Model	Assumptions	Analytical solutions	References
CIC: constant initial concentration	(1), $\Phi(t)/MAR(t) = Cte$	$C_m = C_0 \cdot e^{-\lambda t}$	Robbins (1978), Robbins and Edgington (1975)
CF–CS: constant flux: constant sedimentation	(1), (2), (3)	$C_m = C_0 \cdot e^{-\lambda m/\text{MAR}}; t = \frac{m}{\text{MAR}}$	Krishnaswamy et al. (1971)
CRS: constant rate of supply	(1), (2)	$I_m = I \cdot e^{-\lambda t}$; MAR = $\frac{\lambda I_m}{C_m}$	Appleby (2001), Appleby and Oldfield (1978)
CMZ-CS: complete mixing	(2), (3),	$C_m = C = \frac{\Phi}{\text{MAR} + \lambda m_a}, m \ge m_a$	Robbins and
zone with constant SAR	$k_{\rm m} = \infty, m \ge m_a$ $k_{\rm m} = 0, m < m_a$	$C_m = C \cdot e^{-\lambda (m - m_a)/MAR}, m < m_a$	Edgington (1975)
CF–CS: constant diffusion	$(2), (3), k_{\rm m} = \text{Cte}$	$C_m = \frac{\Phi}{\text{MAR} - k_{\text{m}}\beta} e^{-\beta m}; \beta = \frac{\text{MAR} - \sqrt{\text{MAR}^2 + 4\lambda k_{\text{m}}}}{2k_{\text{m}}}$	Laissaoui et al. (2008), Robbins (1978)
CF-CS: depth-dependent diffusion and/or translocational mix-	(2), (3), $k_{\rm m} = f_m$; may include local sources and	General numerical solution	Abril (2003), Abril and Gharbi (2012), Robbins
ing	sinks		(1986), Smith et al. (1986)
IMZ: incomplete mixing zone	(2), (3)	A linear combination of solutions for CF–CS and CMZ–CS with coefficients g and $(1-g)$, being $g\epsilon$	Abril et al. (1992)
		[0, 1]	
SIT: sediment isotope tomogra- phy	(1)	$C_m = C_0 \cdot e^{-B \cdot m}.$ $\cdot e^{\sum_{n=1}^{N} a_n \sin\left(\frac{n\pi m}{m_{\text{max}}}\right) + \sum_{n=1}^{N} b_n (1 - \cos)}$	Carroll and Lerche (2003)
NID-CSR: nonideal deposition, constant sedimentation	(1), (2), (3), fractioning of fluxes, depth distribu-	$C_m = C_1 \cdot e^{-\lambda m/\text{MAR}} + C_2 \cdot e^{-\alpha m};$ $C_2 = \frac{-\alpha g \Phi}{\alpha \text{MAR} - \lambda};$	Abril and Gharbi (2012)
rate	tion	$C_1 = \frac{(1-g)\Phi}{MAR} - C_2$	
CICCS: constant initial concen-	(1), (2)	MAR = $\lambda \frac{T - I_{\text{ref}}}{C_r}$; $I_{\text{ref}} = \text{local fallout }^{210}\text{Pb inven-}$	He and Walling (1996b)
tration and constant sedimenta- tion rate		tory; $C_r = \text{initial }^{210}\text{Pb}_{XS}$ in catchment-derived sediment	
IP-CRS: initial penetration,	(2), initial mobility of	$C_{i(z)} = A_i e^{\theta + (i)z} + B_i e^{\theta - (i)z};$	Olid et al. (2016)
constant rate of supply	210 Pb _{xs} downward; two compartments 0 to z_k and	from 0 to z_k $C_{i(z)} = A_i e^{\sigma + (i)z} + B_i e^{\sigma - (i)z} + \frac{F_i}{\lambda}; \text{ from } z_k \text{ to } \infty$	
	z_k to ∞	$F_{i} = \frac{f_{i}}{(z_{i} - z_{i-1})} \sum_{m=1}^{k} \int_{z_{m-1}}^{z_{m}} r_{m} C_{m} dz;$	
		*** =	
		$\sum f_i = 1$ See reference for constants	
TERESA: time estimates from	(1), $^{210}\text{Pb}_{xs}$ fluxes are	$C_1 = C_0 \cdot e^{-\lambda T_0} \cdot \frac{1 - e^{-\lambda \Delta T_1}}{\lambda \Delta T_1}$	Abril (2016), Botwe et
random entries of sediments and activities	governed by horizontal inputs, correlation with MAR	$C_m = C_0 \cdot e^{-\lambda \left(T_0 + \frac{\Delta_{m-1}}{\text{MAR}_{m-1}}\right)} \cdot \frac{1 - e^{-\lambda \Delta T_m}}{\lambda \Delta T_m}$	al. (2017)