Supplement of Biogeosciences, 15, 5395–5413, 2018 https://doi.org/10.5194/bg-15-5395-2018-supplement © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Synthetic ozone deposition and stomatal uptake at flux tower sites

Jason A. Ducker et al.

Correspondence to: Jason A. Ducker (jad10d@my.fsu.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

S1 Calculation of stomatal conductance and deposition velocity

3 Several methods for calculating stomatal conductance and O_3 deposition velocity from eddy

- 4 covariance measurements are found in literature (e.g. Wesely and Hicks, 1977; Gerosa et al.,
- 5 2005; Fares et al., 2010). While we follow the same general approach, we present the methods
- 6 here for completeness and to point out some particular choices we have made. These expressions
- 7 are used in Eqs. 1-3. The required input variables are O₃ mole fraction (mol mol⁻¹), temperature
- 8 (K), pressure (Pa), specific humidity (kg kg⁻¹), friction velocity (m s⁻¹), sensible and latent heat
- 9 fluxes (W m⁻²), canopy height (m), and leaf area index (m² m⁻²).

11 The aerodynamic and quasi-laminar layer resistances are calculated from measurements of

momentum flux using the Monin-Obukhov similarity relations. For heat, O₃, and other gases, the

13 aerodynamic resistance (r_a , s m⁻¹) is (Foken, 2017, pp. 219-223)

$$r_a = \frac{1}{ku_*} \left[\ln \left(\frac{z - d}{z_0} \right) - \psi_H \left(\frac{z - d}{L} \right) + \psi_H \left(\frac{z_0}{L} \right) \right] \tag{A1}$$

where r_a is evaluated at height z, u_* is the friction velocity, z_0 (m) is the roughness length for

momentum, d (m) is the displacement height, k = 0.4 is the von Karman constant, $\psi_H(\zeta)$ is the

- stability function for sensible heat discussed below, and L is the Obukhov length (m). The
- roughness and displacement heights are $z_0 = 0.1z_c$ and $d = 0.7z_c$, respectively, where z_c is the
- canopy height specific to each site (http://fluxnet.fluxdata.org/sites/site-summary/, accessed 24
- 20 February 2017). Since canopy heights are not specified for croplands or grasslands in this
- 21 database, we use a constant canopy height of 1 m for grasslands and typical crop-specific heights
- for each agricultural site (Weaver and Bruner, 1927). The stability function is (Foken, 2017, pp.
- 23 54-62; Högström, 1988)

1

2

10

28

$$\psi_{H}(\zeta) = \begin{cases} 2\ln\left(\frac{1 + 0.95(1 - 11.6\zeta)^{1/2}}{2}\right) & \text{for } \zeta < 0\\ 1 - \left(1 + \frac{2}{3}\zeta\right)^{\frac{3}{2}} - b_{1}\left(\zeta - \frac{b_{2}}{b_{3}}\right)\exp(-b_{3}\zeta) - \frac{b_{1}b_{2}}{b_{3}} & \text{for } \zeta \ge 0 \end{cases}$$
(A2)

- where $b_1 = 0.667$, $b_2 = 5$, and $b_3 = 0.35$. The form above is appropriate for strongly stable
- conditions $((z d)/L = \zeta > 1)$, which occur frequently in the FLUXNET2015 data, as well
- weak stability (Beljaars and Holtslag, 1991).

29 The Obukhov length is (Foken, 2017, pp. 54-62)

$$L = -\frac{u_*^3 \theta_v}{kg(\overline{w'\theta_v'})} \tag{A3}$$

- 31 where θ_v is virtual potential temperature, $\overline{w'\theta_v'}$ is the vertical flux of virtual potential temperature
- or buoyancy at the surface, and g is acceleration due to gravity. For calculations, we expand θ_v
- and $\overline{w'\theta'_{\nu}}$ in terms of measured quantities so

34
$$L = -\frac{u_*^3 c_p \rho \theta (1 + 0.61q)}{kg (H(1 + 0.61q) + 0.61c_p \theta E)}$$
(A4)

35 where c_p is specific heat capacity of air (J kg⁻¹ K⁻¹), ρ is the mass density of air (kg m⁻³), θ is

potential temperature (K), q is specific humidity (kg kg⁻¹), H is the surface sensible heat flux (W

37 m⁻²), and E is the surface moisture flux (kg m⁻² s⁻¹). H and E are defined positive for upward

38 fluxes.

3940

The quasi-laminar layer resistance for O₃ and H₂O is (Foken, 2017, pp. 219-223)

$$r_b = \frac{2}{ku} \left(\frac{\mathrm{Sc}}{\mathrm{Pr}}\right)^{2/3},\tag{A5}$$

41 where Sc = v/D is the Schmidt number, which is the ratio of kinematic viscosity of air (v) to the

42 molecular diffusivity of the gas in air (D), and $Pr = v/D_H$ is the Prandtl number, which involves

the thermal diffusivity (D_H) . The conductance for heat is the same as Eq. A5, but uses the

thermal diffusivity of air in place of molecular diffusivity.

44 46

51

43

We calculate stomatal resistance and conductance from the evaporative-resistance form of the

Penman-Monteith equation (Monteith, 1981; Gerosa et al., 2007). For water vapor,

49
$$g_{s,w}^{-1} = r_{s,w} = \frac{\varepsilon \rho(e_s(T_f) - e)}{pE} - (r_a + r_{b,w})$$
 (A6)

where $\varepsilon = 0.622$ is the mass ratio of H₂O and dry air, p is the air pressure, $e_s(T_f)$ is the saturation

vapor pressure at the transpiring leaf surface with temperature T_f , e is vapor pressure at the flux

measurement height, and $r_{b,w}$ is the quasi-laminar layer resistance to water vapor (Eq. A5). Leaf

53 temperature is not a standard FLUXNET2015 variable, but it can be estimated from sensible heat

flux using surface energy balance (Gerosa et al., 2007):

$$T_f = T + \frac{H}{c_p \rho} \left(r_a + r_{b,H} \right) \tag{A7}$$

where T is the air temperature at the measurement height and $r_{b,H}$ is the quasi-laminar layer

57 resistance to heat (Eq. A5). We initially inverted Monteith's (1981) original equation for

evapotranspiration (Eq. 4 in Gerosa et al., 2007) in place of Eq. A6, but the resulting $g_{s,w}$

59 estimates were much more noisy. Although the forms are analytically equivalent (Gerosa et al.,

60 2007), inverting the evaporative-resistance form is numerically preferable because it avoids

subtractive terms that amplify relative errors and it more accurately treats temperature and

pressure effects, particularly the non-linearity in the saturation vapor pressure.

63

The stomatal conductance of O_3 is less than water vapor due to its greater molar mass and

diffusion against the net gas flow out of the stomatal pore (Marrero and Mason, 1972), so

$$g_s = 0.6 \, g_{s,w}. \tag{A8}$$

In all equations, we include the temperature and pressure dependences of ρ , c_p , v, D, D_H , and latent heat of vaporization and also the humidity dependence of ρ , c_p , and D_H using expressions from Jacobson (2005).

70 71

S2 Propagation of uncertainty

72 73

- We estimate uncertainties in all derived quantities using standard techniques for propagation of
- errors (e.g. Taylor, 1997, pp. 73-77). In the following section, f is a function that depends on
- variables $x_1, x_2, ... x_n$ that each have uncertainties $\sigma_{x_1}, \sigma_{x_2}, ... \sigma_{x_n}$. The standard error (σ_f) in
- 77 $f(x_1, x_2, ... x_n)$ at time *i* is approximately

$$\sigma_{f,i}^2 = \sum_{j=1}^n \left(\frac{\partial f_i}{\partial x_j}\right)^2 \sigma_{x_j,i}^2. \tag{B1}$$

- 79 This form neglects covariance between the measurement errors, which is unknown in our case,
- and is most accurate when $\sigma_{x_i} \ll x_i$. We use centered finite differences to calculate numerical
- 81 derivatives through all equations.

82

- The propagation of errors reveals that $F_{s,0_3}^{\text{syn}}$ and other quantities have errors or uncertainties that
- vary widely from hour to hour. Daily and monthly averages should account for the varying
- confidence in each value in the average (e.g. Taylor, 1997, pp. 173-177). For values f_i that are
- 86 from a single distribution, but have different uncertainties $\sigma_{f,i}$, the maximum likelihood estimate
- 87 of f is

88
$$\bar{f} = \left(\sum_{i=1}^{m} w_i f_i\right) \left(\sum_{i=1}^{m} w_i\right)^{-1}; \qquad w_i = \sigma_{f,i}^{-2}.$$
 (B2)

- The weights w_i reflect the confidence in value f_i and the summation is carried out over all times
- 90 *m* within the desired averaging period. The standard error of \bar{f} is

$$\sigma_{\bar{f}} = \left(\sum_{i=1}^{m} w_i\right)^{-\frac{1}{2}}.\tag{B3}$$

- 92 For averaging across times when f is expected to change, as during different hours of the day, an
- 93 unweighted average is more appropriate

$$\bar{f} = \frac{1}{m} \sum_{i=1}^{m} f_i \tag{B4}$$

and the standard error of \bar{f} , given by Eq. B1, simplifies to

96
$$\sigma_{\bar{f}} = \left(\frac{1}{m^2} \sum_{i=1}^m \sigma_{f,i}^2\right)^{\frac{1}{2}}.$$
 (B5)

S3 Stomatal and non-stomatal O₃ deposition at Harvard Forest

97

98 99

100 101

102

103

104

105

106

107

108

109

110 111

112113

114

115

116 117

118

119

120

Our estimate of the non-stomatal fraction of O₃ deposition at Harvard Forest (mean 8%, range – 33 to 34%; Sect. 3.2) is smaller than was previously reported at that site (mean 40%, range 20-60%; Clifton et al., 2017). The main reason for the different results is the re-calibration of the water vapor fluxes in this work, which is described in Sect. 2.2. Here, we show how other differences between our analysis and that of Clifton et al. (2017) affect the estimate of nonstomatal fraction of O₃ deposition at Harvard Forest. Using our gap-filled data, the mean estimate of the non-stomatal fraction of O₃ deposition at Harvard Forest does not change but the range slightly increases (8%, range –36 to 38%). With uncorrected water vapor fluxes, our estimate would be 51% (range: 32% to 63%). If we also ignore the propagated uncertainty, which varies from hour to hour, and calculate averages with equal weight (i.e. equal uncertainty) for each time interval, as Clifton et al. did, then we would estimate 53% (range: 34% to 66%). If we also use data filtering criteria from Clifton et al. (i.e. remove 3σ outliers of v_d and g_s , but no filtering for precipitation and high relative humidity), then we would estimate 48% (range: 28% to 61%). Finally, if we also restrict our averages to 9am-3pm, as Clifton et al. did. instead of all daylight data, then we would estimate 45% (range: 25% to 60%). This final estimate is very close to the method and value reported by Clifton et al. (2017). The remaining small differences are probably due to Clifton et al. including 1992 in their analysis and differences in the form of the Penman-Monteith and stability functions. Since the re-calibration of water vapor fluxes (Sect. 2.2) is an improvement in this work and the main reason for our results differing from Clifton et al. (2017), our estimates of small non-stomatal fraction O₃ deposition at Harvard Forest appear to be most reliable estimate for this site.

Site name	PFT ¹	Lat ²	Lon ³	Clim ⁴	Period	References ⁵
AT-Neu	GRA	47.1167	11.3175	Unk	2002-2012	(Wohlfahrt et al., 2008)
BE-Bra	MF	51.3092	4.5206	Unk	1996-2014	(Carrara et al., 2004)
BE-Lon	CRO	50.5516	4.7461	Cfb	2004-2014	(Moureaux et al., 2006)
BE-Vie	MF	50.3051	5.9981	Cfb	1996-2014	(Aubinet et al., 2001)
CH-Cha	GRA	47.2102	8.4104	Unk	2005-2014	(Merbold et al., 2014)
CH-Dav	ENF	46.8153	9.8559	Unk	1997-2014	(Zielis et al., 2014)
CH-Fru	GRA	47.1158	8.5378	Unk	2005-2014	(Imer et al., 2013)
CH-Lae	MF	47.4781	8.3650	Unk	2004-2014	(Etzold et al., 2011)
CH-Oe1	GRA	47.2858	7.7319	Unk	2002-2008	(Ammann et al., 2009)
CH-Oe2	CRO	47.2863	7.7343	Unk	2004-2014	(Dietiker et al., 2010)
CZ-BK1	ENF	49.5021	18.5369	Unk	2004-2008	(Acosta et al., 2013)
CZ-BK2	GRA	49.4944	18.5429	Unk	2004-2006	_
CZ-wet	WET	49.0247	14.7704	Unk	2006-2014	(Dûsek et al., 2012)
DE-Akm	WET	53.8662	13.6834	Cfb	2009-2014	-
DE-Geb	CRO	51.1001	10.9143	Unk	2001-2014	(Anthoni et al., 2004)
DE-Gri	GRA	50.9500	13.5126	Cfb	2004-2014	(Prescher et al., 2010a)
DE-Hai	DBF	51.0792	10.4530	Unk	2000-2012	(Knohl et al., 2003)
DE-Kli	CRO	50.8931	13.5224	Cfb	2004-2014	(Prescher et al., 2010)
DE-Lkb	ENF	49.0996	13.3047	Unk	2009-2013	(Lindauer et al., 2014)
DE-Obe	ENF	50.7867	13.7213	Cfb	2008-2014	-
DE-RuR ⁶	GRA	50.6219	6.3041	Unk	2011-2014	(Post et al., 2015)
DE-RuS ⁶	CRO	50.8659	6.4472	Cfb	2011-2014	(Mauder et al., 2013)
DE-Seh	CRO	50.8706	6.4497	Unk	2007-2010	(Schmidt et al., 2012)
DE-SfN	WET	47.8064	11.3275	Unk	2012-2014	(Hommeltenberg et al., 2014)
DE-Spw	WET	51.8923	14.0337	Cfb	2010-2014	_
DE-Tha	ENF	50.9624	13.5652	Cfb	1996-2014	(Grünwald and Bernhofer, 2007)
DK-Fou	CRO	56.4842	9.5872	Unk	2005-2005	_
DK-Sor	DBF	55.4859	11.6446	Unk	1996-2014	(Pilegaard et al., 2011)
ES-LgS	OSH	37.0979	-2.9658	Unk	2007-2009	(Reverter et al., 2010)
ES-Ln2	OSH	36.9695	-3.4758	Unk	2009-2009	_
FI-Hyy	ENF	61.8474	24.2948	Unk	1996-2014	(Mammarella et al., 2007)
FI-Jok	CRO	60.8986	23.5135	Unk	2000-2003	(Lohila, 2004)
FI-Lom	WET	67.9972	24.2092	Unk	2007-2009	_
FI-Sod	ENF	67.3619	26.6378	Unk	2001-2014	(Thum et al., 2007)
FR-Fon	DBF	48.4764	2.7801	Cfb	2005-2014	(Delpierre et al., 2015)
FR-Gri	CRO	48.8442	1.9519	Cfb	2004-2013	(Loubet et al., 2011)
FR-LBr	ENF	44.7171	-0.7693	Unk	1996-2008	(Berbigier et al., 2001)
FR-Pue	EBF	43.7414	3.5958	Unk	2000-2014	(Rambal et al., 2004)
IT-BCi	CRO	40.5238	14.9574	Unk	2004-2014	(Vitale et al., 2015)
IT-CA1	DBF	42.3804	12.0266	Unk	2011-2014	(Sabbatini et al., 2016)
IT-CA2	CRO	42.3772	12.0260	Unk	2011-2014	(Sabbatini et al., 2016)
IT-CA3	DBF	42.3800	12.0222	Unk	2011-2014	(Sabbatini et al., 2016)
IT-Col	DBF	41.8494	13.5881	Unk	1996-2014	(Valentini et al., 1996)

```
IT-Cp2
           EBF
                   41.7043
                               12.3573
                                         Unk
                                                  2012-2014
                                                              (Fares et al., 2014)
IT-Cpz
           EBF
                   41.7052
                               12.3761
                                         Unk
                                                  1997-2009
                                                              (Garbulsky et al., 2008)
IT-Isp
           DBF
                   45.8126
                              8.6336
                                         Unk
                                                  2013-2014
                                                              (Ferréa et al., 2012)
IT-La2
           ENF
                   45.9542
                               11.2853
                                         Unk
                                                  2000-2002
                                                              (Marcolla et al., 2003)
                                                              (Marcolla et al., 2003)
IT-Lav
           ENF
                   45.9562
                               11.2813
                                         Unk
                                                  2003-2014
                                                              (Marcolla et al., 2011)
IT-MBo
           GRA
                   46.0147
                               11.0458
                                         Unk
                                                  2003-2013
                                                  2004-2014
                                                              (Papale et al., 2014)
IT-Noe
           CSH
                   40.6061
                              8.1515
                                         Unk
                                                              (Migliavacca et al., 2009)
IT-PT1
           DBF
                   45.2009
                              9.0610
                                         Unk
                                                  2002-2004
IT-Ren
           ENF
                   46.5869
                               11.4337
                                         Unk
                                                  1998-2013
                                                              (Montagnani et al., 2009)
                               11.9300
                                                  2000-2008
                                                              (Rey et al., 2002)
IT-Ro1
           DBF
                   42.4081
                                         Unk
IT-Ro2
           DBF
                   42.3903
                               11.9209
                                         Unk
                                                  2002-2012
                                                              (Tedeschi et al., 2006)
IT-SR2
                              10.2910
           ENF
                   43.7320
                                         Unk
                                                  2013-2014
IT-SRo
           ENF
                   43.7279
                               10.2844
                                                  1999-2012
                                                              (Chiesi et al., 2005)
                                         Unk
                                                              (Galvagno et al., 2013)
IT-Tor
           GRA
                   45.8444
                              7.5781
                                         Unk
                                                  2008-2014
                                                              (Jacobs et al., 2007)
NL-Hor
           GRA
                   52.2404
                              5.0713
                                         Unk
                                                  2004-2011
NL-Loo
           ENF
                   52.1666
                              5.7436
                                         Unk
                                                  1996-2013
                                                              (Dolman et al., 2002)
RU-Fyo
                                                              (Kurbatova et al., 2008)
           ENF
                   56.4615
                              32.9221
                                         Unk
                                                  1998-2014
US-AR1
           GRA
                   36.4267
                              -99.4200
                                                  2009-2012
                                                              (Raz-Yaseef et al., 2015)
                                         Dsa
US-AR2
           GRA
                   36.6358
                              -99.5975
                                         Dsa
                                                  2009-2012
                                                              (Raz-Yaseef et al., 2015)
US-ARb
                   35.5497
                              -98.0402
                                                  2005-2006
                                                              (Raz-Yaseef et al., 2015)
           GRA
                                         Cfa
                                                              (Raz-Yaseef et al., 2015)
US-ARc
           GRA
                   35.5465
                              -98.0400
                                         Cfa
                                                  2005-2006
           CRO
                                                  2003-2012
                                                              (Fischer et al., 2007)
US-ARM
                   36.6058
                              -97.4888
                                         Cfa
US-Blo
           ENF
                   38.8953
                              -120.6328 Csa
                                                  1997-2007
                                                              (Goldstein et al., 2000)
           GRA
                   38.0900
                              -109.3900 Unk
                                                  2001-2007
                                                              (Bowling et al., 2010)
US-Cop
                                                              (Zeller and Nikolov, 2000)
                              -106.2397 Dfc
                                                  1999-2006
US-GBT
           ENF
                   41.3658
US-GLE
           ENF
                   41.3665
                              -106.2399 Dfc
                                                  2004-2014
                                                              (Frank et al., 2014)
US-Ha1
           DBF
                   42.5378
                              -72.1715
                                         Dfb
                                                  1991-2012
                                                              (Urbanski et al., 2007)
US-KS2
           CSH
                   28.6086
                              -80.6715
                                         Cwa
                                                  2003-2006
                                                              (Powell et al., 2006)
US-Los
           WET
                   46.0827
                              -89.9792
                                         Dfb
                                                  2000-2014
                                                              (Sulman et al., 2009)
US-Me1
           ENF
                   44.5794
                              -121.5000 Csb
                                                  2004-2005
                                                              (Irvine et al., 2007)
                                                              (Irvine et al., 2008)
US-Me2
           ENF
                   44.4523
                              -121.5574 Csb
                                                 2002-2014
US-Me6
           ENF
                   44.3233
                              -121.6078 Csb
                                                  2010-2014
                                                              (Ruehr et al., 2012)
                   39.3232
                              -86.4131
                                                 1999-2014
                                                              (Dragoni et al., 2011)
US-MMS
           DBF
                                         Cfa
US-Myb
           WET
                   38.0498
                              -121.7651 Csa
                                                 2010-2014
                                                              (Matthes et al., 2014)
                                                              (Verma et al., 2005)
US-Ne1
           CRO
                   41.1651
                              -96.4766
                                         Dfa
                                                  2001-2013
US-Ne2
           CRO
                   41.1649
                              -96.4701
                                         Dfa
                                                  2001-2013
                                                              (Verma et al., 2005)
US-Ne3
           CRO
                   41.1797
                              -96.4397
                                         Dfa
                                                  2001-2013
                                                              (Verma et al., 2005)
           ENF
                   40.0329
                              -105.5464 Dfc
                                                 1998-2014
                                                              (Monson et al., 2002)
US-NR1
US-ORv
           WET
                   40.0201
                              -83.0183
                                         Cfa
                                                  2011-2011
                                                              (Morin et al., 2014)
US-PFa
           MF
                   45.9459
                              -90.2723
                                         Dfb
                                                  1995-2014
                                                              (Desai et al., 2015)
                                                              (Scott et al., 2015)
US-SRG
           GRA
                   31.7894
                              -110.8277 Bsk
                                                  2008-2014
US-SRM
           WSA
                   31.8214
                              -110.8661 Bsk
                                                  2004-2014
                                                              (Scott et al., 2009)
                                                              (Desai et al., 2005)
US-Syv
           MF
                   46.2420
                              -89.3477
                                         Dfb
                                                 2001-2014
US-Ton
                   38.4316
                              -120.9660 Csa
                                                              (Baldocchi et al., 2010)
           WSA
                                                 2001-2014
US-Tw1
           WET
                   38.1074
                              -121.6469 Csa
                                                  2012-2014
                                                              (Oikawa et al., 2017)
US-Tw2
           CRO
                   38.1047
                              -121.6433 Csa
                                                  2012-2013
                                                              (Knox et al., 2016)
```

T.T.C. (TD)	CD O	20 1150	101 (467 0	2012 2014	(D 11 1: 1 2015)
US-Tw3	CRO	38.1159	-121.6467 Csa	2013-2014	(Baldocchi et al., 2015)
US-Tw4	WET	38.1030	-121.6414 Csa	2013-2014	(Baldocchi, 2016)
US-Twt	CRO	38.1087	-121.6530 Csa	2009-2014	(Hatala et al., 2012)
US-UMB	DBF	45.5598	-84.7138 Dfb	2000-2014	(Gough et al., 2013)
US-UMd	DBF	45.5625	-84.6975 Dfb	2007-2014	(Gough et al., 2013)
US-Var	GRA	38.4133	-120.9507 Csa	2000-2014	(Ma et al., 2007)
US-WCr	DBF	45.8059	-90.0799 Dfb	1999-2014	(Cook et al., 2004)
US-Whs	OSH	31.7438	-110.0522 Bsk	2007-2014	(Scott et al., 2015)
US-Wi0	ENF	46.6188	-91.0814 Dfb	2002-2002	(Noormets et al., 2007)
US-Wi3	DBF	46.6347	-91.0987 Dfb	2002-2004	(Noormets et al., 2007)
US-Wi4	ENF	46.7393	-91.1663 Dfb	2002-2005	(Noormets et al., 2007)
US-Wi6	OSH	46.6249	-91.2982 Dfb	2002-2003	(Noormets et al., 2007)
US-Wi9	ENF	46.6188	-91.0814 Dfb	2004-2005	(Noormets et al., 2007)
US-Wkg	GRA	31.7365	-109.9419 Bsk	2004-2014	(Scott et al., 2010)

Plant functional type; see Table 2 for abbreviations.

Prant functional type, see Table 2 for abbreviations.
 Positive value indicates north latitude.
 Negative value indicates west longitude.
 Köppen Climate classification.
 "-" indicates that site operators have not provided a reference.
 Latent and sensible heat flux uncertainty not reported for this site; 50% uncertainty is assumed.

Figure S1. Mean synthetic total O_3 flux ($F_{O_3}^{\text{syn}}$, Sect. 2.1) during the daytime growing season at FLUXNET2015 sites in the United States and Europe. Symbols of some sites have been moved slightly to reduce overlap and improve legibility.

Figure S2. Synthetic and observed stomatal conductance, F_{s,O_3}^{syn} , at Hyytiälä Forest illustrating the errors in half-hourly data. Colors show the standard deviation of each value on a logarithmic scale, as calculated by error propagation.

Figure S3. Observed and predicted friction velocity (u_*) from the regression model in Sect 2.3.

Figure S4. Synthetic and observation-derived half-hourly (hourly at Harvard Forest) stomatal O_3 flux. See Fig. 2 for explanation of lines and inset text.

Figure S5. Synthetic and observation-derived daily daytime total O_3 flux ($F_{O_3}^{\text{syn}}$, Sect. 2.1). See Sect. 2.1 for explanation of $F_{O_3}^{\text{syn}}$ and Fig. 2 for explanation of lines and inset text.

Figure S6. Synthetic and observation-derived daily daytime O₃ deposition velocity.

Figure S7. Synthetic and observation-derived daily daytime O_3 non-stomatal conductance.

Figure S8. Mean daytime (8:00am-8:00pm local) O₃ concentrations for the US and Europe during the growing season (typically April-September) for 2000-2014. Data from Schnell et al. (2014).

Figure S9. Metrics of plant exposure to O_3 at FLUXNET2015 sites in the US and Europe: CUO₃, CUO, mean O_3 , AOT40, and W126. See Sect. 3.4 for metric definitions.