

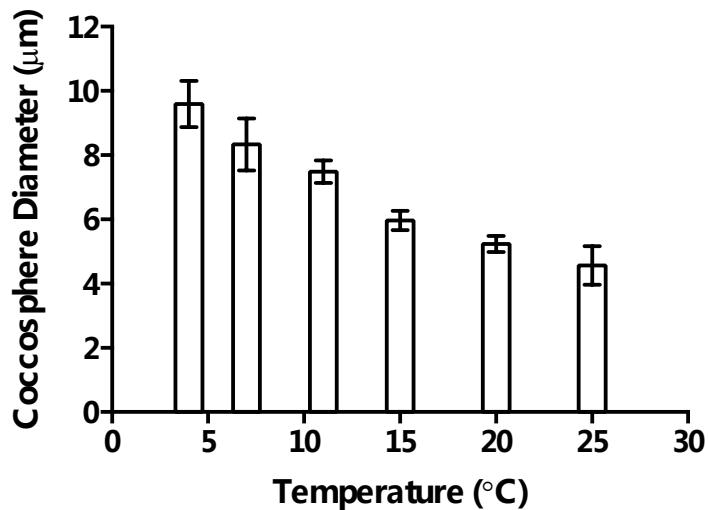
Supplement of

Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore *Emiliania huxleyi*

Yuanyuan Feng et al.

Correspondence to: Yuanyuan Feng (yfeng@tust.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.


Table S1. The fitted parameters and the goodness of fit (Burham and Anderson 1998) from the equation fittings of *Emiliania huxleyi* elemental composition vs. different environmental drivers.

Physiological metrics	Driver	Equation	Fitted parameters	Goodness of fit*
	Irradiance	$f(S) = Q_{max} \frac{S}{S + k + \frac{S^2}{K_{inh}}}$	$Q_{max} = 18.07$ $k = 18.67$ $K_{inh} = 1562$	$R^2 = 0.69$ $DF = 12$
Cellular POC	Temperature	$f(T) = (Q_0 - Q_c)e^{-kT} + Q_c$	$Q_0 = 51.76$ $Q_c = 7.21$ $k = 0.18$	$R^2 = 0.90$ $DF = 15$
	pCO_2	$f(S) = Q_{max} \frac{S}{S + K_m}$	$Q_{max} = 16.36$ $K_m = 44.86$	$R^2 = 0.36$ $DF = 15$
Cellular PIC	Temperature	$f(T) = (Q_0 - Q_c)e^{-kT} + Q_c$	$Q_0 = 206.9$ $Q_c = 6.94$ $k = 0.29$	$R^2 = 0.85$ $DF = 9$
	Irradiance	$f(S) = \frac{S + k + \frac{S^2}{K_{inh}}}{SR_{max}}$	$R_{max} = 1.49$ $k = 11.15$ $K_{inh} = 1753$	$R^2 = 0.74$ $DF = 13$
PIC:POC	Temperature	$f(T) = ae^{bT} \left[1 - \left(\frac{T - z}{w/2} \right)^2 \right]$	$a = 1.05$ $b \sim 0$ $z = 17.24$ $w = 38.95$	$R^2 = 0.38$ $DF = 14$
	pCO_2	$f(S) = (R_0 - R_c)e^{-kS} + R_c$	$R_0 = 2.07$ $R_c = 0.82$ $k = 0.01$	$R^2 = 0.74$ $DF = 12$
	Nitrate	$f(S) = Q_{max} \frac{S}{S + K_m}$	$Q_{max} = 2.23$ $K_m = 6.13$	$R^2 = 0.76$ $DF = 14$
Cellular PON	Temperature	$f(T) = (Q_0 - Q_c)e^{-kT} + Q_c$	$Q_0 = 5.79$ $Q_c = 1.07$ $k = 0.11$	$R^2 = 0.93$ $DF = 13$
	Nitrate	$f(S) = Q_{max} \frac{S}{S + K_m}$	$Q_{max} = 0.31$ $K_m = 2.46$	$R^2 = 0.64$ $DF = 16$
	Phosphate	$f(S) = Q_{max} \frac{S}{S + K_m}$	$Q_{max} = 0.36$ $K_m = 2.44$	$R^2 = 0.96$ $DF = 12$
Cellular POP	Temperature	$f(T) = (Q_0 - Q_c)e^{-kT} + Q_c$	$Q_0 = 2.29$ $Q_c = 0.20$ $k = 0.22$	$R^2 = 0.96$ $DF = 15$
	pCO_2	$f(S) = Q_{max} \frac{S}{S + K_m}$	$Q_{max} = 0.37;$ $K_m = 82.40$	$R^2 = 0.65$ $DF = 16$
	Nitrate	$f(S) = (R_0 - R_c)e^{-kT} + R_c$	$R_0 = 1312$ $R_c = 57.47$ $k = 0.34$	$R^2 = 0.95$ $DF = 13$
C:Chl- <i>a</i>	Phosphate	$f(R) = b - aR$	$a = 0.74;$ $b = 74.18$	$R^2 = 0.54$ $F (1,11)=13.10;$ $p<0.05$
	Irradiance	$f(R) = b - aR$	$a = -0.10;$ $b = 49.22$	$R^2 = 0.89$ $F (1,14)=108.1;$ $p<0.0001$

Physiological metrics	Driver	Equation	Fitted parameters	Goodness of fit*
Temperature		$f(T) = (R_0 - R_c)e^{-kT} + R_c$	$R_0 = 534$ $R_c = 51.89$ $k = 0.45$	$R^2 = 0.77$ $DF = 15$
	pCO_2	$f(S) = R_{max} \frac{S}{S + K_m}$	$R_{max} = 78.61$; $K_m = 50.21$	$R^2 = 0.48$ $DF = 15$

*Parameters representing the goodness of fit include R^2 (the correlation coefficient) and DF (degree of freedom) for the non-linear regressions; and R^2 , F value, and p value (F and p values test whether the slope is significantly different from zero, with a significant level when $p < 0.05$) for the linear regression.

5

10 **Figure S1. The coccospHERE diameter at the six temperature treatments from the temperature manipulation experiment (>30 cells measured for each treatment).**