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Text S1
Simulation of Asian dust

When dust travels over the Asian continent through the atmosphere, it can experience mixing and deposition, as well as undergo
chemical reactions (Formenti et al., 2011). The Asian continent suffers from air pollution to varying extents, with dynamically
changing emissions of anthropogenic pollutants such as NOx, SO, and NH3 (Kim et al., 2014). The aging processes, i.e., the
reactions of dust aerosols with anthropogenic pollutants, result in the Asian dust carrying a large amount of nutrients and
bioavailable trace metals, prior to its deposition in the oceans. In this study, the aging process of dust followed Guieu’s (2010)
method and aimed at stimulating the cloud reaction between dust and synthetic evaporating cloud water. The pH around dust
in the cloud process (i.e. mix with evaporating cloud water) was found to be as low as ~1 during their transport to the Yellow
Sea (Meskhidze et al., 2003), whereas the typical pH in rainwater is 5 (Watanabe et al. 2001, Sasakawa and Uematsu, 2002,
Wang et al. 2002, Sakihama et al. 2008, Zhang et al. 2011), meaning that a dilution by a factor of 10e*. In consequent, in order
to reproduce an evaporating cloud, we have used a concentration that is 10 000-fold larger in our experiments than the typical
concentrations found in rainwater. Considering the typical concentrations of dust in rainwaters was 10 mg L (Ridame et al.,
2002), the dust loading in evaporating cloud water could reach 100 g L. As a consequence, all of the concentrations in
evaporating cloud water were around 10000-fold larger (i.e. 4 orders of magnitude larger) than those in natural rainwater. Table
S1 summarized the primary chemical composition of rains in the Eastern Asian regions and the evaporating cloud water used
for our simulation. As the uptake of organic acidic gases during transport is complicated for Asian dust, we did not add oxalic
acid, which was used for simulating the Saharan dust by Guieu et al. (2010), to simplify the reaction of dust surface and

emphasize the importance of inorganic acids (H.SO. and HNQ3) (Fan et al., 2006; Formenti et al., 2011; Shi et al., 2012).
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55 Table S1. Primary chemical composition of the rains in the eastern Asian region and the simulated eastern Asian

cloud water.
NOs SO4*
pH
(M) (M)
Reference eastern Asian rains™ 3.89-7.61 10 10°
Simulated cloud water 1** 101 10

*Sasakawa and Uematsu, 2002; Watanabe et al. 2001; Zhang et al. 2011; Sakihama et al. 2008; Wang et al. 2002.
** Meskhidze et al., 2003.



Table S2. Recovery yield, accuracy, and detection limit for trace metal analysis

Metal Detection limit (ug L1)* Recovery (%) RSD (%)**
Zn 0.012 90.6 3.17
Cu 0.226 95.2 2.09
Cd 0.016 88.5 0.87
Pb 0.019 93.2 2.93
Co 0.017 97.9 0.24
Fe 3.738 95.4 3.88
Mn 0.056 90.9 4.48

* Detection limit was calculated as three times the standard deviation of the blank.

** RSD means ‘Relative Standard Deviation’.
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65 Figure S1. Changes in Chl a during the incubation experiments at each station. The successive increase during the

incubation period in this study is identified by the dotted line.
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Figure S2. The relationship between the consumed N:P ratio (Cn:p) and supply N:P ratio (Sn:p) in the control and the
70 various nutrient treatments during the successive increase in the incubation period at each station



