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Abstract. Land carbon fluxes, e.g., gross primary produc-
tion (GPP) and net biome production (NBP), are controlled
in part by the responses of terrestrial ecosystems to atmo-
spheric conditions near the Earth’s surface. The Coupled
Model Intercomparison Project Phase 6 (CMIP6) has re-
cently proposed increased spatial and temporal resolutions
for the surface CO2 concentrations used to calculate GPP,
and yet a comprehensive evaluation of the consequences of
this increased resolution for carbon cycle dynamics is miss-
ing. Here, using global offline simulations with a terrestrial
biosphere model, the sensitivity of terrestrial carbon cycle
fluxes to multiple facets of the spatiotemporal variability in
atmospheric CO2 is quantified. Globally, the spatial variabil-
ity in CO2 is found to increase the mean global GPP by a
maximum of 0.05 PgCyear−1, as more vegetated land areas
benefit from higher CO2 concentrations induced by the inter-
hemispheric gradient. The temporal variability in CO2, how-
ever, compensates for this increase, acting to reduce overall
global GPP; in particular, consideration of the diurnal vari-
ability in atmospheric CO2 reduces multi-year mean global
annual GPP by 0.5 PgCyear−1 and net land carbon uptake
by 0.1 PgCyear−1. The relative contributions of the differ-
ent facets of CO2 variability to GPP are found to vary re-
gionally and seasonally, with the seasonal variation in at-
mospheric CO2, for example, having a notable impact on
GPP in boreal regions during fall. Overall, in terms of esti-
mating global GPP, the magnitudes of the sensitivities found
here are minor, indicating that the common practice of apply-
ing spatially uniform and annually increasing CO2 (without
higher-frequency temporal variability) in offline studies is a

reasonable approach – the small errors induced by ignoring
CO2 variability are undoubtedly swamped by other uncer-
tainties in the offline calculations. Still, for certain regional-
and seasonal-scale GPP estimations, the proper treatment of
spatiotemporal CO2 variability appears important.

1 Introduction

Quantifying the sources and sinks of carbon at the land sur-
face is key to an accurate carbon balance and to the overall
assessment of where anthropogenically released fossilized
carbon ends up in the Earth system. While current estimates
suggest that the land absorbs the equivalent of about a quar-
ter of anthropogenic CO2 emissions (IPCC, 2014), the uncer-
tainty in the global carbon budget associated with terrestrial
ecosystem processes is large (Le Quéré et al., 2016). For ex-
ample, studies disagree on the partitioning of the land carbon
sink between the tropics and the extratropics. Some studies
consider tropical ecosystems to be carbon sinks (Stephens et
al., 2007; Lewis et al., 2009; Schimel et al., 2015) and oth-
ers consider them to be carbon sources (Baccini et al., 2017;
Houghton et al., 2018). A substantial interannual variability
is found in the tropical carbon balance, primarily in response
to climate-driven variations (Baker et al., 2006; Cleveland et
al., 2015; Fu et al., 2017); indeed, tropical ecosystems repre-
sent a large fraction of the uncertainty in estimates of the to-
tal land carbon sink and its future trajectory (Pan et al., 2011;
Wang et al., 2014). Carbon fluxes in boreal ecosystems also
remain highly uncertain and are likely to be strongly influ-
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enced by changes in climate and the length of growing sea-
son. Warming over northern lands may lead to an increase
in vegetation productivity (Xu et al., 2013) and to a greater
amplitude of seasonal CO2 exchange (Forkel et al., 2016)
via climate-induced changes in phenological seasonal cycles
(e.g., earlier vegetation “green-up”).

Because terrestrial carbon dynamics are greatly influenced
by atmospheric forcing (e.g., air temperature, precipitation,
radiation, humidity, CO2 concentration), quantifying the sen-
sitivity of surface carbon fluxes to variations in atmospheric
drivers is critical to obtaining accurate flux estimates. Such
quantification helps identify model processes and assump-
tions that are responsible for the uncertainty. It indeed pro-
motes essential understanding regarding what controls these
fluxes, understanding that should, in turn, lead to improved
models of terrestrial carbon processes. Only with accurate
models can we obtain reasonably accurate projections of cli-
mate under different emission scenarios.

While the impacts of some aspects of atmospheric vari-
ability, such as that of temperature and precipitation, on
global land carbon fluxes have been explored extensively
(e.g., Beer et al., 2010; Poulter et al., 2014; Ahlström et
al., 2015), the impact of atmospheric CO2 variability on the
fluxes is relatively understudied and is in fact generally ig-
nored in recent flux estimation exercises. In most land sur-
face model (LSM) or terrestrial biosphere model (TBM) sim-
ulations, the atmospheric CO2 applied is annually and/or spa-
tially uniform (e.g., TRENDY project; Sitch et al., 2015) or
allowed to vary only on a monthly and/or zonal basis (e.g.,
Multi-scale Terrestrial Model Intercomparison Project (MsT-
MIP); Huntzinger et al., 2013; Wei et al., 2014; Ito et al.,
2016). Potential time variations in the carbon fluxes associ-
ated with the diurnal and day-to-day variability, if monthly
CO2 is applied, and also with the seasonal variability, if an-
nual CO2 is applied, are not represented in these modeling
studies. Likewise, the regional flux response to spatial vari-
ations in CO2 is only partially represented with the latitudi-
nal CO2 driver and not at all with the spatially uniform CO2
driver.

Such simplifications neglect lessons from decades of in
situ measurements showing that CO2 concentrations vary
widely on different time and space scales. During the grow-
ing season, daytime (nighttime) CO2 at the canopy level can
be significantly smaller (larger) than the daily mean CO2 due
to the diurnal cycle of photosynthesis. Summertime measure-
ments, for example, at an 11 m tower in northern Wiscon-
sin indicate that the atmospheric CO2 concentration fluctu-
ates by approximately 70 ppm over the course of a day, from
350 ppm during the day to 420 ppm at night (Yi et al., 2000);
indeed, the day–night difference is comparable to the global
atmospheric CO2 growth of the last few decades (∼ 63 ppm
since 1980). In addition to large diurnal variations, many sta-
tions observe strong seasonal variations in CO2 concentra-
tions; for example, such variations are as large as 30 ppm

at the Hegyhátsál monitoring site in western Hungary (e.g.,
Haszpra et al., 2008).

Spatial variations in CO2 are also known to be signifi-
cant. Concentrations of CO2 contain large spatial gradients
with higher annual mean values found in the Northern Hemi-
sphere than in the Southern Hemisphere due to the higher
level of fossil fuel emissions (Tans et al., 1989). Higher an-
nual mean concentrations are evident over land masses, par-
ticularly those with large anthropogenic emissions. In addi-
tion, the covariance between flux processes and atmospheric
transport results in a phenomenon called the “rectifier ef-
fect” wherein substantial spatial variations are introduced
into simulated CO2 fields, even when an annually balanced
biosphere flux is assumed (Denning et al., 1995, 1999).

In light of such known variations, the Coupled Model In-
tercomparison Project (CMIP6) is now encouraging model-
ing groups to force their offline models with CO2 concentra-
tions that vary in space and time (Eyring et al., 2016). Osten-
sibly this makes sense, given that relevant datasets on tem-
poral and spatial CO2 variations are available for use (Mein-
shausen et al., 2017). Nevertheless, it seems appropriate at
the outset of such efforts to quantify the potential usefulness
of this added complexity. It is still arguably unknown how
much the uncertainty in estimated terrestrial carbon fluxes
will decrease through the explicit consideration of CO2 vari-
ations.

In a recent study, Liu et al. (2016) begin to address this
issue – they use a TBM to show that the explicit consider-
ation of the seasonal variation in CO2 in modeling studies
can lower the estimated terrestrial gross primary production
(GPP) by 0.4 PgCyear−1 globally, and they also show that
the consideration of the spatial variability in CO2 can in-
crease mean global GPP estimates by 2.1 PgCyear−1. There
are, however, additional facets of CO2 variability that are
worth exploring. In particular, diurnal variations in CO2 are
known to be large (e.g., ∼ 70 ppm in the central US and
∼ 50 ppm in central Europe), and it is worth determining if,
in ignoring these particular variations, process-based models
produce significant errors in carbon flux estimation.

In this paper we provide an analysis of carbon flux sen-
sitivity to spatial and temporal variations in atmospheric
CO2 that is duly comprehensive. We employ in this study
a particular process-based terrestrial biosphere model, the
Catchment-CN model of NASA’s Global Modeling and As-
similation Office (GMAO). We first evaluate the ability of
the model to reproduce observationally informed carbon flux
estimates. This evaluation includes a test of our model’s re-
sponse to artificially enriched CO2 – an imposed surplus of
200 ppm, mimicking the surplus applied in an established
field experiment. Then, in a carefully designed suite of sim-
ulation experiments, we quantify the sensitivity of monthly
simulated GPP and net biome production (NBP) to different
temporal and spatial scales of atmospheric CO2 variability.
The paper concludes with some discussion on the implica-
tions of the results for future carbon cycle research.
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2 Methods

2.1 Catchment-CN model

The NASA Catchment-CN model (Koster et al., 2014) is a
hybrid of two existing models: the NASA Catchment model
(Koster et al., 2000) and the NCAR Community Land Model
version 4 (CLM4) (Oleson et al., 2010). The hybrid utilizes
the code from the Catchment model that performs water and
energy budget calculations. The carbon and nitrogen dynam-
ics from CLM4 provides to the hybrid all of the carbon reser-
voir and carbon flux calculations as well as photosynthesis-
based estimates of canopy conductance for use in the Catch-
ment model’s energy balance equations. Unlike most land
surface models, the surface element for Catchment-CN is the
hydrological catchment (with a typical spatial dimension of
about 20 km); model equations further provide a separation
of each catchment into three separate dynamic hydrological
regimes, each with its own set of energy balance calculations.
There are 19 available plant functional types (PFTs) (Ta-
ble S1 in the Supplement), and up to four PFTs are allowed in
each of three static sub-areas loosely tied to the three hydro-
logical regimes. The model used a 10 min time step for the
energy and water balance calculations and a 90 min time step
for the carbon calculations. This model’s ability to capture
the observed sensitivity of phenological variables to mois-
ture variations was demonstrated in Koster et al. (2014).

The environmental variables (temperature, precipitation,
radiation, humidity, wind and atmospheric CO2 concentra-
tions) directly affect leaf photosynthesis (A) in Catchment-
CN (as in NCAR CLM4 (Oleson et al., 2010); see also
Farquhar et al. (1980) and Collatz et al. (1991) for the
C3 plant model, and Collatz et al. (1992) for the C4 plant
model), which is predicted to be the minimum value (Eq. 1)
of Rubisco-limited photosynthesis (ωc, Eq. 2), light-limited
photosynthesis (ωj , Eq. 3) and export-limited photosynthesis
(ωe, Eq. 4):

A=min
(
ωc,ωj , ωe

)
, (1)

ωc =


Vcmax(ci−0∗)

ci+Kc(1+ oi
Ko
)

for C3 plants

Vcmax for C4 plants
, (2)

ωj =


(ci −0∗)4.6φα
Ci + 20∗

for C3 plants

4.6φα for C4 plants
, (3)

ωe =

{
0.5Vcmax for C3 plants

4000Vcmax
ci

Patm
for C4 plants , (4)

where ci is the internal leaf CO2 partial pressure (Pa) and
oi is the O2 partial pressure (Pa). Kc and Ko are the
Michaelis–Menten parameters (Pa) for CO2 and O2, respec-
tively, and vary according to the leaf temperature. 0∗ is
the CO2 compensation point (Pa), α is quantum efficiency,
φ is absorbed photosynthetically active radiation (APAR)

(Wm−2), and Vcmax is the maximum rate of carboxylation
(µmolCO2 m−2 s−1), which varies according to the leaf tem-
perature, soil water and day length. Photosynthesis calcula-
tions of the type represented by Eqs. (1)–(4) are common in
process-based LSMs, including, for example, the Joint UK
Land Environment Simulator (JULES) model (Walters et al.,
2014) and the Organising Carbon and Hydrology In Dynamic
Ecosystems (ORCHIDEE) model (Krinner et al., 2005).

Leaf photosynthesis (µmolCO2 m−2 s−1; denoted as A)
can also be expressed in terms of the diffusion gradient and
stomatal conductance for CO2 among the ambient atmo-
sphere, the leaf surface and the internal leaf:

A=
ca− ci

(1.37rb+ 1.65rs)Patm

(between atmosphere and internal leaf) , (5a)

=
ca− cs

(1.37rb)Patm

(between atmosphere and leaf surface) , (5b)

=
cs− ci

(1.65 rs)Patm

(between leaf surface and internal leaf) , (5c)

where rb is boundary layer resistance and rs is leaf stom-
atal resistance (m2 sµmol−1), and where ca is the CO2 par-
tial pressure of ambient atmosphere and cs is the pressure at
leaf surface (note that Eq. 5a is a consequence of the others,
Eq. 5b and c).

Using the Ball–Berry model of stomatal conductance (Ball
et al., 1987; Collatz et al., 1991), rs is expressed as a function
ofA, cs and vapor pressures (es, the vapor pressure at the leaf
surface, and ei, the saturation vapor pressure inside the leaf):

1
rs
=m

A

cs

es

ei
Patm+ b, (6)

where m is a parameter dependent upon PFT (m= 5 for C4
grass, 6 for needleleaf trees, and 9 for all other types), and b is
the minimum stomatal conductance (20 000 µmolm−2 s−1).
Assuming the initial value of ci to be 0.7 ca (for C3 plants)
or 0.4 ca (for C4 plants), the Catchment-CN model simulta-
neously computes the leaf photosynthesis (A) from Eqs. (1)–
(4). This value of A is then used to estimate cs in Eq. (5b)
and rs in Eq. (6), as well as ci in Eq. (5c), which is inserted
back into Eqs. (2)–(4) for another calculation of A. The iter-
ation cycle proceeds three times to obtain the final value of
A. A grid-level GPP is tied directly to the computed photo-
synthesis by taking a tile-based (i.e., delineated catchment)
area-weighted average of A.

NBP is calculated as

NBP= GPP−Ra−Rh−F, (7)

where Ra is the autotrophic respiration (through plant
growth and maintenance), Rh is the heterotrophic respira-
tion (through litter and soil decomposition) and F is fire car-
bon flux. Positive (negative) NBP values mean that the land
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surface is a carbon sink (source). The respiration terms Ra
and Rh were calculated as in NCAR CLM4, except for a
modification to Rh, imposed here, that prohibits decompo-
sition if the soil water is frozen. With this modification, the
Catchment-CN’s NBP showed a better agreement with atmo-
spheric inversion estimates in the northern high-latitude re-
gions during December through February. The fire term (F )
is controlled by the amount of available fuel and the status
of soil moisture. Note that our study did not consider carbon
flux changes associated with land use (e.g., deforestation).

2.2 Datasets for model evaluation and comparison

Given that no direct measurements of GPP exist at the global
scale (Anav et al., 2015), we evaluate the GPP values pro-
duced in our control simulation against GPP estimates from
the data-derived FLUXNET Multi-Tree Ensemble (MTE)
GPP project (hereafter referred to as MTE-GPP) (https:
//www.bgc-jena.mpg.de/geodb/projects/Home.php, last ac-
cess: May 2013). This global-scale, monthly, gridded dataset
effectively consists of upscaled observations from the eddy-
covariance towers of the FLUXNET network; the upscaling
utilizes the the MTE approach with inputs of (i) meteoro-
logical data, (ii) the fraction of absorbed photosynthetically
active radiation (fPAR) derived from the Global Inventory
Modeling and Mapping Studies (GIMMS) normalized differ-
ence vegetation index (NDVI) and (iii) land cover informa-
tion (i.e., vegetation type) (Jung et al., 2009, 2011). The flux
partitioning method utilized was from Lasslop et al. (2010).
This dataset is widely used for performance evaluation of
TBMs including CLM (e.g., Bonan et al., 2011).

The net carbon fluxes (i.e., NBP) of the Catchment-CN
model were evaluated against estimates from three atmo-
spheric inversions: Monitoring Atmospheric Composition
and Climate (MACC) v14r2 (Chevallier et al., 2011; http:
//macc.copernicus-atmosphere.eu/, last access: June 2017),
CarbonTracker 2015 (Peters et al., 2007, with updates
documented at http://carbontracker.noaa.gov, last access:
August 2016) and Jena CarboScope v3.8 (Rödenbeck et
al., 2003; http://www.bgc-jena.mpg.de/CarboScope/, last ac-
cess: March 2017). The atmospheric inversion methods use
atmospheric CO2 concentration measurements in conjunc-
tion with an atmospheric transport model to provide a range
of estimates of net carbon fluxes between the atmosphere and
biosphere. The net carbon fluxes of the Catchment-CN model
were also compared with fluxes estimated by the diagnos-
tic Carnegie–Ames–Stanford Approach (CASA) Global Fire
Emission Database (GFED, version 3) (Ott et al., 2015; van
der Werf et al., 2010). CASA GFED3 is a widely used dataset
that is heavily constrained by satellite observations, includ-
ing GIMMS FPAR, as well as by MERRA-2 meteorology.
The mean NBP of the 11 years (2004–2014) overlapping our
control simulation were evaluated.

2.3 Experimental design

In all simulations examined in this study, the Catchment-
CN model is driven with atmospheric fields from NASA’s
Modern-Era Retrospective analysis for Research and Ap-
plications, version 2 (MERRA-2) reanalysis (Gelaro et
al., 2017, and also available at http://gmao.gsfc.nasa.gov/
reanalysis/MERRA-2/, last access: August 2015). Since
MERRA-2 fields are provided on a 0.5◦× 0.625◦ resolution
grid, the forcing values for a given Catchment-CN tile are
taken from the MERRA-2 grid cell whose center is closest
to the tile’s centroid. Precipitation forcing is the same as that
used in the production of the Soil Moisture Active Passive
(SMAP) level 4 product (Reichle et al., 2016); this precipi-
tation is scaled to agree with rain gauge observations where
available.

Our control case imposes a maximum level of CO2
variability. In the control simulation, the model is forced
with time-varying (at 3-hourly resolution) and spatially
varying (at 3◦ longitude× 2◦ latitude resolution) global
fields of CO2 concentration over the period 2001–
2014. The surface CO2 fields are extracted from the
NOAA CarbonTracker database (Peters et al., 2007) for
this period (CT2015, http://www.esrl.noaa.gov/gmd/ccgg/
carbontracker/molefractions.php, last access: August 2016).

We achieved reasonable initial land carbon states for 1 Jan-
uary 2001 using a two-step approach. First, starting with
carbon prognostic states already equilibrated over multiple
millennia with a somewhat different modeling–forcing com-
bination (including the use of present-day CO2 concentra-
tions), the Catchment-CN model was run for at least 2000
additional simulation years under a spatially and temporally
uniform CO2 concentration of 280 ppm to mimic the prein-
dustrial era (i.e., before 1850), with meteorological forcing
consisting of repeated cycles of the 1981–2015 MERRA-2
dataset. In the second step, the period from 1850 to 2000
was simulated using CO2 concentrations that varied diur-
nally, seasonally, and spatially and that grew linearly in time
to match the observed CO2 conditions (see below). The me-
teorological forcing applied during this time was also the cy-
cled 1981–2015 MERRA-2 forcing and thus was also not
tied to true year-specific forcing (except for within the final
1981–2000 period); such meteorological information is un-
available for the earlier part of the industrial period, and in
any case, the main point of the exercise was to allow the car-
bon reservoirs in the land surface to respond to the gradual
increase in CO2 concentrations. The resulting status of the
land ecosystem on 1 January 2001 was used as the initial
condition for the control simulation and for all experiments.

The CO2 concentration fields used during the 1850–2000
spin-up period were constructed as follows. First, the 3-
hourly, spatially varying CarbonTracker CO2 fields were av-
eraged over 2001–2014 and over each month into a clima-
tological 3-hourly diurnal cycle for each of the 12 months
of the year (i.e., 96 fields – eight 3-hourly fields for
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Figure 1. Schematic of the six simulations examined in this study, which were designed to isolate the impacts of the different facets’
spatiotemporal CO2 variability on simulated carbon fluxes. The CO2 concentrations were reconstructed from the NOAA CarbonTracker
3-hourly global CO2 data.

each month at each grid location). The 12 diurnal cycles
were then assigned to the middle of each month and lin-
ear interpolation to each day of year produced 365 cli-
matological diurnal cycles of CO2 concentration. We ap-
plied these daily diurnal cycles in each year of 1850–
2000 after scaling them with a year-specific scaling fac-
tor that forced the annual, global mean CO2 concentra-
tion to increase linearly in time from 280 ppm in 1850 to
311 ppm in 1950 and then from this value to 375.5 ppm in
2000 (to approximate the growth in CO2 seen in the his-
torical record; see http://www.eea.europa.eu/data-and-maps/
figures/atmospheric-concentration-of-co2-ppm-1, last ac-
cess: April 2016). All of the interpolation was performed
in the time dimension only; the global spatial variation con-
tained within the CarbonTracker data was retained.

The strategy behind our experiments is described in Fig. 1.
We performed a series of six experiments covering the period
2001–2014 (applying the same meteorology except for the
atmospheric CO2 concentrations and using the same 2001
initial conditions as the control), with each experiment re-
moving, in turn, one facet of the spatiotemporal variability in
atmospheric CO2 concentration. In the first experiment (re-
ferred to as dCO2), the 3-hourly CO2 diurnal cycle was av-
eraged into a single daily value at every tile, and these daily-
averaged values were then used to force the Catchment-CN
model. Comparing the results of this experiment to those of
the control thus illustrates the impact of ignoring diurnal CO2
variability on the modeled carbon fluxes. In the second exper-
iment (mCO2), day-to-day variability in CO2 was removed –
the daily CO2 concentrations used in dCO2 were averaged
into monthly values, which were then linearly interpolated
(as in the spin-up procedure) into a temporally smoothed ver-
sion of the daily fields. Note that through the interpolation,
the global average of CO2 is conserved in essence. In the
third experiment (maCO2), seasonality in CO2 was removed
– the annual average CO2 from CarbonTracker above a sur-
face element was applied to that element. Note that the an-
nual fields used for maCO2 still retain the spatial variability
in CO2 inherent in the CarbonTracker data; this spatial vari-
ability was removed in the fourth experiment (magCO2), in
which the globally uniform but yearly varying mean annual

CO2 fields were used. This experiment (magCO2) replicates
the commonly used CO2 forcing fields applied in many other
land modeling experiments. Finally, in the fifth and sixth ex-
periments, different facets of the interannual variability in
CO2 were removed. In the fifth experiment (magtCO2), year-
to-year variations in globally averaged CO2 were removed
while retaining the overall mean trend; this was achieved
by regressing the 14 annual mean values used in magCO2
against the year index and then using the resulting regres-
sion line to assign the annual values. In the sixth experiment
(cC02), the long-term trend was also removed by averag-
ing the 14 annual values into a single number – in cCO2,
a constant CO2 concentration (392.34 ppm) was applied ev-
erywhere, every 10 min.

All of our analyses were performed on tile-based fluxes.
This efficiently excludes coastal water and lake water im-
pacts and thus allows for an accurate estimation of the aggre-
gated land-based global carbon fluxes. We computed mean
global GPP by multiplying tile-based fluxes (in units of
gCm−2 s−1) by the associated tile area and then aggregat-
ing the areal totals over global land (excluding Greenland
and Antarctica). The mean global NBP was estimated in the
same way.

3 Results

We evaluate in Sect. 3.1 and 3.2 the ability of the control sim-
ulation to produce reasonable GPP and NBP fluxes, and we
examine in Sect. 3.3 the model’s initial response to CO2 en-
richment. With this overview of model performance in hand,
we analyze in Sect. 3.4 the results of the experiments outlined
in Fig. 1.

3.1 Evaluation of simulated GPP against the
MTE-GPP dataset

The spatial pattern of the mean annual GPP simulated by the
Catchment-CN in the control simulation (i.e., the case forced
with spatially varying, 3-hourly atmospheric CO2 fields) is
broadly consistent with the MTE-GPP data over the period
of 2002–2011 (Fig. 2a and b). The generally higher values
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Figure 2. Spatial patterns of 2002–2011 mean GPP
(g Cm−2 day−1) from (a) Catchment-CN GPP and (b) MTE-
GPP as well as (c) zonal mean GPP and (d) the annual cycle of
GPP (solid blue: Catchment-CN model; dotted black: MTE-GPP).

seen in the tropics for Catchment-CN are not surprising given
that higher values were also found for CLM4 (Bonan et al.,
2011), the parent model of Catchment-CN’s carbon code.
Also note that because the MTE-GPP dataset is more reliable
in regions with denser observations, and because measure-
ment stations in the tropics are limited, MTE-GPP estimates
in the tropics are subject to particular uncertainty (Anav et
al., 2015). Outside the tropics, the model produces higher
GPP values in southeastern China, southeastern Brazil and
the North American boreal region but slightly lower values
in western Europe. The zonal means of the simulated GPP
data and the MTE-GPP product in fact agree well (Fig. 2c),
though the seasonal mean of the simulated GPP is slightly
more evenly distributed over the year than the MTE-GPP
(Fig. 2d). The zonal means of the Catchment-CN GPP for
each season agree reasonably well with the MTE-GPP prod-
uct (Fig. S1 in the Supplement).

Averaged over the full simulation period (2001–2014),
the Catchment-CN model predicts a mean global GPP of
127.5 PgCyear−1. This value is essentially in the range,
though at the high end, of estimates from MTE-GPP: 119±
6 PgCyear−1 for the period 1982–2008 (Jung et al., 2011)
and 123 PgCyear−1 for the period 1998–2005 (Beer et al.,
2010). The Catchment-CN’s GPP estimate also lies within
the range of mean global GPP predicted by other process-
based LSMs or TBMs. CLM4, from which the Catchment-
CN model’s carbon modules were procured, produces an es-
timate of 165 PgCyear−1 (Bonan et al., 2011). We found
that the majority of GPP difference between the Catchment-
CN of this study and the original CLM4 is attributable to
the choice of meteorological forcing. A version of the CLM
model with revised treatments (which were adopted later
in CLM4.5) of canopy radiation, leaf photosynthesis, stom-
atal conductance and canopy scaling produces a value of
130 PgCyear−1 for the period of 1982–2004 (Bonan et al.,
2011). The JULES model (Slevin et al., 2017) produces a
value of 140 PgCyear−1 for 2001–2010.

3.2 Evaluation of simulated NBP against multiple
datasets

The mean global net carbon fluxes from our control simula-
tion were compared with the CASA GFED3 model estimates
(which, in fact, serve as a prior to CarbonTracker; Carbon-
Tracker Documentation CT2015 Release, 2016) as well as
against the three aforementioned atmospheric inversion es-
timates (MACC v14r2, CarbonTracker 2015 and Jena Car-
boScope v3.8). In Fig. 3, the phase of the climatological
NBP from the Catchment-CN model (solid blue) agrees well
with that of the inversions (dotted curves). These datasets
agree, for example, on the time during spring at which the
land shifts from being a carbon source to a carbon sink. The
CASA GFED3 model (solid red) shows a delay in the shift,
a feature noted in previous studies (e.g., Ott et al., 2015).
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Figure 3. Monthly mean of terrestrial NBP of the Catchment-CN
model (blue), of the CASA GFED3 model (red) and of three at-
mospheric inversions (dotted lines), for the period of 2004–2014.
Positive (negative) NBP values indicate that land is a carbon sink
(source).

The annual NBP from Catchment-CN
(+0.53 PgCyear−1) indicates that the land is a carbon
sink, though the value is smaller than the mean of the
sinks estimated by the three atmospheric inversions
(+3.2 PgCyear−1). The reason for the smaller value is
unclear; we note only that the sink strength produced by the
model reflects the net effect of a multitude of physical pro-
cesses (underlying GPP, respirations and fire) in the model,
processes that can interact with each other in complex ways.

The seasonal and zonal dependence of the Catchment-
CN NBP is, in any case, within the spread of the inversions
and the CASA GFED3 model (Fig. S2). The boreal summer
(JJA) global carbon sink of Catchment-CN is approximately
three-quarters of the inversion estimates (Fig. 3) and is rela-
tively weak in the northern boreal ecosystem (Fig. S2c). This
weaker summer global carbon sink is caused, in part, by the
underestimated summer GPP (Fig. 2d) and perhaps also by
the respiration values produced (Fig. S3). During December,
January and February, the model NBP agrees with the inver-
sions and the CASA GFED3 model estimates in the North-
ern Hemisphere, but it mostly follows the MACC v14r2 in-
version in the Southern Hemisphere tropics where the inver-
sions show disagreement in sign (Fig. S2a). The spring and
fall NBP values from Catchment-CN lie within the range of
the inversion estimates (MAM in Fig. S2b; SON in Fig. S2d).

3.3 Sensitivity of Catchment-CN fluxes to enrichment
of CO2

Our analysis in Sect. 3.4 will focus on how simulated GPP
responds to various facets of the spatiotemporal character of
the imposed atmospheric CO2 forcing. It is thus particularly
appropriate to evaluate the model’s sensitivity to CO2 varia-
tions.

The Large-Scale Free-air CO2 Enrichment (FACE) ex-
periments provide valuable data for such an evaluation. In
these experiments, CO2 is released into the air and ad-
vected by natural wind over the vegetation within experimen-
tal plots; the resulting CO2 concentrations were increased
by about 200 ppm above ambient conditions. Net primary
productivity (NPP) observations over the FACE plots were
compared to those over control plots with no CO2 increase
(e.g., Ainsworth and Long, 2004; Norby et al., 2005; Norby
and Zak, 2011). Here we focus on two particular temperate
forest FACE experiments: Duke FACE (35.58◦ N, 79.5◦W)
(Hendrey et al., 1999) and Oak Ridge National Laboratory
(ORNL) FACE (35.54◦ N, 84.20◦W) (Norby et al., 2001),
well-documented field experiments that have been used in
previous model–data comparison studies (e.g., Hickler et al.,
2008; Piao et al., 2013; Zaehle et al., 2014; Walker et al.,
2014).

To mimic these FACE experiments, we performed a sup-
plemental numerical experiment with the Catchment-CN
model (beyond the experiments outlined in Sect. 2.3): the
control simulation was repeated but with the atmospheric
CO2 forcing increased artificially by 200 ppm. In this supple-
mental experiment, the CO2 enrichment was applied globally
starting on 1 January 2001, though we focus here on the sim-
ulated increases in NPP (relative to the control simulation,
3hCO2) within the land elements containing the Duke and
ORNL FACE sites (i.e., the closest tile for each site). Because
the original CLM4’s NPP increase was found in a past study
(with a similar experiment) to be low after the first year of the
CO2 enrichment, presumably due to an insufficient supply of
mineralized nitrogen in the model for the plants’ increased
nitrogen demand associated with the CO2-induced increase
in the rate of photosynthesis (Zaehle et al., 2014), we eval-
uate here only the first year’s simulation of NPP. Note that
we started the CO2 enrichment in 2001, whereas the actual
FACE experiments began in earlier years (August 1996 for
Duke and April 1998 for ORNL).

In this CO2-enriched simulation, the Catchment-CN
model produces an 18 % increase in NPP during the first
year for the Duke site and a 15 % increase for the ORNL
site. These results are at the low end of the observations for
the Duke site (25± 9 %) and underestimate the observed re-
sponse at the ORNL site (25±1 %); the model does not cap-
ture the full sensitivity measured in the experiments. This
underestimation must be kept in mind when interpreting our
main results in the following section. For example, we forced
our model with MERRA-2 meteorology instead of the site
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Figure 4. (a) Change in mean global GPP (PgCmonth−1) due to removal of diurnal variability in atmospheric CO2 concentration (i.e., GPP
from the dCO2 experiment minus that from the control). (b) Map of time-averaged GPP changes as a percentage (%). The tile-based model
GPP values were aggregated to 2◦× 2.5◦ for visualization purposes.

meteorology, and we applied the CO2 stepwise increase in
different years compared to the FACE experiment. In any
case, our model results are still relevant to the interpreta-
tion and evaluation of the bottom-up estimates of GPP and
NBP based on a dynamic global vegetation model (DGVM)
found in the literature. For example, the average increase in
NPP across the 11 DGVMs participating in a similar exper-
iment was about 26 % (ranging from 9 % to 35 %) for the
Duke site and 20 % (ranging from 7 % to 30 %) for the ORNL
site (Zaehle et al., 2014; in their Fig. 5), somewhat similar to
the increases found with our model. We can infer, then, that
the sensitivities uncovered with our model experiments likely
also apply to other models, including those providing global
GPP and NBP estimates to the scientific community.

3.4 Global-scale sensitivity of carbon fluxes to imposed
CO2 variability

Here we present the results of the experiments outlined in
Fig. 1, with each facet of variability considered separately.

3.4.1 Diurnal variability in CO2 (dCO2–3hCO2)

Figure 4 compares the results of dCO2 to those of the con-
trol simulation, thereby revealing the impact of the CO2 di-
urnal cycle on simulated GPP and NBP. Figure 4a shows
the time series of global mean GPP differences (dCO2 mi-
nus control) over the 14-year period; removing the diurnal
variability clearly increases GPP, and the effect is particu-
larly large in boreal summer (0.07 PgCmonth−1, equivalent
to 0.8 PgCyear−1). Figure 4b shows that most of the in-
creases are in the tropics and in the far eastern areas of the
Northern Hemisphere continents. Almost no region shows a
decrease in GPP associated with the removal of the CO2 di-
urnal cycle. As indicated in Table 1, removing the CO2 diur-
nal cycle leads to an overall increase in global mean GPP of
0.497 PgCyear−1 and a change in the global mean NBP of
0.100 PgCyear−1.

The changes evident in Fig. 4 make sense in the context
of the daily variations in atmospheric CO2 noted in many
studies (e.g., Denning et al., 1995, 1999). In nature (and
as captured in the control simulation), the nighttime atmo-
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Table 1. Changes in mean global GPP and NBP for 2001–2014, resulting from a series of simulations representing the removal of temporal
and spatial variability in atmospheric CO2 concentrations. Delta (1) indicates the difference due to removal of spatial–temporal variability
(see Fig. 1 for description).

Case GPP NBP Missing variability 1GPP 1NBP
(PgCyear−1) (PgCyear−1) (PgCyear−1) (PgCyear−1)

3hCO2 127.545 0.527 – – –
dCO2 128.038 0.626 No diurnal variability (dCO2–3hCO2) 0.492 0.099
mCO2 128.040 0.627 No day-to-day variability (mCO2–dCO2) 0.003 0.001
maCO2 128.059 0.632 No seasonal variability (maCO2–mCO2) 0.019 0.005
magCO2 128.007 0.620 No spatial variability (magCO2–maCO2) −0.052 −0.012
magtCO2 128.004 0.618 No interannual variability (anomalies)

(magtCO2–magCO2)
−0.003 −0.002

cCO2 128.082 0.616 No interannual variability (trend) (cCO2–
magtCO2)

0.078 −0.002

spheric CO2 within the planetary boundary layer is higher
than the daily mean value due to the shutdown of photosyn-
thetic activity. Correspondingly, midday CO2 concentrations
are lower near the surface due to the plants’ photosynthetic
uptake of CO2. In experiment dCO2, applying the daily mean
CO2 concentration at all hours of the day has the effect of im-
posing a higher CO2 concentration during the daytime, when
photosynthesis occurs, and this has the effect of artificially
“fertilizing” the surface – the extra CO2 imposed during the
daytime makes photosynthesis more productive, increasing
GPP. The GPP change in the tropics accounts for about two-
thirds of the mean global GPP change, which is not surpris-
ing given the region’s high productivity over the whole year.

3.4.2 Day-to-day variability in CO2 (mCO2–dCO2)

The day-to-day variability in CO2, as influenced, for ex-
ample, by synoptic-scale weather and its impacts on atmo-
spheric transport, is removed in experiment mCO2 relative
to experiment dCO2. Table 1 indicates a negligible impact
of this modification on the simulated global GPP and NBP
compared to the impact of sub-daily CO2 variations. The im-
pacts on the temporal changes in the carbon fluxes and on the
spatial distribution of the fluxes are similarly minimal (not
shown).

3.4.3 Seasonal variability in CO2 (maCO2–mCO2)

The maCO2 experiment forces the land surface with yearly
averaged, but spatially varying, atmospheric CO2. The result-
ing increases in GPP (maCO2 minus mCO2) in Fig. 5a thus
reflect the impact of seasonal CO2 variations. By applying
the yearly averaged CO2 concentration all year long, vege-
tation outside of the tropics experiences higher CO2 concen-
trations during the spring and summer seasons, when photo-
synthesis is highest, than it would have otherwise; in nature
photosynthetic drawdown of atmospheric CO2 acts to reduce
warm season CO2 concentrations below the annual mean.
The artificial warm season fertilization of the vegetation in

the maCO2 case leads to an increase in growing season GPP
(Fig. 5a).

A comparison of Figs. 4 and 5 shows that the influence of
seasonal CO2 variations is smaller than that of diurnal vari-
ations, which is consistent with the fact that the amplitude
of the CO2 seasonal cycle is about 10–20 ppm while that of
the diurnal cycle is about 5 times larger (up to ∼ 120 ppm)
in boreal summer (Fig. S4). The response of GPP to the sea-
sonal variability in atmospheric CO2 is highest in the North-
ern Hemisphere high latitudes (Fig. 5b), for which the dis-
tinction between cold season and warm season photosynthe-
sis is largest. The regional- and seasonal-scale impact of this
variability is further discussed in Sect. 3.5.

3.4.4 Spatial variability in CO2 (magCO2–maCO2)

Figure 6 shows the impact of applying in experiment
magCO2 a globally uniform yearly averaged atmospheric
CO2 rather than a spatially varying distribution (e.g., with
the inter-hemisphere gradient). In contrast to the above im-
pacts of reducing temporal variability, the loss of spatial vari-
ability in atmospheric CO2 leads to a global GPP decrease
(Fig. 6a, showing results for magCO2 minus maCO2). This
decrease in fact tends to partially offset the global GPP in-
creases seen in the other experiments. Loss of spatial vari-
ability in CO2 results in an overall reduction in global mean
GPP of −0.052 PgCyear−1 and a change in the global mean
NBP of −0.012 PgCyear−1 (Table 1).

Notably, the sign of the GPP change associated with the
removal of CO2 spatial variability is not globally uniform
(Fig. 6b). In the absence of the large-scale inter-hemispheric
gradient (Fig. S5), the GPP change is mostly negative in the
densely vegetated areas of the Northern Hemisphere con-
tinents and positive in the Southern Hemisphere. GPP de-
creases are especially large in Europe, in the eastern US,
in eastern China, and in tropical regions (e.g., the southeast
Asia, Amazon and Congo rainforests), and these changes are
only partially compensated for by GPP increases in extrat-
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Figure 5. (a) Change in mean global GPP (PgCmonth−1) due to removal of seasonal variability in atmospheric CO2 concentration (i.e.,
GPP from the maCO2 experiment minus that from the mCO2 experiment). (b) Map of time-averaged GPP changes as a percentage (%).

ropical Southern Hemisphere land areas such as the South
American Atlantic forests and Cerrado. For densely vege-
tated areas, the pattern of the GPP change correlates well
with changes in the imposed atmospheric CO2 (Fig. S5); the
agreement is less evident in areas with sparse vegetation.

3.4.5 Interannual variability in CO2
(magtCO2–magCO2 and cCO2–magtCO2)

Finally, in experiments magtCO2 and cCO2, the interannual
variability in atmospheric CO2 is removed in a stepwise man-
ner. First, in magtCO2, year-to-year variations in CO2 are
removed while retaining the longer-term growth trend. This
causes little change in global mean GPP and NBP (Table 1).
The impacts on the temporal and spatial distribution of the
fluxes are also negligible (not shown).

Conversely, when the observed long-term trend in atmo-
spheric CO2 is also removed (cCO2), increases in the global
GPP are seen early in the simulation (2001–2008), and de-
creases are seen in the later part (2009–2014) (Fig. 7a, show-
ing results for cCO2 minus magtCO2). In Fig. 7b, the re-
moval of the long-term trend is seen to affect GPP mostly in

the tropics, leading to an additional change in global mean
GPP of 0.078 PgCyear−1 (Table 1). While this time-mean
change is smaller than that associated with neglecting diur-
nal variability, the differences at the beginning and end of the
period (1.4 PgCyear−1 between year 2001 and year 2014)
are comparable to, or even larger than, the diurnal variability
impact. These larger differences may have relevance to some
period-specific model-based GPP estimates in the literature.

3.5 Regional- and seasonal-scale sensitivity of carbon
fluxes to imposed CO2 variability

The Atmospheric Tracer Transport Model Intercomparison
Project (TransCom) 3 experiment (Gurney et al., 2000)
defined a number of land and ocean source–sink regions
of interest for the estimation of uncertainty in atmo-
spheric inversion-based carbon flux estimates. The 11 ter-
restrial regional boundaries shown in their basis function
map (http://transcom.project.asu.edu/transcom03_protocol_
basisMap.php, last access: November 2017) offer a conve-
nient framework for characterizing, in one place, the relative
impacts of the different facets of spatiotemporal CO2 vari-
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Figure 6. (a) Change in mean global GPP (PgCmonth−1) due to removal of spatial variability in atmospheric CO2 concentration (i.e., GPP
from the magCO2 experiment minus that from the maCO2 experiment). (b) Map of time-averaged GPP changes as a percentage (%).

ability on carbon fluxes and how the relative importance of
these different facets varies across the globe. Such a charac-
terization is presented here in the form of histograms (Fig. 8);
together, the histograms succinctly capture our regional and
seasonal findings.

Figure 8 shows, for example, that ignoring the diurnal vari-
ation in atmospheric CO2 results in the overestimation of
GPP in all seasons and in all TransCom regions except for
Australia, where it slightly reduces GPP and where the in-
fluence of the spatial CO2 variability is dominant. Spatial
CO2 variability is also found to partially compensate for diur-
nal variability in the Northern Hemisphere temperate regions
(North America and Eurasia; see Fig. 8b and h) and in North
Africa (Fig. 8e).

Seasonal CO2 variations are found to be particularly im-
portant in Northern Hemisphere high-latitude regions; during
fall, the GPP change induced by seasonal CO2 variations is
comparable to (and in the same direction as) that caused by
diurnal variations (Fig. 8a and g). Similarly, seasonal vari-
ations have an important impact on GPP in Europe during
fall (i.e., SON in Fig. 8k), presumably due to the presence
of mixed (boreal and temperate) forests there; this impact is

large enough to offset the fall GPP reduction induced by ig-
noring spatial CO2 variations (Fig. 8b and k). Day-to-day and
year-to-year variations in atmospheric CO2 have little impact
anywhere, reaffirming our global-scale analysis. The long-
term trend in CO2, however, has a relatively large percentage
impact in the two African regions (Fig. 8e and f) – ignoring
this trend in CO2 in these regions leads to increased GPP.
While diurnal CO2 variations are important for all seasons
across nearly all regions, the interplay among seasonal vari-
ations, spatial variations and long-term trends appears to be
crucial to certain seasonal and/or regional GPP estimations.

4 Discussion

Overall, our results indicate that ignoring temporal variabil-
ity in atmospheric CO2 in the bottom-up estimation of carbon
fluxes with a representative offline model can lead to overes-
timates of global GPP of up to 0.5 PgCyear−1 (see Table 1).
The corresponding estimates of the strength of the land car-
bon sink may be too high by about 0.1 PgCyear−1. The most
important facets of temporal CO2 variability are found to be
diurnal variability and the trend in interannual variability;
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Figure 7. (a) Change in mean global GPP (PgCmonth−1) due to removal of the trend in the interannual variability in atmospheric CO2
concentration (i.e., GPP from the cCO2 experiment minus that from the magtCO2 experiment). (b) Map of time-averaged GPP changes in
percent (%).

ignoring them contributes 0.5 and 0.08 PgCyear−1, respec-
tively, to the global GPP overestimate. Conversely, ignor-
ing spatial variability in atmospheric CO2 reduces the mean
global GPP by 0.05 PgCyear−1 (Table 1); that is, ignoring
this spatial variability contributes to an underestimation of
global GPP.

Liu et al. (2016) performed, in essence, a subset of the
experiments examined here. In agreement with our findings,
they show that the seasonal variation in CO2 lowers global
GPP and that the spatial variation in CO2 increases it. The
authors in fact suggest that ignoring spatial variability in
CO2 largely compensates for ignoring the temporal variabil-
ity, though they admit that the use of marine background
CO2 concentrations in their baseline simulation, which are
lower than the surface-layer CO2 values seen by plants, may
have exaggerated the spatial-variability-related GPP reduc-
tion. Our more comprehensive set of experiments allows us
to examine, in addition, the effects of diurnal and interan-
nual CO2 variability on global carbon fluxes, which turn
out to be more important than the effects of either seasonal
or spatial CO2 variability. Note that the neglect of diurnal

variability may partially explain the overestimate (relative to
observation-based datasets) noted in the literature regarding
tropical GPP simulated by CLM4 (Bonan et al., 2011). Also
note that because the Catchment-CN model underestimates
the response to CO2 fertilization seen in the FACE exper-
iments, the impact of diurnal variability at work in nature
could be somewhat larger than our estimate here.

Again, the overestimation of the global carbon sink asso-
ciated with ignoring the temporal variability in atmospheric
CO2 is 0.1 PgCyear−1 (Table 1). This, again, is a small devi-
ation relative to estimates of the overall land sink; Le Quéré
et al. (2016, their Fig. 2), for example, cite an estimate of
3.1 PgCyear−1 for this sink. This small sensitivity has rel-
evance to the ongoing CMIP6 project. Through our exper-
iments we quantify in effect the expected impacts of the
minimum requirement recommended by CMIP6 for histor-
ical simulations (Eyring et al., 2016), namely, that of glob-
ally uniform annual mean CO2 with interannual variations
and of the CMIP6 option of including latitudinal and sea-
sonal variations (Meinshausen et al., 2017). The small sen-
sitivities we uncover suggest that these recommendations,
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Figure 8. Regional- and seasonal-scale impacts of spatiotemporal CO2 variabilities on GPP. Incremental change in GPP associated with
each added facet of CO2 variability is shown as a percentage of the previous experiment’s regional GPP. The map in (l) shows the regional
boundaries of TransCom land regions (reconstructed from the basis function map in http://transcom.project.asu.edu/transcom03_protocol_
basisMap.php, last access: November 2017).

while not harmful, will nevertheless have little impact on the
global-scale fluxes produced in CMIP6. Note again that the
first approach, that of using globally uniform annual mean
CO2 with interannual variations, was effectively used in our
magCO2 experiment; as shown in Table 2 and Fig. S6a, the
global mean fluxes produced in our other experiments are in-

deed similar to those produced in magCO2. The land mod-
eling and carbon cycle community need not have been too
concerned over the years about the global impacts of CO2
variability finer than what has commonly been applied in past
studies (i.e., annually increasing transient CO2).
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Table 2. Differences in mean global GPP and NBP compared to the case that uses the most popular atmospheric CO2 forcing (magCO2).
The values are the global mean of 2001–2014.

Case GPP 1GPP to magCO2 NBP 1NBP to magCO2
(PgCyear−1) (PgCyear−1) (PgCyear−1) (PgCyear−1)

3hCO2 127.545 −0.461 0.527 −0.093
dCO2 128.038 0.031 0.626 0.007
mCO2 128.040 0.033 0.627 0.007
maCO2 128.059 0.052 0.632 0.012
magCO2 128.007 – 0.620 –
magtCO2 128.004 −0.003 0.618 −0.001
cCO2 128.082 0.075 0.616 −0.004

This, however, may be an overstatement. It is worth noting
that the bias of 0.1 PgCyear−1 associated with spatiotem-
poral CO2 variability is in fact a significant fraction of the
uncertainty in this value (listed by Le Quéré et al. (2016)
as ±0.9 PgCyear−1). Also, various model intercomparison
studies, e.g., CMIP6, TRENDY and MsTMIP, may need to
consider the full range of spatiotemporal CO2 variability
when estimating terrestrial productivity and net sink size on
regional and seasonal scales (Fig. 8), for which the impacts
can be larger. The growing-season NBP bias can be as large
as −6 % from our analysis (MAM in Fig. S7b), and the local
impact well exceeds the global impact (Fig. S6b). It is thus
sensible to impose, if at all possible, realistic CO2 variability
in carbon budget analyses.

Our results have some broader implications. They suggest
that the diurnal rectifier effect, the substantial CO2 covaria-
tions that are introduced with daily variations in photosynthe-
sis and boundary layer turbulence, in a DGVM-based NBP
may need to be considered in future atmospheric inversion
studies that use it as a prior, given that biases in the prior can
propagate into errors in the inversion products. Furthermore,
they suggest that if the land carbon component of an Earth
modeling system is not coupled to its atmospheric compo-
nent with a sub-daily time step (e.g., in a climate change
study), the bias can be carried into the evolution of regional
and seasonal land carbon dynamics, albeit the global effect
may be minor. Finally, our results indicate a negligible im-
pact of spatiotemporal CO2 variability on water cycle varia-
tions through their impacts on stomatal conductance and thus
evapotranspiration (not shown). The interaction between the
water and carbon cycles in this study is thus limited; more
careful analysis in a fully coupled modeling system, how-
ever, may reveal some interesting connections.

5 Conclusions

In summary, the key results from this study are as follows.

1. The carbon flux estimates of the Catchment-CN model
generally agree with other statistics-based and model-
based estimates. The GPP estimates from our control

simulation (which utilized the full complement of at-
mospheric CO2 variability contained within the Car-
bonTracker dataset) validate reasonably well with the
MTE-GPP dataset, a widely used product for model
evaluation, and our NBP estimates are also consistent
to the first order with results from the diagnostic CASA
GFED3 model (a bottom-up approach) and the atmo-
spheric inversions (a top-down approach). The agree-
ment supports our use of the Catchment-CN model in
the experiments outlined in Fig. 1.

2. Ignoring the various facets of temporal variability in
CO2 leads to increases in the mean global GPP sim-
ulated by the process-based model. The diurnal com-
ponent of the variability is particularly important; ig-
noring it increases the estimated mean global GPP by
0.5 PgCyear−1.

3. Ignoring the spatial variability in atmospheric CO2,
however, leads to a decrease in mean global GPP, with
decreases in the Northern Hemisphere and increases
in the Southern Hemisphere. The overall decrease of
0.05 PgCyear−1 is smaller than the increase associated
with ignoring temporal variability.

4. For estimating multiyear mean GPP, the effect of ne-
glecting interannual variations in atmospheric CO2 is
small. Ignoring the long-term trend, however, can have
important implications; the differences at the beginning
and end of the period (up to a 1.4 PgCyear−1 difference
between the year 2001 and the year 2014 in this study)
can be much greater than the effect of ignoring the diur-
nal CO2 variation.

5. The impacts of ignoring temporal and spatial variabil-
ity vary with region. The sensitivity in the tropics tends
to be the largest. The seasonal variability in atmospheric
CO2 plays a particularly important role in the NH boreal
regions during fall. Spatial variability in CO2 is impor-
tant in temperate regions, offsetting the local impacts of
temporal variability on GPP.
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6. The magnitude of the sensitivities found is small, partic-
ularly at the global scale. The proper imposition of re-
alistic CO2 variability in offline studies will incur only
slight modifications to the terrestrial carbon fluxes com-
puted. This said, the imposition of realistic CO2 vari-
ability is straightforward and could have more signifi-
cant impacts on quantified regional and seasonal fluxes.

The carbon flux estimation sensitivities highlighted herein
are, of course, model dependent. The sensitivities are sub-
ject to model-specific assumptions and parameters (see the
MsTMIP inter-model comparison study; Ito et al., 2016) and
to the selection of the meteorological inputs (Poulter et al.,
2011). Still, as noted in Sect. 3.3, the sensitivity of GPP to
CO2 increases in the Catchment-CN model is similar to that
in other state-of-the-art models, suggesting that the results
herein are broadly applicable and that DGVM-based esti-
mates in the literature of global GPP may be subject to the
noted biases, small as they are found to be here.
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