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Abstract. We applied an empirical modelling approach for
gross primary productivity (GPP) estimation from hyper-
spectral reflectance of Mediterranean grasslands undergoing
different fertilization treatments. The objective of the study
was to identify combinations of vegetation indices and bands
that best represent GPP changes between the annual peak of
growth and senescence dry out in Mediterranean grasslands.

In situ hyperspectral reflectance of vegetation and CO2 gas
exchange measurements were measured concurrently in un-
fertilized (C) and fertilized plots with added nitrogen (N),
phosphorus (P) or the combination of N, P and potassium
(NPK). Reflectance values were aggregated according to
their similarity (r ≥ 90 %) in 26 continuous wavelength in-
tervals (Hyp). In addition, the same reflectance values were
resampled by reproducing the spectral bands of both the
Sentinel-2A Multispectral Instrument (S2) and Landsat 8
Operational Land Imager (L8) and simulating the signal that
would be captured in ideal conditions by either Sentinel-2A
or Landsat 8.

An optimal procedure for selection of the best subset of
predictor variables (LEAPS) was applied to identify the most
effective set of vegetation indices or spectral bands for GPP
estimation using Hyp, S2 or L8. LEAPS selected vegetation
indices according to their explanatory power, showing their
importance as indicators of the dynamic changes occurring in
community vegetation properties such as canopy water con-
tent (NDWI) or chlorophyll and carotenoids / chlorophyll ra-
tio (MTCI, PSRI, GNDVI) and revealing their usefulness for
grasslands GPP estimates.

For Hyp and S2, bands performed as well as vegetation
indices to estimate GPP. To identify spectral bands with a
potential for improving GPP estimates based on vegetation

indices, we applied a two-step procedure which clearly in-
dicated the short-wave infrared region of the spectra as the
most relevant for this purpose. A comparison between S2-
and L8-based models showed similar explanatory powers for
the two simulated satellite sensors when both vegetation in-
dices and bands were included in the model.

Altogether, our results describe the potential of sensors
on board Sentinel-2 and Landsat 8 satellites for monitoring
grassland phenology and improving GPP estimates in sup-
port of a sustainable agriculture management.

1 Introduction

Mediterranean grasslands are highly biodiverse ecosystems,
covering around 22 % of the European Union land area and
providing important ecosystem services such as forage pro-
duction (Bugalho and Abreu, 2008; Díaz-Villa et al., 2003).
These ecosystems are subjected to large pressures under
global change (Sala, 2000), namely by the increasing avail-
ability of nutrients (e.g. phosphorus, P, and nitrogen, N) due
to human use of fertilizers and N deposition (Ceulemans et
al., 2014; Galloway et al., 2004; Peñuelas et al., 2013) and
by a decrease and shift in seasonal patterns of precipita-
tion (Costa et al., 2012; Kovats et al., 2014). The contempo-
rary changes in the supply of water and nutrients can affect
species composition, biomass and phenology along the life
cycle of annual grasslands (Harpole et al., 2007), compro-
mising their productivity. In particular, the onset and dura-
tion of the senescence period, largely dependent on soil wa-
ter availability, can be affected in Mediterranean grasslands
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with great impact on their functioning and consequences on
gross primary productivity (GPP) (Aires et al., 2008a, b; Jon-
gen et al., 2013b; Xu and Baldocchi, 2004). This uncertainty
scenario increases the need for frequent monitoring of GPP
along the growing season.

Using remote-sensing-based information to evaluate GPP
brings important advantages, both from a scientific and a
management point of view. Spectral retrievals collected from
optical sensors on board remote platforms may provide infor-
mation on many biophysical properties of vegetation and can
be usefully employed for monitoring and modelling ecosys-
tems GPP in a cost- and time-effective way (Schimel et al.,
2015). Also, for land managers, the capability to make timely
grassland management decisions may improve the use and
sustainability of these ecosystems.

GPP estimation models integrating remote-sensing obser-
vations increased considerably in the last decades (Beer et
al., 2010). Such models are generally based on the light use
efficiency (LUE) concept (Monteith, 1972, 1977), which de-
fines GPP as a function of the fraction of radiation absorbed
by vegetation, which in turn depends on green leaf area and
the efficiency by which light energy is used to fix carbon dur-
ing photosynthesis (i.e. LUE) (Cheng et al., 2014; Yuan et al.,
2014).

Based on this approach, a large amount of effort has been
made to derive vegetation indices able to represent the green
leaf area and LUE. The Normalized Difference Vegetation
Index (NDVI) is widely used for its known linear relation-
ship with the absorbed radiation (Fensholt et al., 2004; Joel
et al., 1997; Myneni and Williams, 1994). However, some
exceptions are reported in the literature. For example, in
highly productive environments, such as grasslands, NDVI
becomes easily saturated, not responding to increased leaf
area and LUE, and the regression observed is no longer lin-
ear (Vescovo et al., 2012; Viña and Gitelson, 2005).

In annual grasslands, such as the Mediterranean, controls
on ecosystem carbon balance are generally considered to be
mainly related to the amount of green leaf area, while few
LUE changes are expected (Gamon, 2015). Nonetheless, sev-
eral studies reported a hysteresis in LUE in grasslands when
the duration of the study encompassed the whole life cycle
(Nestola et al., 2016; Pérez-Priego et al., 2015a).

The Photochemical Reflectance Index (PRI) is frequently
adopted as a proxy of LUE (Gamon et al., 1997) on the
scale of leaf and canopy (Garbulsky et al., 2011). PRI in the
short term represents the dynamic of the xanthophylls cycle
(Peñuelas et al., 1995) which is related to thylakoid energiza-
tion and hence to light harvesting by photosynthesis. In the
long term, PRI was found to be correlated with the ratio of
carotenoids to chlorophyll (Filella et al., 2004; Porcar-Castell
et al., 2012) and hence to plant senescence, since chlorophyll
degradation and N export is a distinctive process of leaf age-
ing (Thomas, 2013). However, PRI also shows some draw-
backs, since it is largely affected by species identity, leaf
age or environmental conditions (Peñuelas et al., 1995) and

by sensor geometry and atmospheric factors (Moreno et al.,
2012). Hence the performance of models integrating PRI is
frequently below expectation (Pérez-Priego et al., 2015a).

As a result, other vegetation indices have been tested as
alternatives to NDVI and PRI for GPP estimation. In a sub-
alpine grassland, Rossini et al. (2012) obtained the best GPP
estimate adopting the MERIS Terrestrial Chlorophyll In-
dex (MTCI) (Dash and Curran, 2004), a proxy of chloro-
phyll, and PRI. In another study, in a subalpine grassland,
Sakowska et al. (2014) found that the red-edge NDVI, a mod-
ified NDVI for which the infrared band is substituted with
a red-edge band (Gitelson and Merzlyak, 1994), improved
GPP estimates. In Mediterranean grasslands with different N
and P fertilization levels, PRI, together with solar induced
fluorescence, improved GPP estimates (Pérez-Priego et al.,
2015a). In a semi-arid grassland, Vicca et al. (2016) observed
that several vegetation indices, including NDVI and the Nor-
malized Different Water Index (NDWI) (Gao, 1996), a proxy
of vegetation water content, were able to capture the drought
effect on GPP.

Altogether these results clearly indicate that, in spite of the
usefulness of VIs in representing dynamic changes in bio-
physical properties of vegetation, further studies are needed
to identify vegetation indices and the spectral regions that can
be potentially interesting to estimate grassland GPP under
different environmental constraints, such as nutrient avail-
ability.

The adoption of a specific model also depends frequently
on the availability of remote-sensing products at suitable spa-
tial and temporal scales. In the case of local-scale monitor-
ing of managed grasslands, sensors with high spatial reso-
lution will produce better results than sensors with coarse
spatial resolution. In this study we opted for simulating data
from Sentinel-2A MSI (Multi-Spectral Instrument) (here-
after named S2) and Landsat 8 OLI (Operational Land Im-
ager) (hereafter named L8), for their spatial resolution (10–
20 m for S2 and 30 m for L8), which is more suitable for rep-
resenting the spatial heterogeneity of grasslands and hence
better adapted to implementing management options from
a precision agriculture perspective. L8 provides reflectance
in seven bands, ranging from the visible to the short-wave
infrared region (SWIR) (Loveland and Irons, 2016), but its
main drawback is the long revisiting time of 16 days. The
recently launched S2 covers the visible and near-infrared re-
gions and also the SWIR in 13 bands with at worst a 5-day
revisiting time for the combination of S-2A and S-2B plat-
forms (Drusch et al., 2012).

Field collection of vegetation reflectance by hyperspec-
tral sensors is less cost effective and more time consuming
than satellite remote-sensing data but presents the advantage
of providing reflectance in numerous high-resolution wave-
lengths (Porcar-Castell et al., 2015). Therefore, it can be use-
fully employed for identifying which wavelengths best re-
flect biophysical properties and the physiological status of
vegetation (Balzarolo et al., 2015; Matthes et al., 2015) and

Biogeosciences, 15, 5455–5471, 2018 www.biogeosciences.net/15/5455/2018/



S. Cerasoli et al.: GPP estimates in grasslands by optical sensors 5457

point to regions of the spectra that are potentially interest-
ing for GPP modelling, which until now have not been ex-
ploited by remote sensors. The high detail of spectral reso-
lution (1 nm nominal) is a further advantage of hyperspec-
tral measurements. In particular, it allows us to compare the
performance of similar vegetation indices that are available
from different satellite platforms and resample hyperspectral
information to match spectral bands of different remote sen-
sors.

A promising new technology is the use of space-borne
imaging spectroscopy. The hyperspectral resolution of these
images allows canopy properties to be identified with higher
sensitivity than traditional vegetation indices. For example,
the use of space-borne imaging spectroscopy was able to de-
tect changes in canopy leaf area and water stress in a humid
tropical forest, whereas NDVI and other vegetation indices
failed (Asner et al., 2004).

The aim of this study was to identify combinations of veg-
etation indices and bands that better reflect GPP changes in
the period comprised between the annual peak of growth and
senescence dry out in Mediterranean grasslands that are sub-
jected to different fertilization treatments. To achieve this
goal, in situ hyperspectral measurements of vegetation re-
flectance were used to estimate GPP in a grassland north-
east of Lisbon, Portugal, before and after the annual peak of
growth which generally occurs in May, with large interan-
nual differences (Jongen et al., 2011). A set of vegetation
indices proposed in the literature were calculated and the
performances of models used to estimate GPP based on lin-
ear combinations of vegetation indices and bands were com-
pared.

Whenever a comparable spectral range was available for
the S2 and L8, vegetation indices were also calculated to sim-
ulate the respective bands and the performances of GPP es-
timates based on remote platforms, and in situ hyperspectral
measurements were compared.

The specific objectives of the study were (i) to test the
impact of differing nutrient availability on GPP in Mediter-
ranean grassland; (ii) to identify the set of vegetation in-
dices to optimize GPP model in our experimental conditions;
(iii) to compare the performance of GPP models employing
only vegetation indices, spectral bands or a combination of
both; and (iv) finally, to compare GPP models using spectral
information obtained from hyperspectral sensors with similar
models obtained from S2 and L8 platforms.

2 Material and methods

2.1 The study site

Our study was conducted in a semi-natural Mediterranean
grassland at Companhia das Lezírias, an estate of approx-
imately 15 000 ha, located north-east of Lisbon, Portugal
(38◦49′45.13′′ N, 8◦47′28.61′′W). The grassland plant com-

munity is composed of annual C3 species. The climate is
Mediterranean, with mild, wet winters and hot, dry summers.
Long-term (1961–1990) mean annual rainfall is 709 mm.
Mean annual temperature is 15.9 ◦C (INMG, 1991). Site to-
pography is flat and the soil is a well-drained deep Haplic
Arenosol (WRB, 2006).

2.2 Experimental design

The grassland studied is part of the Nutrient Network ex-
periment (Borer et al., 2017; Seabloom et al., 2013). Plots
(5 m× 5 m) were established in 2012, in a randomized block
design. Factorial combinations of nitrogen (N), phosphorus
(P), and potassium plus micronutrients (K), a total of eight
treatments per block, including controls (C) with no added
nutrients, were established. All nutrients were added at a rate
of 10 g m−2 yr−1. N was added as a slow-release urea (60–
90 days), P was added as triple-super phosphate and K as
potassium sulfate. Micronutrients (6 % Ca, 3 % Mg, 12 % S,
0.1 % B, 1 % Cu, 17 % Fe, 2.5 % Mn, 0.05 % Mo, and 1 %
Zn) were added with K only once, at the start of the study to
avoid possible micronutrient toxicity. In this study, only four
fertilization treatments were considered: C, N, P and NPK.
Each one of these treatments was repeated twice per block,
and a total of 24 plots were measured (2 replicates× 4 treat-
ments× 3 blocks).

2.3 Environmental measurements

Temperature, PAR and relative humidity were measured in
situ using a VP-3 humidity temperature and vapour pres-
sure sensor and QSO-S PAR Photon Flux sensor (Decagon
Devices, Pullman, USA) logged every 30 min (EM50 data
logger, Decagon Devices, Pullman, USA). Precipitation was
recorded using a tipping bucket rain gauge (RG2, Delta-T
Devices, Cambridge, UK). Soil water content (SWC) was
continuously measured at a depth of 10 cm, which corre-
sponds to the main rooting zone (Jongen et al., 2013a;
Schenk and Jackson, 2002), using EC-5 soil moisture sensors
(Decagon Devices, Pullman, USA). The rain gauge and soil
sensors were connected to a CR1000 and AM16/32B multi-
plexer data logger (Campbell Scientific, Logan, USA).

2.4 Field measurements

2.4.1 NEP and R from a closed system IRGA

Grassland net ecosystem productivity (NEP) was measured
with a closed chamber (40 cm× 40 cm× 54 cm) of poly-
methylmethacrylate (3 mm thick) inserted into a permanent
frame buried 5 cm into the soil. Radiation transmittance was
higher than 95 %. The same chamber was covered with a
reflective cloth for dark respiration (R) measurements. Air
temperature inside the chamber was continuously monitored
and PAR was measured at the beginning and end of mea-
surements with a ceptometer (AccuPAR-LP80, Decagon De-
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vices, Inc. Pullman, WA, USA). Fans in the chamber en-
sured air circulation. The chamber was connected to an in-
frared gas analyser (LI-840, Li-Cor, Lincoln, NE, USA),
measuring CO2 and water vapour. Each measurement was no
longer than 3 min. Fluxes were calculated based on the rate
of change in CO2 inside the chamber after an initial period
of at least 10 s. Flux calculations and corrections for CO2
water vapour dilution followed Pérez-Priego et al. (2015b).
GPP was obtained by subtracting R from NEP at each
measurement. All plots were measured between 11:00 and
13:00 UTC on clear-sky days, as close as possible to field
spectroradiometric measurements. Measurements were taken
during the 2016 growing season. Two field campaigns were
carried out during vegetation growth, on day 1 (31 March–
1 April) and day 2 (24–25 April) and two during the senes-
cence phase, on day 3 (19–20 May) and day 4 (1–3 June).

2.4.2 Green plant area index and biomass

The plant area index (PAI), a measure of all above-ground
plant structure, was indirectly measured with a linear PAR
ceptometer (AccuPAR LP-80 Decagon Devices Inc., Pull-
man, WA, USA). The ceptometer measures the fraction of
PAR intercepted by the canopy (fPAR) according to Eq. (1):

fPAR=
1−PARt

PARi
, (1)

where PARi is the incoming PAR measured above the canopy
and PARt is the PAR transmitted through the canopy, mea-
sured below it.

The fPAR was considered approximately equal to ab-
sorbed radiation, as the amount of reflected radiation in the
PAR range is usually low (Gower et al., 1999). For each
plot, 6–8 measurements above (PARi) and below (PARt) the
canopy were taken and averaged.

The PAI is calculated by inversion of the Beer–Lambert
law (Eq. 2):

fPAR= 1− e−K·PAI, (2)

whereK is the light extinction coefficient, which depends on
the leaf angle distribution of the canopy and on the zenith
angle of the probe. The first is considered spherically dis-
tributed (Jones, 1992), the second is calculated by the cep-
tometer considering the geographic coordinates and date and
time of measurements. To avoid low solar zenith angles all
measurements were taken around solar noon.

As the growing season progressed, some species started
to senesce. In order to estimate the fraction of PAR ab-
sorbed only by photosynthesizing components of the canopy
(“green” fPAR and PAI, fPARgr and PAIgr respectively),
fPAR and PAI were multiplied by a normalized (by scaling
between 0 and 1) greenness index (GI, calculated as a ratio
between the digital number values of green and the sum of
red, green, and blue digital number values) derived from the

analysis of digital pictures of the plots taken at each mea-
surement day around solar noon (Cyber-shot DSC-W530,
SONY), using the Phenopix R package (Filippa et al., 2016).

To determine above-ground productivity, a strip of veg-
etation (0.1 m× 1 m) within each plot was collected close
to peak growth and biomass divided into functional types
(legumes, forbs, graminoids) and dried in an oven until con-
stant weight at 60 ◦C.

2.4.3 Hyperspectral measurements of vegetation
reflectance

At each field campaign, hyperspectral observations of all
plots were performed with a FieldSpec3 spectroradiometer
(ASD Inc., Boulder, USA), which provides reflectance of
vegetation in the range of 350–2300 nm. The spectral res-
olution (full width at half maximum) is 3 nm at 700 nm
and 10 nm at 1400 and 2100 nm. The sampling interval is
1.4 nm for the spectral region of 350–1000 nm (visible and
near infrared) and 2 nm for the spectral region of 1000–
2500 nm (short-wave infrared). A white reference of known
reflectance (Spectralon panel, Labsphere, Inc., North Sutton,
USA) was used to normalize for variations in atmospheric
conditions and to convert the measurements into absolute re-
flectance (Ref). Spectra were collected using a bare-fibre op-
tical cable (with an instantaneous field of view of 25◦) in-
serted into a pistol grip at approximately 90 cm above the
canopy and a nadir view.

Five spectra were recorded for each plot, each one rep-
resenting an average of 25 observations. All measurements
were conducted immediately after grassland gas exchange
measurements, within 2 h around solar noon, to minimize the
effects of shadowing and solar zenith changes.

2.5 Data analysis

All statistical analyses were performed using open-source R
(R Core Team, 2017). We used the lme4 package (Bates et
al., 2014) to perform linear mixed-effect analyses of the ef-
fect of the fertilization and control treatments on NEP, R,
GPP and PAIgr. Treatment and date were the fixed effects and
the block was the random effect. Conditions of homoscedas-
ticity and normality were always verified by visual inspection
of residuals. P values were obtained by likelihood ratio tests
of the full model with the effect in question against the model
without the effect in question. A Tukey test was used for post-
hoc comparison using the multcomp package (Hothorn et al.,
2008).

The full spectra of vegetation reflectance retrieved from
the Fieldspec was used to model GPP, after excluding noisy
values in the range 1350–1400 and 1800–1950 nm. Our P =
1748 original explanatory variables are x350, . . . , x2299 where
xλ represents the reflectance in the narrowband [λ, λ+1]
(nm) and our response variable is the GPP (µmol m−2 s−1).
A total number of 96 observations were available (4 treat-
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Table 1. Spectral bands range and spatial resolution of Sentinel-2A MSI and Landsat 8 OLI sensors simulated in this study.

Sentinel-2A MSI Landsat 8 OLI

Band Spectral Wavelength Resolution Spectral region Wavelength Resolution
region range (nm) (m) region range (nm) (m)

B1 Blue 435–451 30
B2 Blue 458–523 10 Blue 452–512 30
B3 Green peak 543–578 10 Green 533–590 30
B4 Red 650–680 10 Red 636–673 30
B5 Red edge 698–713 20 NIR 851–879 30
B6 Red edge 733–748 20 SWIR1 1566–1651 30
B7 Red edge 773–793 20 SWIR2 2107–2294 30
B8 NIR 785–899 10
B8A NIR narrow 855–875 20
B11 SWIR 1565–1655 20
B12 SWIR 2100–2280 20

ments× 2 replicates× 3 blocks× 4 dates). Since we have
1748 explanatory variables and just 96 observations, hence
a high level of redundancy in our data, the number of pre-
dictors were first reduced by grouping variables that belong
to intervals of wavelengths at which all variables are highly
correlated. A hierarchical cluster analysis was performed to
reduce the number of predictors from P = 1748 to p = 25
groups of contiguous variables named “bands”. The basic
idea is to aggregate contiguous and highly correlated indi-
vidual 1 nm intervals of wavelength into broader wavelength
bands. Two original predictors xλa, xλb are clustered together
if their correlation coefficient r(xλa,xλb) is larger than 0.90.
Bands correspond to the largest contiguous intervals at which
all pairs of original predictors satisfy that condition. If a band
groups all original predictors between λ1 and λ2, then it is
represented by a new variable x[λ1,λ2], which is the arithmetic
mean of the original variables xλ1, . . . , xλ2. The procedure is
repeated to obtain all bands that partition the full x350, . . . ,
x2299 spectrum.

Reflectance values were also resampled to simulate bands
of Sentinel-2A MSI (S2) and Landsat 8 OLI (L8). Since each
band of S2 or L8 has a spectral response which is not per-
fectly uniform, we use the spectral response function of each
sensor (Barsi et al., 2014; ESA, 2018) to weigh the contri-
bution of each original predictor. As a result, for each sensor
and band [λ1, λ2], we calculated the reflectance as a weighted
mean of xλ1, . . . , xλ2, where the weights are given by the
spectral response. The list of S2 and L8 bands used in this
study is shown in Table 1.

Vegetation indices (VIs) (Table 2) were calculated from
hyperspectral (Hyp), or simulated S2 and L8 sensors (Ta-
ble 1). The selected VIs were retrieved from the literature
based on their relation to biophysical properties of vegeta-
tion affecting GPP. Given that the goal of the analysis is to
determine the set of VIs and/or bands that best model GPP,
we apply a data analysis method that identifies the best subset

of single variables. This is distinct from principal component
analysis (PCA) where dimensionality reduction is achieved
through replacing variables by their linear combinations,
which still involve all the variables. We adopted linear regres-
sion (MLR) to model the relation between our explanatory
variables (bands and VIs) and the response variable (GPP).
Although the expressiveness of non-linear models (e.g. in the
field of machine learning) is stronger than MLR, we believe
that linear models provide a clearer interpretation of the re-
lation between predictors and GPP, while offering enough
flexibility by including variables in a high-dimensional rep-
resentation space. Moreover, and as discussed below, linear
models allow us to derive confidence intervals for our results,
apply statistical tests to compare models at a given signifi-
cance level, and they are less prone to overfitting than com-
plex non-linear models.

Since the number of observations are only roughly twice
as large as the number of new explanatory variables, we per-
formed variable selection and excluded those that do not con-
tribute significantly to the goodness-of-fit of our model. Al-
though the dimensionality of the problem is very large, it can
be solved efficiently by the LEAPS algorithm (Furnival and
Wilson, 1974) available through the R package leaps (Lum-
ley, 2009). Unlike alternative heuristic approaches (Cadima
et al., 2004), LEAPS returns the optimal subset of predic-
tors according to a given criteria. In our analysis, the criteria
was the adjusted R2, so LEAPS returns the sub-model with
the highest-adjusted R2 among all possible 2p sub-models,
where p is the number of predictors.

A nested approach was adopted to formally test which
model better explained GPP. A preliminary test showed that
better results were obtained with exponential regressions and
therefore ln GPP was adopted as the response variable in all
analyses.
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Table 2. Selection of vegetation indices adopted in this study with their formulation using hyperspectral (Hyp) grouped bands, S2 or L8
simulated sensors, biophysical properties represented according to the literature and original bibliographic reference.

Vegetation index Hyp S2 L8 Biophysical property Reference

NDVI Normalized Difference Vegetation Index R800−R670
R800+R670

B8A−B4
B8A+B4

B5−B4
B5+B4 Green biomass and area Rouse et al. (1974)

GNDVI Green Normalized Diff. Veg. Ind. R750−R550
R750+R550

B7−B3
B7+B3

B5−B3
B5+B3 Green biomass and area Gitelson and Merzlyak (1998)

NDVIre Red-edge Normalized Diff. Veg. Ind. R750−R720
R720+R750

Green biomass Gitelson and Merzlyak (1994)

CI Chlorophyll index R750−R705
R750+R705

Chlorophyll Gitelson and Merzlyak (1994)

MTCI MERIS Terrestrial Chlorophyll Index R754−R709
R709+R681

B6−B5
B5+B4 Chlorophyll, nitrogen Dash and Curran (2004)

PRI Photochemical Reflectance Index R570−R531
R570+R531

Radiation use efficiency, Gamon et al. (1992)
Carotenoid / chlorophyll

PSRI Plant Senescence Reflectance Index R680−R500
R750

B4−B3
B6 Carotenoid / chlorophyll Merzlyak et al. (1999)

NDWI Normalized Difference Water Index R860−R1240
R860+R1240

Tissue water content Gao (1996)

WBI Water Band Index R970−R900
R970+R900

Tissue water content Peñuelas et al. (1993)

The general model was lnGPP∼
n∑
j,1
vj , where v is veg-

etation indices (VIs) or optical bands (B) from Hyp group-
ing procedure or from simulated S2 or L8 data. The subset
of νj was selected by maximizing the adjusted R2 among
all possible combinations of predictors. The LEAPS proce-
dure returns an optimal model that we called L. However,
L may include variables which contribute only marginally
for the overall adjusted R2. To further reduce the dimension-
ality of the predictors, we test sub-models of L (obtained
by backwards stepwise selection of predictors) against the
LEAPS optimal model L. When sub-models of L were found
not to be significantly worse than L at a significance level
alpha= 0.05, we then considered the most parsimonious of
those sub-models as the optimal solution. A F test was used
to perform those comparisons. The analysis was repeated
separately for all vegetation indices (VIs) and bands (B) from
Hyp, S2 or L8 data, obtaining an optimal model for each sen-
sor. We performed an analysis of residuals for each selected
model, which showed no evidence of violation of the linear
model assumptions.

Besides determining the adjustedR2 for the optimal model
from the full sample, we applied a bootstrap procedure (N =
10 000 iterations) to estimate the distribution of the adjusted
R2 in the whole population (Ohtani, 2000). This allowed
us to estimate quantiles (25–75 %) for adjusted R2 and also
compare the adjusted R2 distributions among models. In par-
ticular, it permits an estimation of the probability that the
model A has a higher adjusted R2 than the alternative model
B.

Two-step models were also used to investigate whether
optical bands had the potential to improve models based
only on vegetation indices (VIs). Toward that end, bands (B)
were added to the optimal models obtained by the procedure
described above denoted by Hyp-VIs, S2-VIs and L8-VIs
(step 1). Using step 1 as the base model, we applied LEAPS
to determine the subset of bands that maximized the overall
adjusted R2. As before, we applied a F test (alpha= 0.05) to

possibly reduce the number of bands in the optimal model.
As a result, we defined the optimal two-step models: Hyp-
VIs+B, S2-VIs+B and L8-VIs+B. Finally, for Hyp, S2
and L8, we performed a F test to compare the one-step opti-
mal model with the correspondent two-step optimal model. A
low p value for this F test indicates that the two-step model
is significantly better and means that bands, in addition to
vegetation indices, contribute for an improved modelling of
GPP.

3 Results

3.1 Conditions during the experimental period

During the period of measurements, from 31 March
to 3 June 2016, the average daily PAR and tem-
perature increased progressively, ranging from 630 to
1000 µmol m−2 s−1 and from 9.6 to 17 ◦C, respectively
(Fig. 1a). Soil water content (SWC) (Fig. 1b) showed fluc-
tuations according to rainfall events, ranging from 0.05 to
0.2 m3 m−3. During the experimental period, rainfall was
concentrated in the first half of April and at the beginning
of May. Along the experimental period rainfall recorded was
195 mm, corresponding to the 33 % of the whole year.

3.2 The effect of fertilization on plant area index and
functional groups proportion

From the beginning to the end of the study period, PAI in-
creased on average 4-fold from 1 to 4 (Fig. 2a). In all treat-
ments, the increase in PAI was completed by 20 May and
no further increase was observed in the last measurement
(3 June). On the contrary, at the beginning of the experi-
ment, PAIgr (Fig. 2b) showed an increasing tendency sim-
ilar to PAI, but from 20 May onwards, the tendency changed
and a decrease was observed, corresponding to the onset of
grassland senescence.
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Figure 1. Daily average PAR, temperature (a), soil water content for
different treatments and total rainfall (b) recorded on the site during
the experimental period. Dates of field measurements are indicated
by vertical dashed-dotted lines.

The fertilization treatments influenced both the PAI (P <
0.000) and the PAIgr (P < 0.000), being both significantly
higher for treatments NPK and P than for treatment C (P <
0.001). No differences were observed between C and N treat-
ments (P > 0.05). In both PAI and PAIgr the treatment P
showed similar values to NPK, with the exception of the first
measurement day (1 April). The grassland communities fer-
tilized with NPK had a higher and earlier leaf area growth
when compared to the other treatments.

Plant species composition has been measured every year
since 2012 (pre-treatment) under an ongoing long-term nu-
trient addition experiment on this grassland site. In line with
results from that study (Carla Nogueira et al., personal com-
munication, 2017), the fertilization treatments influenced the
functional composition of grasslands (Table 3). In the NPK
treatment the percentage of graminoids was higher than in
any of the other treatments. P treatment showed a higher per-
centage of legumes and in the C and N treatments forbs were
the dominant functional group.

3.3 The effect of fertilization on GPP

The ability of grasslands to sequester atmospheric carbon
dioxide was not affected by fertilization treatments. The
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Figure 2. Average green plant area index (PAI) and the green frac-
tion of PAI (PAIgr) observed in grasslands subjected to different
fertilization treatments (C, N, NPK or P). Each point is the average
of six replicates. Vertical bars represent error bars.

Table 3. Percentage of each plant functional type (Forbs,
Graminoids and Legumes) in above-ground biomass of grasslands
under different fertilization treatments (C, N, NPK and P). Val-
ues represent means of six replicates; standard errors are shown in
parenthesis.

Treatment Forbs Grams Legumes

C 56.85 (5.10) 21.22 (3.62) 21.93 (4.20)
N 65.00 (1.89) 25.04 (2.53) 9.95 (1.45)
NPK 34.07 (3.43) 52.55 (3.29) 13.37 (1.03)
P 25.60 (3.06) 31.43 (4.47) 42.96 (3.82)

NEP (Fig. 3a) and the GPP (Fig. 3c) did not reveal any
statistically significant difference among treatments (P >
0.05). On the contrary, the rate of respiration (Fig. 3b, R)
was affected by the fertilization treatment (P < 0.05), be-
ing on average higher for treatments NPK and P than C.
CO2 gas exchanges were influenced by the grassland life
cycle and marked trends were observed along the measure-
ment period. NEP showed an average drop of 74 %, shift-
ing from 14.47 to 3.67 µmol m−2 s−1, from 1 April (day 1)
to 3 June (day 4) (P < 0.000). This decrease in NEP rate
was particularly evident from the second to the third mea-
surement day, after the annual peak of grassland growth was
achieved (Fig. 3a). R also showed differences along the ex-
perimental period (P < 0.000) but the observed trend was
different. R increased from the first to the second measure-
ment day, from 8.22 to 13.65 µmol m−2 s−1 and then de-
creased toward the end of the experiment (Fig. 3b). GPP also
changed significantly along the studied period (P < 0.000),
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Figure 3. Average net ecosystem productivity (NEP) (a), dark res-
piration (R) (b) and gross primary productivity (GPP) (c) measured
in grasslands under different fertilization regimes (C, N, NPK and
P). Each point is the average of 6 replicates. Vertical bars represent
standard errors.

decreasing from 25.72 µmol m−2 s−1 on 25 April (day 2) to
12.12 µmol m−2 s−1 on 3 June (day 4). A linear relationship
was observed between GPP and fPARgr (Fig. 4); however the
slope of the regression line changed along the experimental
period and marked differences were observed between the
vegetation growth (day 1 and 2) and the senescence phase
(day 3 and 4) (Fig. 4).

3.4 Vegetation reflectance

The reflectance of vegetation (Ref) varied on average be-
tween 0 and 0.4 (Fig. 5a). The cluster analysis created
25 bands (Fig. 5b) based on the Ref similarity of contiguous
wavelengths (r > 90 %). Bands were narrower in the visible
region (350 to 750 nm) than in the NIR (750 to 1350 nm)
and in the SWIR (1350 to 2300 nm) region. In particular, in
the red-edge region, between 698 and 732 nm six different
bands were identified, corresponding to a steep increase in
reflectance observed in this region of the spectra.

Table 4. Linear regressions established between lnGPP and vegeta-
tion indices (VI) selected for this study (see Table 2). Best regres-
sion is shown in bold.

Vegetation index R2 RMSE P

NDVI 0.6853 0.2364 0.0000
GNDVI 0.6360 0.2543 0.0000
NDVIre 0.6872 0.2357 0.0000
CI 0.7161 0.2246 0.0000
MTCI 0.6303 0.2563 0.0000
PRI 0.0209 0.4171 0.1715
PSRI 0.6745 0.2405 0.0000
NDWI 0.7205 0.2228 0.0000
WBI 0.6491 0.2497 0.0000

3.5 Vegetation indices

When adopting wave bands obtained by cluster analysis
(Fig. 5b) several vegetation indices were calculated (Table 2).
The average values of the indices GNDVI, NDWI, PSRI
and MTCI are shown in Fig. 5. Other indices are omitted
from the figure for showing very similar trends to the ones
represented (NDVI, NDVIre, WBI, CI) or not being signif-
icantly correlated with the response variable (PRI). All of
them showed larger changes during the study period, partic-
ularly after 25 April (day 2), when the annual peak of growth
was achieved.

The GNDVI (Fig. 6a) showed small changes among treat-
ments and dates, with a significant drop of 20 % observed
from 1 April to 3 June (P < 0.000), and significant differ-
ences in the NPK and P treatments (P < 0.001) compared
to C but differences were not evident anymore on 3 June
(day 4). The MTCI (Fig. 6b) showed a large drop that was
particularly evident after 25 April (day 2). At 1 April (day 1),
the effect of fertilization was evident in treatments NPK and
P compared to C (P < 0.001); however along the experimen-
tal period differences among treatments diminished and by
3 June (day 4) no differences among treatments were ob-
served. The NDWI (Fig. 6c) showed a similar temporal trend
with a marked decrease from 1 April to 3 June (P < 0.001).
Also, for MTCI, the NPK and P treatments always showed
higher values than C (P < 0.001), suggesting a positive im-
pact of the higher nutrient availability on tissue water con-
tent. The PSRI had an opposite trend, showing on average a
3-fold increase from 1 April to 3 June (P < 0.000) and a ten-
dency to lower values in fertilized treatments compared to C
(P < 0.001 for NPK and P and P < 0.01 for N).

Significant regressions were established between GPP and
all the vegetation indices considered (Table 4) with the ex-
ception of PRI. The NDWI was the index that explained the
higher proportion of variability of GPP.

Biogeosciences, 15, 5455–5471, 2018 www.biogeosciences.net/15/5455/2018/



S. Cerasoli et al.: GPP estimates in grasslands by optical sensors 5463

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●
●

0

5

10

15

20

25

30

0.00 0.25 0.50 0.75 1.00
fPARgr

G
PP

 (µ
m

ol
 m

−2
 s

−1
) ●

●

●

●

C

N

NPK

P

● Growth

Senescence

Figure 4. Relationship between GPP and fPARgr observed in grassland subjected to different fertilization treatment (C, N, NPK and P).
Measurements taken during the vegetation growth are indicated as circles (corresponding to measurement days 1 and 2), while those realized
during the senescence period are indicated as triangles (measurement days 3 and 4). Linear regression lines were fitted separately to the two
periods (GPP= 14.48 fPARgr+ 18.44, R2

= 0.39, P < 0.001 and GPP= 30.08 fPARgr+ 6.39, R2
= 0.65, P < 0.001, respectively for the

growth and the senescence period).

(a)

0.0

0.1

0.2

0.3

0.4

0.5

R
ef

(b)

350 500 650 800 950 1100 1250 1400 1550 1700 1850 2000 2150 2300
Wavelength (nm)

H
yp

Figure 5. Average reflectance values and standard deviation (grey
ribbon) observed in herbaceous plots undergoing different fertiliza-
tion treatments (a). The bottom picture (b) shows the bands ob-
tained by grouping Ref for similarity (r >= 90 %) of contiguous
hyperspectral measurements with 1 nm resolution in the range 350–
2300 nm; bands are alternately in black and white. Grey bars repre-
sent noisy regions of the spectrum not considered in the analysis.

3.6 GPP estimates by multiple linear regression models

The LEAPS procedure selected VIs or bands as predictor
variables that were retrieved from hyperspectral data (Hyp)
or simulating Sentinel-2 MSI (S2) and Landsat 8 OLI (L8)
sensors.

The Hyp and S2 models adopting only VIs as predictor
variables (Hyp-VIs and S2-VIs) performed similarly, with a
considerable overlap of adjusted R2 (Table 5). On the con-
trary, the L8-VIs model showed a lower performance (lower
adjusted R2) than Hyp-VIs and S2-VI models (Table 5).
Bootstrap results allowed us to conclude, at a confidence
level of 90 %, that Hyp-VIs have higher adjusted R2 than
L8-VIs.

The selection of VIs in the Hyp-VIs and S2-VIs models
exhibited a similar spectral pattern. Both models included
PSRI and GNDVI. On the contrary, NDVI, the most fre-
quently adopted index as green leaf area proxy was not in-
cluded in the Hyp-VIs model but only in the S2-VIs. Two
of the indices included in the Hyp model are related to wa-
ter balance (WBI) and water tissue content (NDWI). The S2
model also includes MTCI, which represents chlorophyll a
and N.

Models including only bands (-B) showed similar per-
formances to respective models employing vegetation in-
dices (-VIs). Only in the case of L8, where just one vegeta-
tion index (NDVI) was available, bands (L8-B) led to better
modelling of GPP than vegetation indices (L8-VIs). Simi-
lar spectral patterns were also observed in the selection of
bands for GPP estimate for all sensors (Hyp, S2, L8). A
common pattern is the inclusion of bands in the SWIR re-
gion that are strongly represented in the Hyp-B (R1951−2299,
R1209−1327, R1328−1349), S2-B (B11) and L8-B (B6 and B7)
models. The red-edge region of the spectra was also largely
represented in the Hyp-B (R724−732, R706−710, R702−705,
R698−701, R716−723) and S2-B (B5, B6 and B7), underlining
the importance of this region for vegetation reflectance.

The LEAPS two-step procedure allowed us to identify
bands with the potential to improve the VI-based models,
identifying regions of the spectra that are generally not
adopted in vegetation indices. For both S2 and L8 the two-
step model (VIs+B) significantly increased (P < 0.010) the
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Table 5. Best selection of linear models for a GPP estimate according to the general equation: lnGPPP∼
n∑
j,1
vj , where v is vegetation

indices (VIs) or optical bands (B). Bands and vegetation indices are obtained from hyperspectral measurements grouped in clusters with
90 % similarity (Hyp) or resampled for simulating Sentinel-2 MSI (S2) and Landsat 8 OLI (L8) sensors. Formulation of vegetation indices is
shown in Table 2. The order of the variables (most important first) reflects their importance in the model. The quantiles 25 % and 75 % of the
adj R2 are obtained from a bootstrap with 10 000 iterations. The two-step models add a selection of bands to the variables (VIs) selected at
step 1. A low p value indicates that the step 2 model, including VIs and bands (step 2) is significantly better the corresponding step 1 model.

Model Step one Adj R2 Adj R2 Adj R2 Step two Adj R2 Adj R2 Adj R2 p

Q-25 % Q-75 % Q-25 % Q-75 %

Hyp-VIs NDWI; PSRI; WBI; GNDVI 0.7659 0.7431 0.8047
S2-VIs MTCI; PSRI; GNDVI; NDVI 0.7426 0.7225 0.7822
L8-VIs NDVI 0.6792 0.6405 0.7194
Hyp-B R1951−2299; R724−732; R1328−1349; 0.7884 0.7906 0.8392

R706−710; R449−466; R566−582;
R519−532; R350−397; R398−411;
R1209−1327; R702−705; R698−701;
R716−723

S2-B B7; B11; B5; B2; B8; B6 0.7412 0.7222 0.7848
L8-B B7; B5; B6; B4; B3; B1 0.7557 0.7367 0.7974
Hyp-VIs+B NDWI; PSRI; WBI; GNDVI R698−701; R412−448; R716−723; 0.7986 0.8083 0.8550 0.0260

R467−518; R706−710; R449−466;
R350−397; R1209−1327; R1412−1505;
R1951−2299; R702−705; R724−732;
R1328−1349

S2-VIs+B MTCI; PSRI; GNDVI; NDVI B11; B3; B12 0.7684 0.7542 0.8104 0.0081
L8-VIs+B NDVI B6; B3; B7 0.7686 0.7472 0.8047 0.0000
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Figure 6. Average values of several vegetation indices retrieved
from reflectance measurements of herbaceous plots undergoing dif-
ferent fertilization treatments. Vertical bars represent standard er-
rors. Different letters indicate significant differences among treat-
ments within the same date (P < 0.05).

performance of the model, while for Hyp the difference be-
tween Hyp-VIs and Hyp-VIs+B model, in spite of still being
significant, is less marked (P < 0.05). The bootstrap proce-

dure indicated that the probability of the Hyp-VIs+B being
significantly better is 83 % when compared to S2-VIs+B and
81 % when compared to L8-VIs+B. On the contrary, the S2-
VIs+B and L8-VIs+B models do not differ significantly. In
all VIs+B models, bands in the SWIR region were included.
The second region of the spectra that was more represented
in the Hyp-B and Hyp-VIs+B model was the red edge.

4 Discussion

4.1 The impact of fertilization treatment

The fertilization treatment influenced the growth rate and the
composition of the herbaceous plots more than carbon se-
questration. In line with a 5-year ongoing study at the same
grassland site, the fertilization treatment resulted in differ-
ences in proportions of above-ground biomass and functional
groups for NPK and P treatments compared to C, while the
single addition of N had no effect.

An earlier growth response was also observed in the
NPK treatment. The higher percentage of graminoid species
with on average higher growth rates compared to most forb
species (Ansquer et al., 2009; Craine et al., 2001; West-
oby et al., 2002) could explain early differences in PAI and
PAIgr in this treatment. As leaf area is usually positively
related to GPP (e.g. Aires et al., 2008b; Xu and Baldoc-
chi, 2004), it would be expected that higher PAIgr in NPK
treatments would induce increased GPP. However, confound-
ing factors such as increased water demand associated with
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higher growth rates might have downscaled differences be-
tween treatments (e.g. Weisser et al., 2017).

The relationship GPP-fPARgr showed some differences
along the experiment. The slope of the regression line was
considerably lower during the vegetative growth than during
the senescence period (Fig. 4), revealing the occurrence of
marked changes in the effective LUE along the growth life
cycle and confirming previous results (Nestola et al., 2016;
Pérez-Priego et al., 2015a).

While the fertilization treatment had no impact on NEP
or GPP, a higher R rate was observed at the measurement
day 4 (3 June) in the NPK and P treatments. Differences can
be ascribed to the higher PAI, and precipitation at the end of
May, which must have stimulated soil respiration (Jarvis et
al., 2007; Reichstein et al., 2003).

4.2 Best VIs for GPP estimation

The LEAPS procedure selected several indices as significant
predictor variables for GPP in the Hyp-VIs and S2-VIs model
(Table 5). The vegetation indices selected in the Hyp-VIs and
S2-VIs models are known to represent different properties of
vegetation, specifically: the green fraction of the leaf area
(GNDVI and NDVI), the chlorophyll a and N concentration
(MTCI), the ratio carotenoids / chlorophyll (PSRI) and the
tissue water content (NDWI, WBI). Each of these traits has a
major role in GPP.

Among the vegetation indices selected in the multiple lin-
ear models, both the Hyp-VIs and the S2-VIs included PSRI
(Merzlyak et al., 1999), which is generally applied to de-
tect the occurrence of vegetation senescence. PSRI is able to
capture changes in the carotenoids / chlorophyll ratio occur-
ing during vegetation senescence since chlorophyll declines
more rapidly than carotenoids (Merzlyak et al., 1999). In
this study, PSRI increased in all treatments after 25 April,
when the maximum peak of growth (Fig. 2b) was achieved
and close to the onset of canopy drying out. Another index
known to be related to the carotenoids / chlorophyll ratio, the
PRI (Filella et al., 2009), showed no correlation with GPP in
our study. These results are in contrast with previous stud-
ies (Pérez-Priego et al., 2015a). However, a low performance
of PRI in representing the carotenoids / chlorophyll ratio has
been already observed in semi-arid grasslands (Vicca et al.,
2016). In crops, a good agreement between PRI and pigment
pools was observed at leaf level (Gitelson et al., 2017a) but
not at stand level (Gitelson et al., 2017b). Differences in the
last two studies were ascribed to changes in canopy struc-
ture (e.g. changes in leaf inclination angle) over the growing
season.

The Hyp model also gave evidence of the importance of
changes in canopy water content, as both NDWI (Gao, 1996)
and WBI (Peñuelas et al., 1997) were included in the model.
Considering changes observed in NDWI along the exper-
iment and the good correlation observed between NDWI
or WBI and GPP it is reasonable to assume that GPP is

largely affected by the progressive senescence of vegetation
(Balzarolo et al., 2015; Vescovo et al., 2012). In a previous
study, Vicca et al. (2016) found that NDWI was able to esti-
mate GPP in semi-arid grasslands better than other indices,
allowing the effect of drought to be distinguished.

Other indices that are sensitive to changes in chlorophyll a
concentration, MTCI (Dash and Curran, 2004) and GNDVI
(Gitelson and Merzlyak, 1998) were also included in the
model. The fertilization treatment resulted in an increase in
MTCI during the first stage of the experiment in the NPK and
P treatments, followed by a decrease observed in all treat-
ments as the season progressed toward the end of the annual
growth cycle. A similar trend was observed in a study by
Pérez-Priego et al. (2015a) in which Mediterranean grass-
lands were subjected to fertilization with N or NP. The pri-
mary role of chlorophyll in photosynthesis is well known and
justifies the positive relationship observed between GPP and
MTCI. However, in the present study, no differences were
observed in GPP among fertilized and non-fertilized treat-
ments, suggesting that the expected increase in photosynthe-
sis due to the increase in chlorophyll and nitrogen was con-
strained by other environmental and physiological factors.

Notably NDVI, the most frequently applied index in GPP
estimates by LUE models (Yuan et al., 2014) was not se-
lected in the Hyp-VIs model and showed a poorer coefficient
of determination than other indices (e.g. NDWI). NDVI is ex-
pected to reflect changes in green leaf area, being generally
linearly related to the fraction of photosynthetically absorbed
radiation (Myneni and Williams, 1994). However, previous
studies reported a saturation of NDVI and consequent lack
of linearity in the regression in highly productive vegetation
communities (Gianelle et al., 2009; Vescovo et al., 2012),
such as grasslands, and sometimes other indices showed a
better performance. For example, in grasslands subjected to
water and nutrient stress, the NDVI green index (GNDVI),
which adopts a green band instead of the red band of NDVI
and is hence more sensitive to chlorophyll a concentration
(Gitelson et al., 1996), showed a better performance than
NDVI as proxy of leaf area (Cristiano et al., 2010; Gianelle et
al., 2009). Also, in this study, the GNDVI explained a larger
proportion of GPP variance than NDVI in the Hyp-VIs and
S2-VIs models being selected in both and before NDVI in
the S2-VIs model.

The indices selected by the LEAPS (i.e. NDVI, GNDVI,
NDWI, MTCI, PSRI and WBI) also showed a highly signifi-
cant relationship with GPP (Table 4) in simple regressions,
explaining 63 % to 72 % of the variability observed. The
functional convergence (Ollinger, 2011) of different traits
participating in the photosynthetic process may have ham-
pered results observed in the regression for each single veg-
etation index, showing a high degree of correlation for most
of them (Table 4). However, the selection of several VIs, rep-
resentative of different structural and functional traits in the
multiple linear models and the lower performance observed
in the L8 model, including solely the NDVI index, clearly in-
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dicate the importance of considering the contribution of dif-
ferent traits with different temporal dynamics to capture GPP
temporal changes in models integrating vegetation indices.

4.3 Are spectral bands better GPP estimators
than VIs?

Our results suggest a marginal improvement in GPP esti-
mates obtained by adopting bands (Hyp-B, S2-B, Table 5)
instead of vegetation indices (Hyp-VIs, S2-VIs, Table 5).
However, a large impact was observed in the case of the L8-
VIs+B model when compared with the L8-VIs model which
included only NDVI (Table 5).

These results confirm previous studies comparing the ex-
planatory power of VIs and bands in grasslands (Balzarolo
et al., 2015; Matthes et al., 2015), also evidencing the impor-
tance of the selection of the proper spectral range and sug-
gesting that the selection of the proper band is equally impor-
tant to the mathematical formulation of vegetation indices for
the explanatory power of spectral retrievals. In our study, the
adopted approach assured a high correlation among wave-
lengths within a band maximizing their representativeness.

However, it cannot be disregarded that VIs offer, in com-
parison with spectral bands, the advantage of being more
robust in representing vegetation features, since differences
resulting from background reflectance, sun-sensor geometry
and atmospheric effects are mitigated by normalization of
spectral values (Glenn et al., 2008).

Our results also evidenced the importance of the SWIR
region of the spectra, as bands in this region were selected
in all one- and two-step models, which is rarely adopted in
vegetation indices with few exceptions. The SWIR region is
known to correlate with canopy water content (Casas et al.,
2014). Studies investigating the potential of spectral bands to
estimate canopy chlorophyll content and green fAPAR found
that the SWIR region was strongly positively correlated with
them in grasslands (Sakowska et al., 2016) and also GPP in
a semi-arid savanna (Tagesson et al., 2015).

Bands in the red-edge region were also largely represented
in the Hyp-B, S2-B and in the Hyp-VIs+B models. The red
edge corresponds to the steep increase in reflectance at the
boundary between the red region, where chlorophyll is ab-
sorbed, and the leaf scattering at the NIR region. Red-edge
bands were successfully employed to estimate chlorophyll
content in maize (Zhang and Zhou, 2017) and LAI in crops
(Kira et al., 2017). For these reasons they were integrated into
numerous VIs, such as MTCI and PSRI, which were also ap-
plied in this study. This explains the lack of red-edge bands
in the second step of the S2 model (S2-VIs+B) but strong
representation in the S2-B.

4.4 Satellite sensors as estimators of GPP

Differences in the selection of the vegetation indices among
sensors had apparently no effect on the performance of the

S2-VIs and Hyp-VIs models (Table 5), while the limited
number of available vegetation indices for the L8 resulted in
a lower performance of the model. Our results show that S2
and L8 spectral signatures are equally suitable for assessing
GPP.

GPP estimates obtained by simulating S2 and L8 sensors
showed similar performances in the -B and -VIs+B mod-
els, while when only VIs were adopted, the S2 model had
clearly a better performance than L8. These results suggest
a need for testing new vegetation indices adopting L8 bands.
In agreement with our results, other studies comparing lin-
ear additive models showed a similar ability in estimating
canopy cover and LAI adopting the S2 or L8 sensors (Ko-
rhonen et al., 2017).

An important difference between the S2 and L8 availabil-
ity of wavebands is the lack of reflectance values in the red-
edge region for L8, which limited the possibility of comput-
ing VIs, such as MTCI and PSRI (Korhonen et al., 2017).
However, the limitation imposed by the lack of bands in
the red-edge region, had apparently more importance for
the -VIs model, while differences in the performance of the
model between S2 and L8 decreased for -B and VIs+B mod-
els.

In this study, the S2 and L8 data comparison was based
only on the simulation of the respective bands and did not
take into consideration other factors that possibly affected
the spectral response of sensors such as sun-sensor viewing
geometry (Tagesson et al., 2015). Nonetheless, in a recent
study (Korhonen et al., 2017), the comparisons of satellite
data from the two platforms showed no differences between
S2 and L8 reflectance values in the NIR, SWIR1 and SWIR
2 bands. In other regions of the spectra, such as the green and
blue bands, reflectance values were considerably smaller in
the S2 than in the L8 but still proportional, suggesting that
comparisons between S2 and L8 simulated bands can largely
be representative of the actual differences obtained by the
two remote platforms.

Our results confirm the importance of performing hyper-
spectral measurements. Indeed, inferential bootstrap results
show that for the whole population, and with a probability of
80 %, the Hyp-VIs+B model is superior to the corresponding
S2 and L8 models. The high resolution and the wide range of
wave bands makes hyperspectral sensors unique in identify-
ing regions of the spectra that are of high interest for repre-
senting different vegetation properties (Porcar-Castell et al.,
2015).

5 Conclusions

In agreement with previous studies (Pérez-Priego et al.,
2015a; Rossini et al., 2012; Vicca et al., 2016), our re-
sults clearly indicate the need to integrate spectral informa-
tion into GPP models, representing both structural and func-
tional traits of vegetation along the whole grasslands life cy-
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cle. Specifically, water content (NDWI), chlorophyll (MTCI,
GNDVI) and the ratio of chlorophyll to carotenoids (PSRI)
were indicated as best predictor variables for GPP estimates.
Altogether these vegetation indices describe the loss of pho-
tosynthetic pigments and efficiency and drying out of vege-
tation, and when considered together they considerably im-
proved GPP estimates in comparison with models that only
adopt NDVI.

Our study also confirms the importance of hyperspectral
in situ measurements for an exploratory analysis of the rela-
tionship between biophysical and optical properties of vege-
tation, providing a wide spectral range and high resolution of
spectral retrievals.

The hyperspectral reflectance values, together with the
two-step procedure adopted for the selection of predictor
variables, also gave evidence to critical regions of the spectra,
which were not included in the initial selection of vegetation
indices but revealed their usefulness in estimating GPP. For
example, the LEAPS two-step procedure evidenced which
bands could significantly improve a -VIs model (step 1),
identifying the red edge and SWIR regions of the spectra to
be of major importance for improving GPP estimates. This
information can be critical in the development of new spec-
tral indices and sensors.

Our results also evidenced the potential of S2 and L8 sen-
sor in assessing GPP, since models obtained by simulating
bands from the two sensors showed similar performances.
The possibility of using remote-sensing information for mon-
itoring and modelling vegetation at a suitable spatial resolu-
tion, such as in the S2 and L8 sensors, allows for attempted
vegetation monitoring and modelling in a cost-effective way,
in support of sustainable agriculture management practices.
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