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Abstract. Permafrost deposits have been a sink for at-
mospheric carbon for millennia. Thaw-erosional processes,
however, can lead to rapid degradation of ice-rich permafrost
and the release of substantial amounts of organic carbon
(OC). The amount of the OC stored in these deposits and
their potential to be microbially decomposed to the green-
house gases carbon dioxide (CO2) and methane (CH4) de-
pends on climatic and environmental conditions during de-
position and the decomposition history before incorporation
into the permafrost. Here, we examine potential greenhouse
gas production as a result of degrading ice-rich permafrost
deposits from three locations in the northeastern Siberian
Laptev Sea region. The deposits span a period of about 55 kyr
from the last glacial period and Holocene interglacial. Sam-
ples from all three locations were incubated under aerobic
and anaerobic conditions for 134 days at 4 ◦C. Greenhouse
gas production was generally higher in deposits from glacial
periods, where 0.2 %–6.1 % of the initially available OC was
decomposed to CO2. In contrast, only 0.1 %–4.0 % of ini-
tial OC was decomposed in permafrost deposits from the
Holocene and the late glacial transition. Within the deposits
from the Kargin interstadial period (Marine Isotope Stage
3), local depositional environments, especially soil moisture,
also affected the preservation of OC. Sediments deposited
under wet conditions contained more labile OC and thus pro-
duced more greenhouse gases than sediments deposited un-
der drier conditions. To assess the greenhouse gas production
potentials over longer periods, deposits from two locations
were incubated for a total of 785 days. However, more than

50 % of total CO2 production over 785 days occurred within
the first 134 days under aerobic conditions, while 80 % were
produced over the same period under anaerobic conditions,
which emphasizes the nonlinearity of the OC decomposition
processes. Methanogenesis was generally observed in active
layer samples but only sporadically in permafrost samples
and was several orders of magnitude smaller than CO2 pro-
duction.

1 Introduction

Permafrost, i.e., ground that is at or below 0 ◦C for at least
two consecutive years (van Everdingen, 2005), may pre-
serve organic matter (OM) for millennia (Ping et al., 2015).
The current organic carbon (OC) pool of soils, refrozen
thermokarst, and Holocene cover deposits in the top 3 m as
well as sediments and deltaic deposits below 3 m in per-
mafrost landscapes is estimated to be about 1300 Pg, of
which about 800 Pg are perennially frozen (Hugelius et al.,
2014). However, warming-induced environmental changes
and permafrost degradation could lead to rapid thawing of
substantial amounts of currently frozen OM, microbial de-
composition of the thawed OM, and rising greenhouse gas
fluxes to the atmosphere (Natali et al., 2015; Schuur et
al., 2015). The effects of elevated atmospheric greenhouse
gas concentrations and temperatures on processes in soils
and sediments are expected to be most pronounced in near-
surface layers (Schneider von Deimling et al., 2012). How-
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ever, thermo-erosion of ice-rich permafrost, i.e., permafrost
with more than 20 vol % ice (Brown et al., 1998), also en-
ables deep thawing of several tens of meters (Schneider von
Deimling et al., 2015).

Ice-rich permafrost deposits, also called ice complex de-
posits, accumulated in unglaciated Arctic lowlands. Dur-
ing cold stages, fine-grained organic-rich material of poly-
genetic origin was deposited on predominantly flat plains
(Schirrmeister et al., 2013). The deposits are dissected by
large ice wedges, which can amount for up to 60 vol %
(Ulrich et al., 2014). The most prominent ice com-
plex deposits, referred to as yedoma, accumulated dur-
ing the late Pleistocene between approximately 55 and
13 ka before present (BP), i.e., during the Marine Isotope
Stages (MIS) 3 and 2 (Schirrmeister et al., 2011). Age–depth
correlations, however, indicate that at some locations the ac-
cumulation of yedoma material may have already started be-
tween 80 and 60 ka BP, i.e., during MIS 4 (Schirrmeister et
al., 2002b). Locally, remnants of older ice complex deposits
of both late MIS 7–early MIS 6 and MIS 5 age are also pre-
served (Schirrmeister et al., 2002a; Wetterich et al., 2016;
Opel et al., 2017), but not studied yet in terms of greenhouse
gas production.

The thickness of yedoma deposits in Siberia (Grosse et
al., 2013) and Alaska (Kanevskiy et al., 2011) can reach
more than 50 m. At the time of deposition, rapid sedimenta-
tion and freezing incorporated relatively undecomposed OM
into the permafrost (Strauss et al., 2017). However, owing
to the high ice content, yedoma deposits are highly sus-
ceptible to warming-induced environmental changes, ero-
sion, and ground subsidence following permafrost thaw (e.g.,
Morgenstern et al., 2013). Only 30 % of the yedoma region
(about 416 000 km2) is considered intact, while the other
70 % has already undergone some level of permafrost degra-
dation (Strauss et al., 2013). Today, the whole yedoma do-
main stores 213–456 Pg of OC, of which 83–269 Pg is stored
in intact yedoma and 169–240 Pg in thermokarst and re-
frozen taberal deposits (Zimov et al., 2006; Strauss et al.,
2013, 2017; Hugelius et al., 2014; Walter Anthony et al.,
2014). For an about 88 000 km2 area along the Bolshaya
Chukochya and Alazeya River basins and the eastern parts
of the Yana–Indigirka and Kolyma lowlands in northeastern
Siberia, Shmelev et al. (2017) estimate the size of the to-
tal carbon pool in the upper 25 m to be 31.2 Pg, of which
3.7 Pg is stored in yedoma deposits. However, high spatial
and temporal variability results in large uncertainties about
how much OC will be exposed by degradation of ice-rich
permafrost and how much of this OC can be microbially de-
composed to the greenhouse gases carbon dioxide (CO2) or
methane (CH4) after thaw.

In addition to the quantity of OC, its decomposability will
influence how fast the OC in permafrost deposits can be
transformed into CO2 or CH4 after thaw (MacDougall and
Knutti, 2016; Knoblauch et al., 2018). Since plants are the
main source of OM in soils, vegetation composition plays

an important role for OM decomposability (Iversen et al.,
2015). Furthermore, OM has undergone different degrada-
tion processes before being incorporated into permafrost de-
pending on permafrost formation pathways (Waldrop et al.,
2010; Harden et al., 2012). In epigenetic permafrost, that
is permafrost aggradation through intermittent freezing after
the material was deposited, OM has already undergone some
level of transformation, and easily decomposable, labile OC
compounds are decomposed and lost to the atmosphere prior
to incorporation into the permafrost (Hugelius et al., 2012).
In contrast, OM in syngenetically frozen yedoma, i.e., con-
current material deposition and permafrost aggradation, had
little time to be transformed prior to freezing and may thus
contain high amounts of labile OC, which may be quickly
decomposed to greenhouse gases after thawing (Dutta et al.,
2006). In this case, the amount and decomposability of the
fossil OM is controlled by the OM source, i.e., predomi-
nantly vegetation, which in turn depends on paleoclimatic
conditions (Andreev et al., 2011).

The decomposability of permafrost OM is often assessed
based on OM degradation proxies, total OC (TOC) content,
ratios of total organic carbon to total nitrogen (C /N), or
stable carbon isotopes (δ13Corg) with contradictory results
(Strauss et al., 2015; Weiss et al., 2016). Only few stud-
ies have measured CO2 and CH4 production potentials from
Siberian yedoma deposits under laboratory conditions (Dutta
et al., 2006; Zimov et al., 2006; Lee et al., 2012; Knoblauch
et al., 2013, 2018). In this study, we present incubation data
from late Pleistocene yedoma and Holocene interglacial de-
posits from three locations in northeastern Siberia. We hy-
pothesize that OM deposited during glacial periods experi-
enced little prefreezing transformation and thus provides a
more suitable substrate for future microbial decomposition
and post-thawing greenhouse gas production than Holocene
deposits.

2 Study region and sample material

Three locations in the Laptev Sea region in northeastern
Siberia were studied (Fig. 1). The whole region is un-
derlain by continuous permafrost reaching depths of 450–
700 m onshore and 200–600 m offshore (Romanovskii et al.,
2004), with ground temperatures of −11 ◦C for terrestrial
permafrost (Drozdov et al., 2005) and −1 ◦C for subma-
rine permafrost (Overduin et al., 2015). Long, cold win-
ters and short, cool summers characterize the current cli-
mate. Mean annual (1971–2000) temperatures and precipita-
tion sums are−13.3 ◦C and 266 mm at the central Laptev Sea
coast (Tiksi, WMO station 21824) and−14.9 ◦C and 145 mm
in the eastern Laptev Sea region (Mys Shalaurova, WMO sta-
tion 21647, Bulygina and Razuvaev, 2012). Modern vegeta-
tion cover is dominated by erect dwarf shrub and in places by
sedge, moss, low-shrub wetland vegetation or tussock sedge,
dwarf shrub, or moss tundra vegetation (CAVM Team, 2003).
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Figure 1. Overview of the Laptev Sea region with the study locations at Muostakh Island (sample code MUO12), the Buor Khaya Peninsula
(BK8) and Bol’shoy Lyakhovsky Island (L14).

A compilation of the regional stratigraphic scheme used in
this work with paleoclimate and vegetation history is sum-
marized in Table 1.

The first study location is on Muostakh Island (71.61◦ N,
129.96◦ E), an island in the Buor Khaya Bay 40 km east
of Tiksi. Between 1951 and 2013, the area and volume of
Muostakh Island, which is subject to major coastal ero-
sion (up to −17 m a−1) and thaw subsidence, decreased by
24 % and 40 %, respectively (Günther et al., 2015). The en-
tire sedimentary sequence of Muostakh Island (sample code
MUO12) was sampled in three vertical subprofiles on the
northeastern shore (Meyer et al., 2015). In the current study,
we used 14 sediment samples from the entire MUO12 se-
quence between 0.5 and 15.6 m b.s. (meters below surface),
which corresponds to 19.5 and 4.4 m a.s.l. (meters above sea
level).

The second study location is on the Buor Khaya Peninsula
(71.42◦ N, 132.11◦ E). Thermokarst processes affect 85 %
of the region, which resulted in more than 20 m of per-
mafrost subsidence in some areas (Günther et al., 2013).
Long-term (1969–2010) coastal erosion rates along the west-
ern coast of the Buor Khaya Peninsula are about −1 m a−1

(Günther et al., 2013). On top of the yedoma hill, approxi-
mately 100 m from the cliff edge, a 19.8 m long permafrost
core (sample code BK8) was drilled (Grigoriev et al., 2013).
Detailed cryolithological, geochemical, and geochronolog-
ical data (Schirrmeister et al., 2017); palynological analy-
sis (Zimmermann et al., 2017b); and lipid biomarker studies
(Stapel et al., 2016) were previously published for the BK8
site. In the current study, 20 sediment samples spread evenly

between the surface and 19.8 m b.s. (or 34 and 14.2 m a.s.l.)
were analyzed, excluding an ice wedge between 3.2 and
8.5 m b.s.

The third sampling location is on Bol’shoy Lyakhovsky
Island (73.34◦ N; 141.33◦ E), the southernmost island of
the New Siberian Archipelago. Four cores (sample code
L14) were drilled on the southern coast (Schwamborn and
Schirrmeister, 2015). Core descriptions, geochronological
data, and pollen and plant DNA analyses can be found in
Zimmermann et al. (2017a), while biomarkers and pore wa-
ter analysis are reported in Stapel et al. (2018). Based on pre-
vious stratigraphic studies from this location (e.g., Andreev
et al., 2009; Wetterich et al., 2009, 2014) we focused on two
cores, which represent the MIS 1–MIS 3 period investigated
here. The first core, L14-05, was recovered from inside a
thermokarst basin, 4 km west of the Zimov’e River mouth,
with Holocene thermokarst deposits overlying thawed and
refrozen taberal yedoma deposits (Wetterich et al., 2009).
Five sediment samples between 0 and 7.9 m b.s. (11.5 and
3.6 m a.s.l.) were analyzed for the current study. The second
core, L14-02, was taken on a yedoma hill about 1 km west of
the Zimov’e River mouth. The entire core was 20.0 m long,
including wedge ice below 10.9 m b.s. Five sediment sam-
ples from the top to a depth of 10.9 m b.s. (32.2–21.3 m a.s.l.)
were incubated for the current study.
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Table 1. Compilation of the regional chronostratigraphy of the Laptev Sea region used in this work with paleoclimate (summer) and vegeta-
tion history based on an overview by Andreev et al. (2011) and references therein.

Age (ka BP) Period Regional
chronos-
tratigraphy

Marine
Isotope
Stage
(MIS)

Regional climate and vegetation

< 10.3 Holocene Holocene MIS 1 Climate amelioration during the early
Holocene; shrub-tundra vegetation
gradually disappeared ca 7.6 ka BP.

ca 10.3–13 Late glacial–early
Holocene transition

Climate amelioration after the Last
Glacial Maximum; transition to
shrubby tundra vegetation.

ca. 13–30 Late Weichselian
glacial (stadial)

Sartan MIS 2 Cold and dry summer conditions, win-
ter colder than today; open tundra
steppe.

ca. 30–55 Middle Weichselian
glacial (interstadial)

Kargin MIS 3 Relatively warm and wet summers;
open herb- and shrub-dominated vege-
tation.

3 Methods

3.1 Geochemical characteristics

Gravimetric water contents were calculated as the weight dif-
ference between wet and dried (105 ◦C) samples. pH val-
ues were measured in a suspension of 5 g thawed sediment
in 12.5 mL distilled water (CG820, Schott AG, Mainz, Ger-
many). For sediment chemical analyses, bulk samples were
dried at 70 ◦C and milled. Total carbon (TC) and total ni-
trogen (TN) contents were measured with an element ana-
lyzer (VarioMAX cube, Elementar Analysensysteme GmbH,
Hanau, Germany), while TOC contents were measured with
a liquiTOC II coupled to a solids module (Elementar Anal-
ysensysteme GmbH, Hanau, Germany). The δ13Corg val-
ues were measured with an isotope-ratio mass spectrometer
(Delta V, Thermo Scientific, Dreieich, Germany) coupled to
an elemental analyzer (Flash 2000, Thermo Scientific, Dreie-
ich, Germany) after samples were treated with phosphoric
acid to release inorganic carbon.

3.2 Incubation

Frozen samples were slowly thawed from −18 to 4 ◦C over
48 h in a refrigerator, homogenized and divided into trip-
licates. Anaerobic incubations were prepared under a ni-
trogen atmosphere in a glove box. Approximately 15–30 g
thawed sediment was weighed into glass bottles and sealed
with rubber stoppers. Anaerobic samples were saturated
with 5–20 mL of nitrogen-flushed, CO2-free distilled water,
and the headspace was exchanged with molecular nitrogen.
The headspace of aerobic incubation bottles was exchanged
with synthetic air (20 % oxygen, 80 % nitrogen). We added

enough molecular nitrogen and synthetic air to establish a
slight overpressure inside each bottle. In occasional cases
of negative pressure differences between headspace pressure
and ambient pressure, we added 5–10 mL of molecular nitro-
gen to reestablish overpressure.

Samples from all three study locations were incubated for
134 days at 4 ◦C. During this time, the headspace CO2 and
CH4 concentrations were measured weekly to biweekly. The
incubation of samples from the Buor Khaya Peninsula and
Bol’shoy Lyakhovsky Island continued for 785 days and the
gas concentrations were measured every 8–12 weeks. To de-
termine the gas concentrations inside each bottle, 1 mL of
headspace gas was removed by a syringe and injected into
a gas chromatograph (GC 7890 Agilent Technologies, Santa
Clara, USA) equipped with a 500 µL sample loop, a nickel
catalyst to reduce CO2 to CH4, and a flame ionizing detec-
tor (FID). Gases were separated on a PorapakQ column with
helium as carrier gas. If the headspace concentration of CO2
in aerobic incubation bottles approached 3 %, the headspace
was again exchanged with synthetic air.

The amount of gas in the headspace was calculated from
the concentration in the headspace, headspace volume, incu-
bation temperature, and pressure inside the bottle using the
ideal gas law. The amount of gas dissolved in water was cal-
culated from the gas concentration in the headspace, pres-
sure inside the bottle, water content, pH, and gas solubility.
Solubility for CO2 and CH4 in water at 4 ◦C was calculated
after Carroll et al. (1991) and Yamamoto et al. (1976), re-
spectively. To account for the dissociation of carbonic acid in
water at different pH values, we used dissociation constants
from Millero et al. (2007).
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Figure 2. Box plot of total organic carbon (TOC), total organic carbon to total nitrogen ratio (C /N), and δ13Corg values of permafrost
deposits from the MUO12 sequence, the BK8 core, and the two L14 cores from the Holocene interglacial (MIS 1), including the late glacial
transition (LGT) (n= 12), the Sartan stadial (MIS 2) (n= 6), and the Kargin interstadial (MIS 3) (n= 27). The whiskers show the data
range and the box indicates the interquartile range. The vertical line and square inside the boxes show the median and mean, respectively.
The letters above the whiskers indicate statistically significant differences in geochemical characteristics between the deposits of different
ages (Mann–Whitney test, p<0.016 for TOC and C /N, p<0.001 for δ13Corg).

Figure 3. Depth profiles of total aerobic (a) and anaerobic (b) CO2
production per gram of organic carbon (g−1 OC) in sediment sam-
ples from the MUO12 sequence after 134 incubation days at 4 ◦C
for deposits from the Holocene interglacial (MIS 1), including the
late glacial transition (LGT), the Sartan stadial (MIS 2), and the
Kargin interstadial (MIS 3). Data are mean values (n= 3) and er-
ror bars represent 1 standard deviation. Note the different scales.
No CH4 production was observed during the 134-day incubation
period.

3.3 Statistics

Differences in mean values were analyzed with the Kruskal–
Wallis test followed by multiple post hoc Mann–Whitney
tests with the Bonferroni adjustment for multiple group com-
parisons. We tested for differences between deposits from
different periods as well as for differences between deposits
from the same period but from different locations. In both
cases, the number of post hoc comparisons was three, giving

an adjusted significance level of 0.017. All statistical analy-
ses were performed using MATLAB® (MATLAB and Statis-
tics Toolbox Release 2015b, The MathWorks Inc., Natick,
MA, USA).

4 Results

4.1 Chronostratigraphy and geochemical
characteristics

The sedimentary sequence on Muostakh Island was divided
into three sections, which were separated by two erosional
contacts and sharply intersecting ice wedges (Meyer et al.,
2015). Based on radiocarbon ages (Meyer et al., unpub-
lished data), these sections could be separated into three
periods (Fig. 3). Deposits from the uppermost section be-
tween 0.5 and 2.4 m b.s. were classified as Holocene deposits
from the MIS 1 and deposits from the late glacial to early
Holocene transition, confirmed by radiocarbon ages of 7.5
and 13.2 ka BP for samples at 1.3 and 2.4 m b.s., respectively.
The middle section between 4 and 10 m b.s. yielded radiocar-
bon ages of 16.1–18.9 ka BP and were therefore classified as
Sartan stadial deposits from the MIS 2. The lowermost sec-
tion, between 11.3 and 15.6 m b.s., yielded radiocarbon ages
of 41.6–45.9 ka BP and represents the MIS 3 Kargin intersta-
dial.

The BK8 core from the Buor Khaya Peninsula was subdi-
vided into four sections (Fig. 4). The first section, between 0
and 0.5 m b.s., represents the seasonally thawed active layer.
The subdivision of the permafrost deposits below the active
layer was based on previously published radiocarbon and
infrared-stimulated luminescence (IRSL) ages (Schirrmeis-
ter et al., 2017). Deposits from the second section, between
0.5 and 3.2 m b.s., yielded radiocarbon ages between 9.7 and
11.4 ka BP, which corresponds to the late glacial transition
to the early Holocene. The third section, between 3.2 and
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Figure 4. Depth profiles of total aerobic CO2 (a), anaerobic CO2 (b), and anaerobic CH4 (c) production per gram of organic carbon
(g−1 OC) in sediment samples from the BK8 core after 134 (closed symbols) and 785 (open symbols) incubation days at 4 ◦C for the active
layer (AL), which is considered to be 0.5 m thick, and permafrost deposits from the Holocene interglacial (MIS 1), including the late glacial
transition (LGT) and the Kargin interstadial (MIS 3). Data are mean values (n= 3) and error bars represent 1 standard deviation. Note the
different scales.

8.5 m b.s., consisted of an ice wedge, which was not sam-
pled for the current study. The fourth section, between 8.5
and 18.9 m b.s., yielded infinite radiocarbon ages older than
50 ka BP. The additional IRSL ages of feldspar grains yielded
deposition ages of about 45 ka BP. Thus, sediments from this
section were classified as deposits from the Kargin intersta-
dial.

The upper 0.5 m from both cores from Bol’shoy
Lyakhovsky Island represent the active layer. Radiocarbon
ages of the L14-05 core from the thermokarst basin ranged
between 2.2 and 10.1 ka BP for the upper core section be-
tween 0–1.7 m b.s. and 51.2–54.6 ka BP for deposits below
5.8 m b.s. (Zimmermann et al., 2017a). Based on these ages,
stratigraphic interpretations from a nearby outcrop (Wet-
terich et al., 2009), and the available palynological data
(Zimmermann et al., 2017a), the L14-05 core was divided
into two parts (Fig. 5). The upper part, between 0 and
5.5 m b.s., was deposited during the Holocene and late glacial
transition, while deposits below 5.5 m b.s. originate from the
Kargin interstadial. Deposits from the L14-02 core from
the yedoma hill yielded radiocarbon ages between 33.1
and 62.8 ka BP, which corresponds to deposition during the
MIS 3 Kargin interstadial.

Overall, the permafrost deposits showed a wide range in
TOC contents, C /N, and δ13Corg (Fig. 2). Generally higher
TOC contents and C /N were found in deposits from the
Holocene and Kargin interstadial than in deposits from the

Sartan stadial (Mann–Whitney test, p<0.017), while the
δ13Corg values were significantly higher in Sartan stadial de-
posits (Mann–Whitney test, p<0.001).

4.2 Greenhouse gas production potentials

4.2.1 Muostakh Island

Based on the TOC content, CO2 production after 134 incuba-
tion days from sediment samples from the MUO12 sequence
ranged between 4.8 and 60.7 mg CO2-C g−1 OC under aero-
bic conditions and between 0.5 and 20.9 mg CO2-C g−1 OC
under anaerobic conditions (Fig. 3). Higher aerobic CO2 pro-
duction was generally observed in the lowermost Kargin de-
posits between 11.3 and 15.6 m b.s. (Table 2), but elevated
CO2 production was also observed at 1.6, 6, and 10 m b.s.
Under anaerobic conditions, the highest production was ob-
served at 6 m b.s., which was nearly twice as high as in most
other samples. No methanogenesis was observed in any Mu-
ostakh Island samples over the 134-day incubation period.

4.2.2 Buor Khaya Peninsula

After 134 incubation days, CO2 production in BK8 core sam-
ples ranged between 2.2 and 64.1 mg CO2-C g−1 OC aerobi-
cally and between 2.2 and 17.1 mg CO2-C g−1 OC anaerobi-
cally (Fig. 4), which is within the same range as production
in samples from Muostakh Island over the same incubation

Biogeosciences, 15, 5423–5436, 2018 www.biogeosciences.net/15/5423/2018/
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Figure 5. Depth profiles of total aerobic CO2 (a), anaerobic CO2 (b), and anaerobic CH4 (c) production per gram of organic carbon (g−1 OC)
in sediment samples from the L14-05 (a–c), and L14-02 cores (d–f) after 134 (closed symbols) and 785 (open symbols) incubation days at
4 ◦C for the active layer (AL), which is considered to be 0.5 m thick, and permafrost deposits from the Holocene interglacial (MIS 1) and the
Kargin interstadial (MIS 3). Data are mean values (n= 3) and error bars represent 1 standard deviation. Note the different scales.

Table 2. Mean (±1 standard deviation) CO2 and CH4 production after 134 and 785 incubation days. Production after 785 days was not
determined (n.d.) for the Muostakh Island sequence. MIS 2 deposits were not present in the sample material from the Buor Khaya Peninsula
and Bol’shoy Lyakhovsky Island.

Location Marine n Aerobic CO2 Anaerobic CO2 Anaerobic CH4
(sample Isotope production production production
code) Stage (MIS) (mg CO2-C g−1 OC) (mg CO2-C g−1 OC) (mg CH4-C g−1 OC)

134 days 785 days 134 days 785 days 134 days 785 days

Muostakh Active layer Not sampled
Island MIS 1 12 17.0± 11.9 n.d. 4.9± 4.2 n.d. 0 n.d.
(MUO12) MIS 2 17 17.4± 12.9 n.d. 8.8± 5.2 n.d. 0 n.d.

MIS 3 12 32.2± 15.6 n.d. 6.6± 5.6 n.d. 0 n.d.

Buor Khaya Active layer 3 50.2± 16.9 126.8± 6.0 13.3± 3.5 33.1± 10.6 0.4± 0.2 11.4± 3.0
Peninsula MIS 1-LGT 15 6.1± 1.8 13.4± 4.5 4.1± 2.2 4.5± 4.1 0 0
(BK8) MIS 2 Not present in the core material

MIS 3 38 27.2± 11.7 42.2± 15.9 7.9± 2.5 11.0± 5.8 0 0.4± 2.1*

Bol’shoy Active layer 6 4.3± 0.6 15.9± 2.8 5.0± 1.3 8.0± 2.7 0 0.2± 0.3*
Lyakhovsky MIS 1-LGT 6 13.8± 2.4 32.6± 4.8 6.9± 2.3 7.8± 2.9 0 0
Island MIS 2 Not present in the core material
(L14) MIS 3 18 9.2± 4.7 24.7± 11.1 6.6± 2.9 9.7± 7.0 0 0

* Methanogenesis was only observed in two replicates.

period (Table 2). The highest production was observed in the
active layer. Production then decreased sharply by between
0.5 and 3.2 m b.s. but increased again in Kargin interstadial

deposits below the ice wedge. Methanogenesis was only ob-
served in the active layer, but in much smaller quantities than
anaerobic CO2 production.

www.biogeosciences.net/15/5423/2018/ Biogeosciences, 15, 5423–5436, 2018
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Figure 6. Total aerobic (a) and anaerobic (b) CO2-C production after 134 incubation days from permafrost deposits from the MUO12
sequence, the BK8 core, and the two L14 cores from the Holocene interglacial (MIS 1), including the late glacial transition (LGT) (n= 22),
the Sartan stadial (MIS 2) (n= 15), and the Kargin interstadial (MIS 3) (n= 50). The whiskers show the data range and the box indicates
the interquartile range. The vertical line and square inside the boxes show the median and mean, respectively. The different letters indicate
significant differences (Mann–Whitney test, p<0.016) between deposits from different periods.

To assess the decomposability of OC over longer periods,
all BK8 core samples were incubated for a total of 785 days.
After 785 incubation days, CO2 production ranged between
4.6 and 131.1 mg CO2-C g−1 OC under aerobic conditions
and between 2.2 and 43.0 mg CO2-C g−1 OC under anaer-
obic conditions. CO2 production rates, however, decreased
sharply within the first weeks of incubation. On average,
58%±12 % of the aerobically and 86%±24 % of the anaero-
bically produced CO2 after 785 incubation days was already
produced within the first 134 days. In contrast, CH4 produc-
tion in the active layer increased 30-fold between 134 and
785 incubation days. Additionally, two out of three replicates
at 10 m b.s. also showed active methanogenesis between 134
and 785 days. The total CH4 production after 785 days ac-
counted for 17 and 50 % of the total carbon production in
those samples, respectively.

4.2.3 Bol’shoy Lyakhovsky Island

Aerobic CO2 production after 134 incubation days in
samples from the L14 cores ranged between 3.7 and
18.9 mg CO2-C g−1 OC (Fig. 5). The mean aerobic CO2
production in all MIS 3 Kargin interstadial deposits from
Bol’shoy Lyakhovsky Island was significantly lower (Mann–
Whitney test, p<0.001) than CO2 production in MIS 3 de-
posits from Muostakh Island and the Buor Khaya Penin-
sula (Table 2). Anaerobic CO2 production in Kargin deposits
from Bol’shoy Lyakhosvky Island ranged between 3.2 and
11.6 mg CO2-C g−1 OC, which was within the same range as
production observed from the other two locations. No CH4
production was observed in any L14 samples after 134 days.

After 785 incubation days, aerobic and anaerobic CO2
production ranged between 11.0 and 55.2 mg CO2-C g−1 OC
and between 3.0 and 27.0 mg CO2-C g−1 OC, respectively.
Active methanogenesis was only observed in two out of three
replicates from the active layer from the L14-05 core. How-
ever, CH4 production was an order of magnitude lower than

anaerobic CO2 production in the same sample and also an or-
der of magnitude smaller than CH4 production in the active
layer from the Buor Khaya Peninsula.

4.3 Decomposability of permafrost OM deposited
under different climatic regimes

Overall, permafrost OM deposited during the MIS 3 Kar-
gin interstadial supported the highest greenhouse gas produc-
tion (Fig. 6). After 134 days of aerobic incubation, 0.2 %–
6.1 % of the initially available OC was decomposed to CO2.
This was significantly more (Mann–Whitney test, p<0.001)
than in deposits from the Holocene and late glacial tran-
sition, where production ranged between 0.4 % and 4.0 %.
The aerobic CO2 production in MIS 2 Sartan stadial de-
posits ranged between 0.5 % and 4.2 %. Anaerobically, 3.3
times less CO2 was produced (Pearson correlation coefficient
r = 0.63, p<0.001). The lowest production was observed in
Holocene and late glacial transition deposits, where 0.1 %–
1.1 % of the OC was anaerobically decomposed to CO2. This
was significantly less (Mann–Whitney test, p<0.01) than in
yedoma deposits, where 0.4 %–2.1 % and 0.2 %–1.6 % of ini-
tial OC were decomposed in Sartan stadial and Kargin inter-
stadial deposits, respectively.

5 Discussion

5.1 Organic matter decomposability

The ice-rich permafrost deposits of Muostakh Island, the
Buor Khaya Peninsula, and Bol’shoy Lyakhovsky Island are
typical for northeastern Siberia, and the geochemical OM
characteristics (TOC, C /N, δ13Corg) were all within the
range of other permafrost deposits in the region (Schirrmeis-
ter et al., 2011). However, a better understanding of the
differences in OM decomposability is needed to estimate
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the contribution of thawing permafrost landscapes to future
greenhouse gas fluxes.

The highest CO2 production potentials from permafrost
samples in the BK8 core were observed below the ice wedge
between 8.35 and 16 m b.s. (Fig. 3). For this core section,
which was deposited during the MIS 3 Kargin interstadial
(Schirrmeister et al., 2017), Zimmermann et al. (2017b) re-
port a high taxonomic richness of vascular plants with high
proportions of swamp and aquatic taxa, pointing towards a
water-saturated environment at the time of deposition, likely
a low-centered ice-wedge polygon. Furthermore, Stapel et
al. (2016) report high concentrations of branched glycerol di-
alkyl glycerol tetraether (br-GDGT), a microbial membrane
compound, at 10, 11.2, and 15 m b.s., indicative of a soil mi-
crobial community, which developed when the climate was
relatively warm and wet. Together with higher TOC contents
at these depths, this suggests accumulation of relatively un-
decomposed OM under anaerobic conditions, which can be
quickly decomposed after thaw (de Klerk et al., 2011), re-
sulting in higher CO2 production. In contrast, a lower abun-
dance of swamp taxa and higher abundance of terrestrial taxa
at 8.8 m b.s. and below 15 m b.s. (Zimmermann et al., 2017b),
suggest that intermittently drier conditions existed. This re-
sulted in accelerated OM decomposition under aerobic con-
ditions prior to OM incorporation into the permafrost and
therefore lower TOC contents as well as lower CO2 produc-
tion potentials at these depths, as observed in this study.

Sediments above the ice wedge in the BK8 core showed
similar TOC contents, C /N, and δ13Corg values compared to
the rest of the core, but CO2 production was consistently low
in this section. This ∼ 3 m long core section yielded radio-
carbon ages of 11.4–10.1 ka BP (Schirrmeister et al., 2017),
which corresponds to the late glacial–early Holocene transi-
tion. After the Last Glacial Maximum (LGM), temperatures
were favorable for the increased microbial decomposition of
active layer OM, which led to the preservation of compar-
atively stable OM fractions after the material was incorpo-
rated into the permafrost. If these sediments were to thaw
again in the future, results from the current study suggest that
the decomposability of the remaining OM will be compara-
tively low. However, deeper rooting, cryoturbation, and post-
thaw leaching of labile OM from vegetation could stimulate
the decomposition and greenhouse gas production from more
stable OM through positive priming (Fontaine et al., 2007).
Both the chemical structure (Di Lonardo et al., 2017) and
the frequency of labile OM inputs (Fan et al., 2013) influ-
ence the size of the priming effect. For permafrost soils, it
has also been shown that the priming effect is larger at lower
temperatures (Walz et al., 2017). Thus, climatic conditions
influence the vegetation composition and OM source on a re-
gional level, but the local depositional environment as well
as postdepositional processes likely also control the amount
and decomposability of the OM that is presently incorporated
in permafrost.

The first results of in situ CO2 fluxes from Muostakh Is-
land were published by Vonk et al. (2012). Based on the
downslope decrease in OC contents, they estimate that 66 %
of the thawed yedoma OC can be decomposed to CO2 and re-
leased back to the atmosphere before the material is reburied
in the Laptev Sea. This is an order of magnitude more than
what the results from current incubation study suggest, where
after 134 days only 0.4 %–6.0 % of the yedoma OC from
Muostakh Island were aerobically decomposed to CO2. No
further detailed palynological or microbial biomarker stud-
ies are yet available for the MUO12 sequence. The closest
reference location is the comprehensive permafrost record at
the Mamontovy Khayata section on the Bykovsky Peninsula
(Andreev et al., 2002; Sher et al., 2005). Between 58 and
12 ka BP (Schirrmeister et al., 2002b), fine-grained material
accumulated on the large flat foreland plain of the present-
day Bykovsky Peninsula area that was exposed at a time of
lower sea level (Grosse et al., 2007). Sea level rise after the
last glacial period, coastal erosion, and marine ingression of
thermokarst basins formed the Buor Khaya Bay and eventu-
ally separated Muostakh Island from the Bykovsky Peninsula
(Grosse et al., 2007; Romanovskii et al., 2004). It is likely
that the deposition regimes on Muostakh Island and the Buor
Khaya Peninsula were similar to the regime at the Bykovsky
Peninsula. This conclusion is also supported by similar OM
decomposability. After 134 incubation days, the amount of
aerobic and anaerobic CO2 production did not differ sig-
nificantly (Mann–Whitney test, p = 0.339) between MIS 3
Kargin deposits from Muostakh Island and the Buor Khaya
Peninsula (Table 2), which suggests that the deposits formed
under similar conditions. In contrast, aerobic CO2 produc-
tion in MIS 3 deposits from Bol’shoy Lyakhovsky Island in
the eastern Laptev Sea was nearly 3 times lower than that
observed for Muostakh Island and the Buor Khaya Penin-
sula in the central Laptev Sea. Considerably lower temper-
atures and precipitation characterize the current climate on
Bol’shoy Lyakhovsky Island. It is also likely that regional
differences between the eastern and central Laptev Sea re-
gion would have affected the paleoclimate (Anderson and
Lozhkin, 2001; Lozhkin and Anderson, 2011; Wetterich et
al., 2011, 2014). Different summer temperatures, precipita-
tion, thaw depth, and vegetation composition could explain
regional differences in OM quantity and decomposability.

A distinctive feature of the Muostakh Island sequence is
the preservation of MIS 2 Sartan deposits, which are only
sparsely preserved in northeastern Siberia (Wetterich et al.,
2011). Interestingly, mean aerobic CO2 production in Sar-
tan deposits from Muostakh Island was lower than in Kar-
gin deposits, but slightly higher under anaerobic conditions,
but the difference was not statistically significant (Mann–
Whitney test, p = 0.205). The rapid deposition of 8 m thick
comparatively coarse-grained material in just a few thousand
years between 20 and 16 ka BP were unfavorable for the de-
velopment of a stable land surface and the establishment of
a vegetation cover comparable to the Kargin interstadial or
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Holocene (Meyer et al., unpublished data). Pollen analyses
from the corresponding sections on the Bykovsky Peninsula
(Andreev et al., 2002) and Kurungnakh Island in the Lena
River delta (Schirrmeister et al., 2008; Wetterich et al., 2008)
suggest relatively cold and dry summer conditions during
this stadial with sparse vegetation. Relatively undecomposed
OM was quickly buried, before it could be transformed to
greenhouse gases.

5.2 Multiannual incubation

The 785-day incubation of permafrost samples from the Buor
Khaya Peninsula and Bol’shoy Lyakhovsky Island revealed
that 51 % of the aerobically and 83 % of the anaerobically
produced CO2 was already produced within the first 134 in-
cubation days, highlighting the nonlinearity of OM decom-
position dynamics (Knoblauch et al., 2013; Schädel et al.,
2014) and the importance of the labile OC pool in short-term
incubations. Maximum CO2 production rates were generally
reached within the first 100 incubation days. After the initial
peak, CO2 production rates remained consistently low (me-
dian 23.3 µg CO2-C g−1 OC d−1 aerobically and 3.2 µg CO2-
C g−1 OC d−1 anaerobically). These rates are within the
range of other multiannual production rates from yedoma de-
posits in northeastern Siberia (Dutta et al., 2006; Knoblauch
et al., 2013) and Alaska (Lee et al., 2012).

Assuming no new input of labile OM (e.g., from the cur-
rent vegetation), decomposition rates are likely to remain
low after the labile pool is depleted. Short-term greenhouse
gas production and release from thawing ice-rich permafrost
will therefore mainly depend on the size of the labile pool.
A synthesis study of several incubation studies from high-
latitude soils, including yedoma deposits, estimated the size
of the labile OC pool to be generally less than 5 % of the
TOC (Schädel et al., 2014). For yedoma deposits on nearby
Kurungnakh Island in the Lena River delta, Knoblauch et
al. (2013) estimated the size of the labile pool to be even
smaller (less than 2 %). Considering the large slowly decom-
posing permafrost OC pool (Schädel et al., 2014), long-term
decomposition rates are therefore likely to provide more re-
liable projections of future greenhouse gas production in de-
grading permafrost landscapes.

5.3 Methanogenesis

CH4 production from yedoma deposits, or the lack thereof, is
a highly controversial topic in permafrost research (Rivkina
et al., 1998; Treat et al., 2015; Knoblauch et al., 2018). In the
current work, active methanogenesis was only observed in 2
out of 38 yedoma samples from the BK8 core. In those sam-
ples showing active methanogenesis, CH4 production contin-
ued to rise over the 785 incubation days, which is in contrast
to anaerobic CO2 production, which decreased with increas-
ing incubation time. Rising CH4 production rates indicate
that methanogenic communities still grow in these samples

and were not limited by substrate supply. Chemical pore wa-
ter and bulk sediment analyses from the BK8 core showed
that there are high concentrations of both free and OM-
bound acetate present in yedoma deposits, indicating a high
substrate potential for methanogenesis (Stapel et al., 2016).
Knoblauch et al. (2018) showed that the small contribution of
methanogenesis to overall anaerobic permafrost OM decom-
position found in short-term incubation studies (Treat et al.,
2015) is due to the absence of an active methanogenic com-
munity. On a multiannual timescale, methanogenic commu-
nities become active and equal amounts of CO2 and CH4 are
produced from permafrost OM under anaerobic conditions.
Under future climate warming and renewed thermokarst ac-
tivity, high levels of CH4 production can be expected locally,
but depend on favorable conditions such as above-zero tem-
peratures and anaerobic conditions. It can be expected that
the development of an active methanogenic community, e.g.,
by growth or downward migration of modern methanogenic
organisms, will lead to elevated long-term CH4 production in
these deposits (Knoblauch et al., 2018).

6 Conclusion

In this study, we investigated greenhouse gas production po-
tential in degrading ice-rich permafrost deposits from three
locations in northeastern Siberia. We hypothesized that the
climatic conditions during deposition affected the amount
and decomposability of preserved OM and thus greenhouse
gas production potential after thawing. OM decomposability
therefore needs to be interpreted against the paleoenviron-
mental background. It could be shown that yedoma deposits
generally contained more labile OM than Holocene deposits.
However, in addition to the regional climate conditions at the
time of OM deposition, local depositional environments also
influenced the amount and decomposability of the preserved
fossil OM. Within the deposits of the MIS 3 Kargin intersta-
dial, sediments deposited under wet and possibly anaerobic
conditions produced more CO2 than sediments deposited un-
der drier aerobic conditions. Further, deposits from the cen-
tral Laptev Sea region produced 2–3 times more CO2 than
deposits from the eastern Laptev Sea region. It is therefore
likely that OM decomposability of the vast yedoma land-
scape cannot be generalized solely based on the stratigraphic
position. Furthermore, it is expected that CH4 production
will play a more prominent role after active methanogenic
communities have established, since abundant substrates for
methanogenesis were present.

Data availability. All data sets shown as well as the temporal evo-
lution of CO2 and CH4 production over the whole incubation
period are available at https://doi.pangaea.de/10.1594/PANGAEA.
892950 (last access: 13 August 2018; Walz et al., 2018).
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