permafrost (Lara et al., 2016). Recent
evidence indicates increasing prevalence of thermokarst fea-
tures during the last half-century (Jorgenson et al., 2006,
2013; Liljedahl et al., 2016; Mamet et al., 2017), though
circum-Arctic prevalence and change of thermokarst extent
are poorly constrained (Lantz and Kokelj, 2008; Olefeldt et
al., 2016; Yoshikawa and Hinzman, 2003). Thermokarst fea-
tures form over the course of weeks to decades, can involve
centimeters to meters of ground surface displacement, and
typically lead to dramatic changes in ecosystem vegetation
and soil properties (e.g., Douglas et al., 2016; Osterkamp
et al., 2000; Wagner et al., 2018). Thermokarst could af-
fect 20 %–50 % of the permafrost zone by the end of the
century, according to projections of permafrost degradation
and the distribution of ground ice (Abbott and Jones, 2015;
Slater and Lawrence, 2013; Zhang et al., 2000). Upland
thermokarst in the discontinuous permafrost zone already
impacts 12 % of the overall landscape in some areas and up
to 35 % of some vegetation classes (Belshe et al., 2013).
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Following initial thaw, hydrologic conditions play an im-
portant role in the subsequent evolution of thermokarst
features because the high thermal conductivity of water
can increase heat flux to the active layer and permafrost
(Nauta et al., 2015). Lowland and upland thermokarst may
have contrasting effects on surface hydrology, with lowland
thermokarst initially increasing wetness (e.g., O’Donnell et
al., 2012), but eventually leading to greater drainage if per-
mafrost is completely degraded (Anthony et al., 2014). Up-
land thermokarst can either increase or decrease surface wet-
ness, depending on soil conditions and local topography (Ab-
bott and Jones, 2015; Abbott et al., 2015; Mu et al., 2017).
Redistribution of water to thermokarst pits and gullies can
lead to drying in adjacent areas that have not subsided (Os-
terkamp et al., 2009). In winter, increases in snow accumu-
lation in thermokarst depressions insulates soils (Stieglitz,
2003).

Ecological responses to thermokarst formation can act as
either positive or negative feedbacks to continued thaw, de-
pending on how thermokarst formation affects vegetation
and hydrology, including snow cover (Kokelj and Jorgenson,
2013). Active layer detachments in uplands remove vegeta-
tion and organic soil, increasing energy inputs to deeper soil
layers. In upland tundra, shifts from graminoid- to shrub-
dominated vegetation communities have been observed with
thaw, though communities varied locally with microtopog-
raphy created by thermokarst features themselves (Schuur
et al., 2007). In boreal forests, thermokarst and permafrost
thaw can cause transitions to wetlands or aquatic ecosystems
(Jorgenson and Osterkamp, 2005); whereas, vegetation com-
munity shifts are more subtle in uplands (Jorgenson et al.,
2013). Permafrost thaw may also lead to a more nutrient-
rich environment (Harms et al., 2014; Keuper et al., 2012),
but this depends on local soil properties. The succession of
aquatic or terrestrial vegetation can curb thaw through nega-
tive feedbacks associated with canopy cover and organic soil
accumulation and aggrade permafrost (Briggs et al., 2014).
Hydrologic changes associated with thermokarst likely have
a stronger influence on the soil thermal regime than asso-
ciated ecosystem changes, in part because the former occur
more rapidly than the latter. Under thaw stable conditions
there is the possibility that enhanced vegetation productiv-
ity could lead to summer soil cooling; however, the effects
on soil composition and moisture, and snow distribution will
also affect the thermal regime and are as yet unclear.

3.4 Zoogenic disturbance

A large portion of the circumpolar Arctic is grazed by rein-
deer and caribou (both Rangifer tarandus L.), and their graz-
ing and trampling causes important long-term vegetation
shifts, namely inhibition of shrub proliferation (Forbes and
Kumpula, 2009; Olofsson et al., 2004b, 2009; Plante et al.,
2014; Väisänen et al., 2014). Besides direct consumption
of lichen and green biomass, large semi-domestic reindeer

herds of northwest Eurasia also exert a variety of impacts on
biotic and abiotic components of Arctic and sub-Arctic tun-
dra ecosystems that have implications for permafrost thermal
regimes. For example, as reindeer reduce vertical structure of
vascular and nonvascular vegetation, they tend to decrease
albedo (Beest et al., 2016) and reduce thermal conductiv-
ity at the ground level (Fauria et al., 2008; Olofsson, 2006),
which can lead to warmer soils (Olofsson et al., 2001, 2004b;
van der Wal et al., 2001). Recent research has revealed that
the consequences of climate warming on tundra carbon bal-
ance are determined by reindeer grazing history (Väisänen
et al., 2014; Zimov et al., 2012). Grazing by small mam-
mals also influences Arctic plant communities (Olofsson et
al., 2004a). The extent to which ongoing vegetation change
across the Arctic is a result historic grazing patterns is un-
clear. However, it is plausible that social and/or ecoclimatic
drivers that change the distribution or behavior of grazing
mammals have impacted permafrost ecosystems in ways that
affect the soil thermal regime. More targeted research is nec-
essary to elucidate links between grazing, ecosystem vegeta-
tion and soil characteristics, and soil thermal regimes.

3.5 Anthropogenic disturbance

The most extensive direct anthropogenic disturbances within
the permafrost zone occur in three regions that have ex-
perienced widespread hydrocarbon exploration and extrac-
tion activities: the North Slope of Alaska, the Mackenzie
River delta in Canada, and northwestern Russia, includ-
ing the Nenets and Yamalo-Nenets Autonomous Okrugs.
The types of terrestrial degradation commonly associated
with the petroleum industry have historically included rut-
ting from tracked vehicles; seismic survey trails; pipelines,
drilling pads and roads and the excavation of the gravel and
sand quarries necessary for their construction (Huntington
et al., 2013; Walker et al., 1987). A single pass of a vehi-
cle over thawed ground can create ruts with increased KT
due to increased bulk density and soil moisture, while al-
tered local hydrology can drain downslope wetlands and, in
both cases, lead to vegetation changes that persist for decades
(Forbes, 1993, 1998). As a result of these combined factors,
the increase from scale of impact to scale of response can
be several orders of magnitude (Forbes et al., 2001). It has
also been demonstrated that even relatively small-scale, low
intensity disturbances in winter, like seismic surveys over
snow-covered terrain, reduce microtopography, and increase
ground temperatures and active layer thaw depths (Cramp-
ton, 1977; Kershaw, 1983).

More recently, gravel roads and pads have become com-
mon; however, this elevated infrastructure causes other unan-
ticipated impacts to the permafrost from accumulated dust,
snow drifts, and roadside flooding (Auerbach et al., 1997;
Raynolds et al., 2014; Walker and Everett, 1987, 1991). Over
time, the warmer environments adjacent to roads have led
to strips of earlier phenology and shrub vegetation and even
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trees along both sides of most roads and buried pipeline
berms in the Low Arctic (Gill et al., 2014). Aeolian sand and
dust associated with gravel roads or quarries can affect tundra
vegetation and soils up to 1 km from the point source (Forbes,
1995; Myers-Smith et al., 2006). At present, there is concern
that climate warming and infrastructure are combining to en-
hance melting of the top surface of ice-wedges, leading to
more extensive ice-wedge thermokarst (Liljedahl et al., 2016;
Raynolds et al., 2014) and cryogenic landslides (Leibman et
al., 2014) in areas of intensive development. The proportion
of permafrost ecosystems affected by anthropogenic distur-
bance is not well quantified, but it will continue to increase
in coming decades.

4 Local vs. regional ecosystem feedbacks on
permafrost thermal dynamics

Interactions between ecosystem scale microclimate feed-
backs and regional or global climate feedbacks stemming
from ecological change are complex and represent a key
source of uncertainty related to understanding permafrost
soil responses to continued climate warming. If changing
ecosystem characteristics influencing permafrost thermal dy-
namics described above are widespread, the accompanying
changes in land surface water and energy exchange will feed
back to influence regional climate, and changes in green-
house gas dynamics will feed back on global climate (Chapin
III et al., 2000b). Therefore, ecosystem changes that alter lo-
cal permafrost soil thermal dynamics may also lead to re-
gional and global climate feedbacks that compound or offset
ecosystem-scale effects (Table 1).

4.1 Regional biogeochemical climate feedbacks

The net biogeochemical climate effects of ecosystem change
across permafrost regions will be a balance of changes in
CO2 uptake that accompany shifts in vegetation, and changes
in CO2 and CH4 release associated with shifts in autotrophic
and heterotrophic respiration, and fire and thermokarst dis-
turbance. These feedback effects will be global in extent
and will not contribute directly to regional variability in per-
mafrost thaw because greenhouse gasses are well mixed in
the atmosphere. Changes in the net CO2 balance remain un-
certain, but a recent expert survey suggests that over the next
century increases in vegetation productivity may not be large
enough to offset increases in carbon release to the atmo-
sphere (Abbott et al., 2016). In tundra ecosystems, this con-
clusion is in line with projections of future biomass distribu-
tion (Pearson et al., 2013) and atmospheric inversions show-
ing that increased autumn CO2 efflux offsets increases in up-
take during the growing season (Commane et al., 2017; Welp
et al., 2016). In boreal forests, carbon cycle changes are more
complex; long-term trends in the annual amplitude of atmo-
spheric CO2 concentrations (Forkel et al., 2016; Graven et

al., 2013) suggest increases in biological activity while satel-
lite observations and tree ring analyses suggest widespread
declines in productivity (Beck et al., 2011). Further, model
analyses indicate a weakening terrestrial carbon sink associ-
ated with declining uptake, increases in respiration, and dis-
turbance (Hayes et al., 2011), which is crucially important in
boreal forests (Bond-Lamberty et al., 2013).

The net CO2 effect of wildfire has typically been con-
sidered to be close to zero for evergreen needleleaf forests
in interior Alaska over historic fire return intervals (Rander-
son et al., 2006). However, the combined effects of climate
warming and fire tend to reduce ecosystem carbon storage
by thawing permafrost (Douglas et al., 2014; Harden et al.,
2000; O’Donnell et al., 2011b). Model simulations that in-
clude permafrost dynamics indicate ecosystem carbon losses
may become larger in the future with continued warming and
intensification of the fire regime, particularly for dry upland
sites (Genet et al., 2013; Jafarov et al., 2013). These stud-
ies do not account for potential changes in post-fire vegeta-
tion communities (Alexander et al., 2012a); however, the net
effects of vegetation shifts on ecosystem carbon storage ap-
pear to be minimal (Alexander and Mack, 2015). In tundra
ecosystems larger and more severe fires lead to large soil C
losses (Mack et al., 2011) that may be sustained over time
due to permafrost thaw (Jones et al., 2013, 2015). Taken
together, this evidence suggests that fire will likely lead to
net carbon losses in the coming decades to centuries across
the permafrost region, thus acting as a positive feedback to
climate warming with associated effects on permafrost soils
(Abbott et al., 2016). The biophysical climate feedbacks as-
sociated with fire are more immediate and will be stronger
than the carbon cycle feedbacks (Randerson et al., 2006).

The effects of thermokarst on greenhouse gas dynamics
depend largely on associated hydrological changes. With
increased drainage and surface drying, increased oxidation
rates reduce carbon accumulation (Robinson and Moore,
2000) and enhance CO2 release (Frolking et al., 2006), and
reduce CH4 production (Abbott and Jones, 2015). When
ground thaw is associated with increased soil saturation, CH4
production and emissions are increased (Abbott and Jones,
2015; Johansson et al., 2006; Malhotra and Roulet, 2015;
Natali et al., 2015; Olefeldt et al., 2012), which can shift
tundra from a net CH4 sink (Jorgensen et al., 2015) into a
CH4 source (Nauta et al., 2015). Thermokarst may also in-
crease lateral transport of soil organic matter, which can de-
crease CO2 release (Abbott and Jones, 2015) and alter carbon
processing downslope. Thermokarst lakes emit CH4, particu-
larly along actively thawing lake margins (Walter et al., 2007,
2008), and CO2 (Algesten et al., 2004; Kling et al., 1991).
However, at millennial timescales, thermokarst lakes can se-
quester carbon as lake sediments and peat accumulate (An-
thony et al., 2014; Jones et al., 2012). Currently, thermokarst
landscapes comprise upwards of 20% of the permafrost re-
gion (Olefeldt et al., 2016); however, their current and fu-
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Table 1. Key ecosystem changes, associated drivers, and feedback effects on local soil climate and regional to global climate.

Ecosystem change Drivers of change1 Local soil temperature
feedbacks2

Regional-global climate feedbacks3

Canopy cover/density
increases more likely, unless

widespread wetting occurs or
under certain conditions after
fire.

Climate warming (+/−)
Hydrologic change (?)
Fire severity (+/−)
Thermokarst (−)
Permafrost thaw (+)
Grazing (−/?)
Anthropogenic (+/?)

KT – Snow trapping
TSG – LW enhancement
TSG – Ground shading
KT – Soil moisture utilization

Albedo
Carbon sequestration
Increased evapotranspiration

Soil moisture
uncertain; dependent on veg-

etation, soil, climate, topogra-
phy, ground ice, and whether
permafrost is continuous

Climate warming (+/−)
Hydrologic change (+)
Fire severity (+/−)
Thermokarst (+/−)
Permafrost thaw (−)
Anthropogenic (+/?)

KT
TSG – evaporation

Greenhouse gas emissions
Increased evapotranspiration
Carbon sequestration

Moss cover/organic layer
thickness

uncertain; dependent on over-
story vegetation, topography,
and soil moisture

Climate warming (?)
Hydrologic change (?)
Fire severity (−)
Thermokarst (+/−)
Permafrost thaw (+/−)
Grazing (−)
Anthropogenic (+/?)

KT
TSG – evaporation

Evapotranspiration
Carbon sequestration

1 Parentheses indicate whether driver is likely to cause an increase (+) or decrease (−) in ecosystem properties, or if the direction of the relationship is unclear (?). 2 Effects of
changing ecosystems property on local soil temperatures; bold typeface indicates a positive feedback (warming) and italics indicate a negative feedback (cooling). 3 Effects of
changing ecosystems property on regional and global climate; bold typeface indicates a positive feedback (warming), italics indicate a negative feedback (cooling), and normal text
indicates that the direction of the feedback is unclear.

ture impacts on the global carbon balance remain poorly con-
strained.

4.2 Regional biophysical climate feedbacks

The biophysical effects of ecosystem change arising from
shifts in surface energy partitioning have climate feedback
effects at scales ranging from local to regional and global.
Whereas biogeochemical climate feedbacks will influence
global temperature in conjunction with many other carbon
cycle processes, biophysical feedbacks operating at local and
regional scales are likely to influence the spatial and tem-
poral patterns of permafrost thaw with continued warming.
As described in the previous sections, changes in vegeta-
tion composition and structure alter soil thermal dynamics
via changes in G during the snow-free season (Beringer et
al., 2005; Chapin III et al., 2000a). However, changes in G

associated with vegetation change will also be accompanied
by changes in H and LE that may feedback to G, depending
upon the scale of impact.

Decadal ecosystem responses to climate inferred from
“greening” or “browning” trends are the most spatially per-
vasive change affecting vegetation in the permafrost zone
(Loranty et al., 2016). Increases in leaf area and/or veg-
etation stature will generally reduce albedo, and these ef-
fects are particularly pronounced during the spring and fall

if enhanced productivity leads to increased snow-masking by
vegetation (Loranty et al., 2014a; Sturm et al., 2005). Reduc-
tions in albedo will lead to sensible heating of the atmosphere
(Chapin III et al., 2005) that may counteract the effects of
canopy shading on G, if albedo reduction occurs at suffi-
ciently large spatial scales (Bonfils et al., 2012; Lawrence
and Swenson, 2011). The magnitude and spatial extent of
vegetation height increases are crucial to determine the net
feedback strength, but these quantities remain largely un-
known.

A second important but relatively unexplored feedback re-
lates to evaporative cooling of the land surface associated
with increases in LE (Helbig et al., 2016b; but see Swann
et al., 2010). Productivity increases are likely accompanied
through increases in evapotranspiration (Zhang et al., 2009),
which have been shown to mitigate temperature increases at
global scales by increased cloud cover that reduces incom-
ing short-wave radiation reaching the Earth’s surface (Zeng
et al., 2017). During the growing season, this cooling could
effectively reduce the degree of atmospheric sensible heating
associated with increased albedo, and would be particularly
important if there is no change in snow masking by vegeta-
tion (e.g., greening in tundra without shrub expansion or in
closed canopy boreal forest). However, the extent to which
latent cooling with enhanced productivity may offset sensi-
ble heating associated with albedo decreases is uncertain for
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several reasons. First, model experiments simulating shrub
expansion, for example, utilize canopy parameterizations for
deciduous boreal tree species, because Arctic shrub canopy
physiology has not been thoroughly characterized (e.g., Bon-
fils et al., 2012). Second, existing observations indicate an
increasing degree of stomatal control on evapotranspiration
with vegetation stature (Eugster et al., 2000; Kasurinen et
al., 2014), indicating that LE will not necessarily continue
to increase with climate warming, which is supported by
the emergence of browning trends. Additionally, climatic
changes in Arctic hydrology are highly uncertain and likely
to vary spatially (Francis et al., 2009), meaning that LE may
be limited by hydrology in some places but not others. Lastly,
disturbance processes will also alter surface energy dynam-
ics through short-term direct impacts on ecosystem structure
and long-term impacts on post-disturbance succession (as de-
scribed above).

5 Conclusions

The effects of climatic change on permafrost thermal dy-
namics depend directly on terrestrial ecosystem properties,
which mediate surface energy partitioning and soil thermal
characteristics. Relationships between permafrost and cli-
mate vary spatially with ecosystem properties and processes,
and these patterns vary through time on event to millen-
nial timescales. The changing nature of permafrost thermal
regimes will be driven by surface energy feedbacks operat-
ing on local-, regional-, and global-scales. Complex interac-
tions among many of these feedbacks create uncertainty sur-
rounding the timing and magnitude of the permafrost carbon
feedback.

Continued ecosystem-scale research focused on several
key process interactions will improve our understanding of
ecological influences on soil thermal regimes. The influence
of plant water use on spatial and temporal variability in soil
moisture is unclear. Future work should seek to elucidate in-
teractions between vegetation and soil moisture. The extent
to which changes in decomposition rates and litter substrate
quantity and quality alter the insulating effects of ground
cover and the soil organic layer is also unclear and could
benefit from continued research. More research on relation-
ships between the spatial distribution of vegetation canopies
and the insulative properties of snow is also needed, espe-
cially in boreal forests. Lastly, more studies should involve
year-round data collection focused on understanding time-
lags and the cumulative effects of seasonal processes. In par-
ticular the net thermal effects of canopy shading vs. snow-
trapping, seasonally lagged effects of snow cover, and sea-
sonally lagged effects of soil moisture could all be better un-
derstood through focused observational studies.

Improved process level understanding of ecosystem influ-
ences on soil thermal regimes will not be useful for pre-
dicting the fate of permafrost carbon unless the processes

that control the timing, extent, and trajectories of ecosys-
tem change are known. There has been a strong focus on
graminoid–shrub transitions in tundra ecosystems, yet there
are a number of other potential vegetation transitions, many
mediated by disturbance, with equally important implica-
tions. Changes in boreal forest structure and function under-
lying productivity trends need to be elucidated. Continued
work focused on understanding how changing fire regimes
influence soils and post-fire succession is also important, es-
pecially in tundra and Siberian boreal forests. These changes
are not spatially isolated, and compounding disturbances will
likely become increasingly important to understand. In ad-
dition to vegetation changes, constraining the proportion of
landscapes affected by drying vs. waterlogging associated
with initial permafrost thaw is central to predicting both soil
organic matter stocks and vegetation responses to climate
warming. Whether precipitation increases or decreases with
climate warming remains highly uncertain, and this will ex-
ert strong influence on vegetation and ecosystem responses to
climate as well as disturbance mediated ecosystem changes.

Lastly, changes in ecosystem vegetation and soil charac-
teristics that occur over sufficiently large spatial scales will
affect soil thermal regimes via feedbacks to regional and
global climate with the potential to amplify or attenuate local
ecosystem-scale feedbacks. For example, could wetland ex-
pansion associated with widespread permafrost thaw lead to
regional cooling through increased albedo, or might warming
as a result of increased methane emissions offset this? Could
increased evapotranspiration associated with enhanced vege-
tation productivity lead to surface cooling and cloud forma-
tion that cools soils in summer, or might the rise in atmo-
spheric water vapor increase late summer precipitation and
extend the fall freeze-back period? Complex feedback pro-
cesses such as these will likely affect the trajectory of per-
mafrost responses to climate. Continued efforts to understand
the fate of permafrost in response to climate will require in-
tegrated analyses of processes affecting permafrost soil ther-
mal regimes, changing circumpolar ecosystem distributions,
and the net effects of resulting climate feedbacks operating
across a range of spatial and temporal scales.
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