

Supplement of

Riverine particulate C and N generated at the permafrost thaw front: case study of western Siberian rivers across a 1700 km latitudinal transect

Ivan V. Krickov et al.

Correspondence to: Oleg S. Pokrovsky (oleg.pokrovsky@get.omp.eu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

-			, , , egetation, nu	iologj ul			ingpo.			
No on map	Ν	Е	Description	Sarea, km²	runoff mm.yr	bogs, %	forest, %	lakes, %	PF, %	Type of permafrost
24	65°06'48.8"	77°47'58.8"	Tydylyakha	7.5	185	49.4	37.4	12.7	49	Discontinuous
2	56°43'15.0"	83°55'35.1"	Chybyr'	8.1	44.8	19.9	28.4	1.01	0	Absent
11	61°50'28.6"	70°50'28.2"	Vachinguriyagun	9.5	192	78.7	9.4	11.9	0	Isolated
13	62°37'08.4"	74°10'15.9"	Petriyagun	9.7	192	57.2	6.7	36.1	5	Isolated
21	64°32'07.9"	76°54'21.3"	Seryareyakha	15.2	186	61.2	19.4	19.4	60	Sporadic
19	64°09'06.4"	75°22'18.1"	Apoku-Yakha	18.8	186	75.5	12.8	11.7	38	Sporadic
14	62°33'39.8"	74°00'29.5"	Pintyr'yagun	33.5	192	61	0	39	8	Isolated
16	63°36'48.2"	74°35'28.6"	Khatytayakha	34.6	194	75.3	13.2	10.8	38	Sporadic
20	64°17'31.9"	75°44'33.4"	Etu-Yakha	71.6	186	23.4	71.5	1.96	23	Sporadic
31	67°09'24,81"	78°57'31,76"	Sambotoyakha	75.0	N.D.	26.3	0.45	2.3	71	Continuous
25	65°23'34.1"	77°45'46.7"	Ponie-yakha	78.9	185	66	17.7	16.3	70	Discontinuous
10	61°29'11.1"	74°09'42.9"	Vach-Yagun	98.9	192	77.9	17.2	1.7	0	Isolated
17	63°47'04.5"	75°37'06.8"	Lymbyd'yakha	115	194	59.3	6.1	34.6	30	Sporadic
6	58°40'46.5"	84°27'56.6"	Vyalovka	117	127	37	48.4	0.19	0	Absent
30	66°59'25,84"	79°22'30,02"	Malaya Kheyaha	137	N.D.	23.4	43.4	1.4	75	Continuous
15	63°22'01.6"	74°31'53.2"	Kamgayakha	175	194	23.7	76.2	0.1	12	Sporadic
3	57°36'43.3"	83°37'02.1"	Malyi Tatosh	302	63.4	7.89	66.9	0.09	0	Absent
28	65°59'14.7"	78°32'25.2"	Malaya Khadyr- Yakha	513	278	14.8	84.9	0.3	85	Discontinuous
32	67°10'54,8"	78°51'04,5"	Nuny-Yakha	656	312	24.3	37	3.05	72	Continuous
29	66°17'10.8"	79°15'06.1"	Ngarka Khadyta- Yakha	1970	277	22	76	2	50	Continuous
5	58°26'06.9"	82°05'43.6"	Shudelka	3460	211	68.2	31.8	0.0	0	Absent
26	65°41'51.1"	78°01'05.0"	Yamsovey	4030	309	53.7	38.7	7.5	54	Discontinuous
22	64°40'14.0"	77°05'27.2"	Purpe	5110	309	48	34	15	48	Sporadic
18	63°49'54.2"	75°22'47.1"	Pyakupur	9881	324	45	40	12	34	Sporadic
12	62°07'50.0"	73°44'05.6"	Tromyegan	10770	263	51.9	35.6	12.6	10	Isolated
23	64°55'55.1"	77°56'08.2 "	Aivasedapur	26100	309	40.1	45.5	14.4	20	Sporadic
9	58°04'20.8"	82°49'19.7"	Chaya	27622	291	46.9	42.5	10.6	5	Absent
4	61°26'13.6"	74°47'39.7"	Agan	27600	291	46.9	42.5	10.6	5	Isolated
8	60°55'41.0"	76°53'49.3"	Vakh	75090	298	35	61	4	5	Absent
27	65°57'05.5"	78°18'59.1"	Pur	112000	298	56.9	34.4	8.7	34	Discontinuous
33	67°22'13.28"	79°00'25.9"	Taz	150000	330	38	59	3	59	Continuous
1	59°03'45.5"	80°52'08.9"	Ob'	520000	N.D.	9	N.D.	N.D.	0	Absent
7	60°40'28.8"	77°31'29.4"	Ob'	773200	216	10	N.D.	N.D.	0	Absent

Table S1. The physico-geographical characteristics of the catchments as determined by digitalizing available soil, vegetation, lithology and geocryology maps.

PF is for permafrost, % of watershed coverage. Full dataset of measured parameters is available at the Research gate (DOI:10.13140/RG.2.2.36650.93121); https://www.researchgate.net/publication/325334684.

Table S2. Correlation matrix of watershed physico-geographical parameters and particulatenutrient concentration. All rivers, June and August and September. Marked (bold and red)Pearson correlations R > 0.28 are significant at p < 0.09. Lat and Permaf. are for Latitude (° N)and permafrost coverage of the watershed, %. The runoff is in mm y⁻¹ and bogs, forest and lakesrepresent the % coverage in the watershed

			Spring 2016					
		Lat	S, km²	runoff	Bogs	Forest	Lakes	Permaf
Ð	RSM, mg/l	0.87	0.91	0.67	0.12	0.62	0.79	-
) (N, %	-0.61	-0.38	-0.44	-0.33	-0.60	-0.12	-
l=8	C, %	-0.65	-0.47	-0.46	-0.34	-0.59	-0.23	-
() ()	% C _{RSM} of total C	0.44	0.49	0.53	-0.38	0.36	0.58	-
per	Р	-0.19	-0.37	-0.18	-0.28	0.51	-0.49	_
	% P _{RSM} of P total	0.95	0.88	0.87	0.03	0.62	0.80	-
	RSM, mg/l	0.55	-0.004	0.11	-0.39	0.19	-0.24	0.52
g st-	N, %	-0.55	-0.16	-0.53	0.66	-0.69	0.72	-0.50
ufro rinç 24	C, %	-0.55	-0.21	-0.56	0.66	-0.72	0.78	-0.48
N= N=	% C _{RSM} of total C	-0.29	-0.16	-0.38	0.47	-0.61	0.75	-0.25
b b	Р	-0.28	0.05	-0.13	0.33	-0.24	-0.10	-0.36
<u>~</u>	% P _{RSM} of P total	-0.24	-0.15	-0.44	0.34	-0.51	0.40	-0.27
		S	ummer 2016	5				-
Ø	RSM, mg/l	0.76	0.42	0.67	0.38	0.18	0.34	-
-free	N, %	-0.55	-0.27	-0.43	-0.53	-0.39	-0.01	-
ost. =8)	C, %	-0.81	-0.66	-0.76	-0.54	-0.41	-0.43	-
N= (N=	% C _{RSM} of total C	0.92	0.63	0.87	0.05	0.57	0.56	-
ern	Р	-0.54	-0.81	-0.57	-0.44	0.21	-0.82	-
ed	% PRSM of P total	0.53	0.01	0.52	0.20	0.41	-0.15	-
	RSM, mg/l	-0.43	-0.38	-0.40	0.55	-0.30	-0.05	-0.28
) g	N, %	-0.35	0.06	-0.10	0.60	-0.67	0.50	-0.41
rin 24	C, %	-0.53	-0.24	-0.61	0.63	-0.78	0.76	-0.52
N= N	% C _{RSM} of total C	-0.53	-0.45	-0.58	0.38	-0.26	0.20	-0.50
pei bei	Р	0.29	0.24	0.34	-0.24	0.32	-0.46	0.05
	% PRSM of P total	-0.27	-0.28	-0.16	0.35	-0.21	-0.17	-0.22
		A	utumn 2016	5				
Ø	RSM, mg/l	0.29	0.52	0.45	0.41	-0.01	0.40	-
-free	N, %	-0.13	0.20	-0.09	-0.39	-0.31	0.45	-
ost =8)	C, %	-0.51	-0.20	-0.43	-0.44	-0.47	0.08	-
S⊓⊒u	% C _{RSM} of total C	0.74	0.88	0.78	0.12	0.37	0.83	-
ern	Р	-0.45	-0.74	-0.46	0.01	-0.12	-0.88	-
4	% P _{RSM} of P total	0.29	0.52	0.45	0.41	-0.01	0.40	-
	RSM, mg/l	0.51	-0.12	0.09	-0.17	0.19	-0.34	0.61
ost- g	N, %	-0.55	0.17	-0.23	0.70	-0.64	0.60	-0.61
rin 24	C, %	-0.69	-0.18	-0.50	0.60	-0.66	0.78	-0.67
na N=	% C _{RSM} of total C	-0.16	-0.13	-0.21	0.12	-0.02	0.17	-0.12
pel bel	Р	0.17	0.05	0.28	-0.36	0.60	-0.36	0.26
% PRSM of P total -0.42 -0.23 -0.43 0.37 -0.29 0.32								
			All seasons					
ط ہ ۔ ۲	RSM, mg/l	0.41	0.35	0.37	0.14	0.36	0.27	

	N, %	-0.47	-0.25	-0.39	-0.53	-0.42	-0.03	-
	C, %	-0.61	-0.42	-0.51	-0.52	-0.55	-0.19	-
	% C _{RSM} of total C	0.62	0.58	0.64	-0.01	0.50	0.54	-
	Р	-0.25	-0.50	-0.20	0.24	-0.26	-0.56	-
	% PRSM of P total	0.48	0.32	0.56	0.33	0.31	0.20	-
	RSM, mg/l	0.18	-0.18	-0.09	0.03	0.01	-0.20	0.26
g (N, %	-0.44	0.01	-0.27	0.60	-0.62	0.55	-0.47
70	C, %	-0.57	-0.21	-0.54	0.60	-0.69	0.74	-0.54
N= a	% C _{RSM} of total C	-0.29	-0.23	-0.36	0.29	-0.25	0.32	-0.26
b b b	Р	0.12	0.11	0.19	-0.15	0.28	-0.32	0.03
_	% P _{RSM} of P total	-0.28	-0.21	-0.32	0.33	-0.31	0.15	-0.24

Correlation matrix of watershed physico-geographical parameters and particulate nutrient concentration. All rivers, all seasons, p<0.05

		Latitude	S, km²	runoff	Bogs	Forest	Lakes	Permaf
	RSM. mg/l	0.41	0.35	0.37	0.14	0.36	0.27	-
	N. %	-0.47	-0.25	-0.39	-0.53	-0.42	-0.03	-
ee	C. %	-0.61	-0.42	-0.51	-0.52	-0.55	-0.19	-
ost-fr	% C _{RSM} of total C	0.62	0.58	0.64	-0.01	0.50	0.54	-
nafı 24)	Р	-0.25	-0.50	-0.20	0.24	-0.26	-0.56	-
pern (N=2	% P _{RSM} of P total	0.48	0.32	0.56	0.33	0.31	0.20	-
	RSM. mg/l	0.18	-0.18	-0.09	0.03	0.01	-0.20	0.26
-	N. %	-0.44	0.01	-0.27	0.60	-0.62	0.55	-0.47
(02	C. %	-0.57	-0.21	-0.54	0.60	-0.69	0.74	-0.54
frost- g (N=	% C _{RSM} of total C	-0.29	-0.23	-0.36	0.29	-0.25	0.32	-0.26
nat	Р	0.12	0.11	0.19	-0.15	0.28	-0.32	0.03
perr bea	% P _{RSM} of P total	-0.28	-0.21	-0.32	0.33	-0.31	0.15	-0.24

Table S3. Compilation of statistical parameters for the differences in RSM, C, N and P concentration (N=32) among watersheds of different size (<100, 100-1000, 1000-50000, >50000 km²)

Season	Variable	Н	p-level
	RSM	-	-
Spring	С	10.98	0.0118
Spring	N	10.55	0.0145
	Р	-	-
	RSM	-	-
Summer	С	15,74	0.0013
Summer	N	-	-
	Р	-	-
	RSM	-	-
Autumn	С	11,02	0,0116
Autumn	N	10,72	0,0133
	Р	-	-

Table S3-A: Non-parametric H-criterion Kruskal Wallis for un-paired data, at p < 0.05

Table S3-B: Impact of the watershed area ($S_{watershed}$) on RSM and nutrient concentration. Mann-Whitney U test, statistically significant (at p < 0.05) differences are in bold red. (N=32)

L	Variable									
ate ed,			Spring	3		Summe	ſ	Autumn		
sh Kn		U	Z	p-level	U	Z	p-level	U	Z	p-level
	RSM, mg/l	20.0	- 1.415	0.1571	28.0	0.906	0.365	37.00	0.091	0.928
8	C, %	11.0	2.294	0.0218	10.0	2.537	0.011	12.00	2.355	0.019
0/1	N, %	10.0	2.391	0.0168	16.0	1.992	0.046	9.00	2.626	0.009
<pre><10</pre>	P,%	25.0	- 0.635	0.525	23.0	-1.359	0.174	32.00	-0.543	0.587
-000	RSM, mg/l	26.0	0.174	0.862	21.0	-1.059	0.290	22.50	-0.900	0.368
00/10	C, %	23.0	- 0.521	0.603	27.0	0.423	0.672	25.00	-0.635	0.525
00-1C 0000	N, %	22.0	- 0.637	0.524	24.0	-0.741	0.459	17.00	-1.481	0.138
1	P,%	26.0	0.174	0.862	31.0	0.0000	1.000	29.00	-0.212	0.832
>50	RSM, mg/l	8.00	- 1.683	0.092	21.0	0.133	0.894	22.50	-0.900	0.368
- 00	C, %	10.0	1.391	0.164	13.0	1.200	0.230	25.00	-0.635	0.525
0000	N, %	13.00	0.952	0.341	20.00	0.267	0.790	17.00	-1.482	0.138
οū-7	P,%	13.00	0.952	0.341	11.00	1.4667	0.1425	29.00	-0.212	0.832

Table S3-C. Non-parametric H-criterion Kruskal Wallis for un-paired data, at p < 0.05. Differencebetween parameters depending on type of permafrost (Absent, Isolated, Sporadic, Discontinuous,
Continuous)

Season	Variable	Н	p-level
	RSM	-	-
Spring	С	12.07	0.017
Spring	Ν	10.59	0.031
	Р	-	-
	RSM	15.81	0.0033
Summer	С	14.77	0.0052
Summer	Ν	11.33	0.0230
	Р	-	-
	RSM	18.28	0.0004
Autumn	С	10.68	0.014
Autumn	N	7.86	0.049
	Р	-	-

Table S3-D. Mann-Whitney U test of the difference in nutrient concentration between two adjacent permafrost zones. Statistically significant (at p < 0.05) differences are in bold red. (N=32)

	Variabl	Spring			Summ	er		Autumn		
	е	U	Z	p-level	U	Ζ	p-level	U	Z	p-level
frost/	RSM, mg/l	61.0	-1.266	0.205	63.5	1.414	0.157	22.0	-3.22	0.001
ent	C, %	82.0	-0.281	0.778	33.0	-2.74	0.006	48.0	-2.09	0.037
bs	N, %	81.0	-0.328	0.743	34.0	-2.70	0.007	68.0	-1.22	0.223
₽ ₹	P,%	70.0	0.683	0.495	71.0	1.088	0.277	61.0	1.52	0.128
v v	RSM, mg/l	19.0	-0.073	0.942	14.5	1.162	0.245	14.0	-1.226	0.220
ant	C, %	11.0	-1.244	0.213	4.0	-2.52	0.012	3.0	-2.647	0.008
pse	N, %	11.0	-1.244	0.213	2.0	-2.77	0.006	5.0	-2.388	0.017
A 2	P,%	20.0	0.452	0.651	13.0	1.356	0.175	11.0	1.614	0.107
s	RSM, mg/l	13.0	0.0	1.0	2.0	2.39	0.017	16.0	-1.221	0.222
	C, %	5.0	1.479	0.139	7.0	1.620	0.105	28.0	0.053	0.958
dic dic	N, %	6.0	1.294	0.196	10.0	1.157	0.247	23.0	-0.478	0.633
Spora Discol	P,%	6.5	1.697	0.090	18.0	- 0.077	0.939	18.0	-1.009	0.313
/sn	RSM, mg/l	6.0	-0.298	0.766	4.0	1.347	0.178	6.0	0.857	0.391
tinuo ious	C, %	5.0	0.596	0.551	9.0	- 0.122	0.903	3.0	1.592	0.111
tini	N, %	5.0	0.596	0.551	10.0	0.122	0.903	4.0	1.347	0.178
Disc Con	P,%	9.0	-0.122	0.903	4.0	- 1.347	0.178	3.0	1.592	0.111

Table S3-E. Mann-Whitney U test for the impact of bog coverage of the watershed on RSM and nutrient concentration, for < 10% and > 10% of lake coverage. Statistically significant (at p < 0.05) differences are in bold red. (N=30)

Variable	Spring				Summer		Autumn		
valiable	U	Z	p-level	U	Z	p-level	U	Z	p-level
RSM, mg/l	90.0	0.0	1.0	100.5	-0.863	0.388	103.5	-0.748	0.454
C, %	44.0	-2.22	0.026	30.0	-3.568	0.0004	24.0	-3.799	0.0001
N, %	44.0	-2.22	0.026	32.0	-3.492	0.0005	43.0	-3.070	0.0021
P,%	76.0	-0.386	0.700	63.0	2.302	0.0213	104.0	0.729	0.4660

Table S3-F. Mann-Whitney U test for the impact of bog coverage of the watershed on RSM and nutrient concentration, for < 50% and > 50% of bog coverage. Statistically significant (at p < 0.05) differences are in bold red (N=30)

	Spring				Summe	r	Autumn		
Variable	U	z	p-level	U	z	p-level	U	z	p-level
RSM, mg/l	83.0	0.904	0.366	93.5	-1.132	0.258	119.0	-0.153	0.878
C, %	58.0	-1.980	0.048	63.0	-2.30	0.021	71.0	-1.995	0.046
N, %	62.0	-1.808	0.0707	70.0	-2.03	0.042	68.0	-2.110	0.035
P,%	77.0	-0.967	0.334	94.0	1.11	0.266	97.0	0.998	0.318

Table S3-G. Mann-Whitney U test for the impact of bog coverage of the watershed on RSM and nutrient concentration, for < 30% and > 30% of forest coverage. Statistically significant (at p < 0.05) differences are in bold red. (N=30)

Variable	Spring				Summe	r	Autumn		
valiable	U	Z	p-level	U	Z	p-level	U	Z	p-level
RSM, mg/l	76.0	-0.443	0.658	87.0	0.550	0.582	68.0	-1.386	0.166
C, %	31.0	2.656	0.0079	11.0	3.893	0.0001	29.0	3.102	0.0019
N, %	33.0	2.558	0.0105	38.0	2.705	0.007	31.0	3.014	0.0026
P,%	80.0	0.0258	0.9795	57.0	-1.869	0.062	46.0	-2.354	0.0186

Table S4. Mean C:N values in soils and lake sediments of WSL river watersheds.

Site	Mean ± SD
Cryosols in Tazovsky, south tundra, mineral soils	14.0±7.0
Cryic Histosols, polygonal southern tundra in Tazovsky, (СкТz15)	24.3±5.7
Cryic Histosols, polygonal southern tundra in Tazovsky (CkTz14-2)	28.4±10.7
Cryic Histosols, depression over permafrost, southern tundra (CkTz14-3)	39.5±20.1
Soil of recently drained lakes, south tundra, Tazovsky, 2016	22.4±3.0
Sediments of thermokarst lake in Tazovsky, continuous permafrost	27.3±8.1
Fluvisols in Taz River flood zone, south tundra, continuous permafrost	14.9±2.2
Cryic Histosols, frozen mound in Pangody, forest-tundra (СкР15)	50.0±16.3
Thermokarst lake sediment Pangody, August 2015	27.7±7.3
Cryic Histosols, frozen mound in northern taiga Khanymey (X17-9)	43.6±19.6
Cryic Histosols, frozen mound in northern taiga Khanymey (X14-4)	57.1±16.8
Albic Alisol, light color soil, Khanymey, northern taiga Khanymey	13.0±6.4
Thermokarst lake sediment Khanymey, August 2015	24.0±3.0
Histosols, bog, ridge, northern taiga, Kogalym, sporadic perm. (Kg16-1)	65.4±21.1
Thermokarst lake sediment Kogalym, August 2015	26.8±2.5
Histosols, bog, depression, middle taiga (Stepanova et al., 2015)	36.3±18.8
Histosols, bog, ridge, middle taiga (Stepanova et al., 2015)	79.4±25.5
Fluvisols in floodzone of the Ob River, southern taiga, Kaibasovo, 2017	11.0±1.4

Fig. S1. Effect of watershed size (**A**), latitude (**B**), permafrost coverage (**C**) and box-plot of permafrost type (**D**) on RSM concentration in WSL rivers.

Fig. S2. Latitudinal dependences of C (**A**), N (**B**) and P (**C**) concentrations in RSM. A maximum in C concentrations is observed at 62-64°N, of the isolated to sporadic permafrost zone, where the maximal thawing of permafrost occurs (**A**). C (**D**), N (**E**) and P (**F**) concentration in RMS of WSL rivers as a function of permafrost coverage of the watershed. There is a general decrease of C and N concentration with an increase in permafrost coverage, consistent with maximal nutrient concentration at the beginning of permafrost appearance.

Fig. S3. N (A-C) and P (D-F) concentration in RSM (mass %) of WSL rivers as a function of lakes (A, D), bogs (B, E) and forest (C, F) coverage of the watershed during different seasons.

Fig. S4. Seasonally-resolved export fluxes of particulate C, N, P and RSM from WSL rivers during spring (May and June), summer (July and August) and autumn (September and October) for permafrost-free region and 4 distinct permafrost zones.

Fig. S5. C:N in peat profile across the latitudinal transect of WSL, corresponding to four main regions (permafrost-free region of Ob, southern taiga; isolated/sporadic permafrost at Kogalym; discontinuous permafrost at Khanymey and continuous permafros at Tazovsky). Authors' unpublished data.