

Supplement of

Differential response of carbon cycling to long-term nutrient input and altered hydrological conditions in a continental Canadian peatland

Sina Berger et al.

Correspondence to: Sina Berger (gefleckterschierling@gmx.de) and Klaus-Holger Knorr (kh.knorr@uni-muenster.de)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Figure S1: View of the study sites 1-4 of the Wylde Lake peatland.

Table S2: Formulas to calculate indices for organic matter quality.

index	formula	reference							
UV-vis data									
SUVA ₂₅₄ [I m ⁻¹ mg ⁻¹]	$\frac{1}{1} absorption at 254 \text{ nm } * \text{UV} - \text{vis dilution factor}} \\ \frac{1}{1} \text{ cuvette length [m] } \text{ * DOC concentration [mg l - 1] } \text{ * DOC dilution factor}} \\ \frac{1}{1} \text{ * DOC dilution factor} \\ \frac{1}{$	(Weishaar et al. 2003)							
E2:E3	absorption at 250 nm absorption at 365 nm	(Peuravuori and Pihlaja 1997)							
fluorescence data									
	$\Sigma \text{ em } 435 \text{ nm} \rightarrow \text{ em } 480 \text{ nm } \text{ at ex } 254 \text{ nm}$	(Ohno 2002)							

NEP vs.:	<u>R</u> eco	<u>GPP</u>	<u>CH4</u>	<u>CH4 conc.</u>						DIC conc.	-	-	-	-	55	<u>wtd</u>	<u>Twater</u>
				5 cm	15 cm	25 cm	35 cm	45 cm	55 cm	5 cm	15 cm	25 cm	35 cm	45 cm	cm		
Site 1	n.s	n.s	n.s.	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s
Site 2	n.s	n.s	n.s.	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	0.20 (0.043) +
Site 3	n.s	n.s	0.20 (0.025)	n.s	n.s	0.23 (0.024)	0.17 (0.049)	0.27 (0.016)	0.15 (0.065)	n.s	n.s	n.s	n.s	n.s	n.s	0.53 (0.002)	0.62 (<0.001) +
Site 4	n.s	n.s	n.s.	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	n.s	0.13 (0.091)	0.23 (0.036) +

Table S3: Correlation coefficients (R ²) and p-values for NEP, R _{eco} , GPP, CH ₄ flux, T _{water} , wtd and DIC and CH ₄ concentrations in 5, 15, 25, 35, 45 and 55 cm soil depth. P-values
< 0.05 indicate a statistically significant correlation. "+" and "-" indicate the direction of the correlation.

R _{eco} vs.:	<u>GPP</u>	<u>R_{eco}</u>	<u>CH₄ conc.</u>						DIC conc.	-	-	-	-	55	wtd	Twater
			5 cm	15 cm	25 cm	35 cm	45 cm	55 cm	5 cm	15 cm	25 cm	35 cm	45 cm	cm		
Site 1	n.s	0.69 (<0.001)	0.57 (0.002)	0.66 (<0.001)	n.s	0.47 (0.006)	0.70 (<0.001)	n.s	0.41 (0.011)	n.s	n.s	n.s	n.s	n.s	0.60 (0.001)	0.47 (0.006)
Site 2	n.s	+ 0.41 (<0.001)	- n.s	- n.s	n.s	- 0.16 (0.057)	- 0.26 (0.017)	0.35 (0.006)	- n.s	n.s	n.s	n.s	n.s	n.s	- 0.70 (<0.001)	+ 0.43 (0.002)
Site 3	n.s	+ 0.60 (<0.001)	n.s	n.s	0.32 (0.009)	- 0.44 (0.002)	- 0.56 (<0.001)	- 0.42 (0.002)	n.s	n.s	n.s	n.s	n.s	n.s	- 0.74 (<0.001)	+ 0.37 (0.012)
Site 4	n.s	+ 0.43 (0.001)	n.s	0.28 (0.021)	- 0.47 (0.002)	n.s	- n.s	n.s	n.s	0.31 (0.016)	0.58 (<0.001)	0.47 (0.002)	0.26 (0.027)	n.s	- 0.21 (0.043)	+ 0.60 (0.001)
		+		+	+					+	+	+	+		-	+

GPP vs.:	<u>CH</u> 4	<u>CH₄ conc.</u>						DIC conc.	-	-	-	-	55	<u>wtd</u>	Twater
		5 cm	15 cm	25 cm	35 cm	45 cm	55 cm	5 cm	15 cm	25 cm	35 cm	45 cm	cm		
		0.66	0.84												0.43
Site 1	0.7 (0.006)	(<0.001)	(<0.001)	0.22 (0.061)	0.39 (0.013)	0.40 (0.012)	n.s	n.s	n.s	n.s	n.s	n.s	n.s	0.50 (0.004)	(0.009)
	-	-	-	-	-	-								-	+
	0.36													0.58	0.52
Site 2	(0.001)	n.s	0.14 (0.071)	n.s	0.16 (0.057)	0.22 (0.028)	0.26 (0.017)	n.s	n.s	n.s	n.s	n.s	n.s	(<0.001)	(<0.001)

Site 3	0.54 (<0.001)	n.s	- n.s	0.41 (0.003)	- 0.44 (0.002)	0.59 (<0.001)	- 0.40 (0.003)	n.s	n.s	n.s	n.s	n.s	n.s	- 0.71 (<0.001)	+ 0.55 (<0.001)
	-			-	-	-	-							-	+
									0.26	0.26					0.51
Site 4	n.s.	n.s	0.44 (0.003)	0.16 (0.073)	n.s	0.29 (0.018)	0.35 (0.010)	n.s	(0.026)	(0.026)	0.14 (0.087)	n.s	n.s	n.s	(0.001)
			+	+		-	-		-	-	-				+

-

CH ₄ vs.:	CH ₄ conc.						DIC conc.	_	-	_	_	_	wtd	Twater
	5 cm	15 cm	25 cm	35 cm	45 cm	55 cm	5 cm	15 cm	25 cm	35 cm	45 cm	55 cm		
Site 1	0.57 (0.002)	0.54 (0.002)	n.s.	0.27 (0.039)	0.59 (0.001)	n.s.	0.421 (0.010)	n.s.	n.s.	n.s.	n.s.	n.s.	0.55 (0.002)	0.62 (<0.001)
Site 2	- n.s.	- 0.16 (0.059)	n.s.	- 0.40 (0.003)	- 0.50 (<0.001)	0.48 (<0.001)	- n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	- 0.38 (0.005)	+ 0.45 (0.002)
Site 3	ns	- n s	0.17(0.050)	-	-	-	ns	ns	ns	ns	ns	ns	- 0.565 (0.001)	+ 0.57 (0.001)
Site 5	11.5.	11.3.	-	-	-	•	11.5.	0.28	0.55	11.3.	11.3.	11.5.	-	(0.001) +
Site 4	n.s.	0.14 (0.088)	0.29 (0.019)	n.s.	n.s.	n.s.	n.s.	(0.020)	(<0.001)	0.40 (0.005)	n.s.	n.s.	n.s.	(0.036)

Figure S4: Cumulative fluxes of CO_2 [g CO_2 m⁻²] and CH_4 [g CH_4 m⁻²] ± SE during the study period in hollows of the sites 1-4. A negative value for CO_2 indicates a net CO_2 uptake, while positive numbers for CH_4 indicate net emission.

Isotopic signatures of pore-water

To obtain high resolution depth profiles of signatures of CH₄ and DIC in the peat, pore-water peepers of 60 cm length and a 1 cm resolution were inserted on three occasions in June, July and September 2015. Pore-water peepers were filled with distilled water, then covered with a permeable membrane (0.2 µm pore size, OE, 66, Schleicher & Schuell) which was fixed with a perforated Plexiglass cover. For isotope analysis, pore-water samples were extracted from the chambers with 1 ml syringes and a needle and filled into 2 ml GC vials respectively 10 ml crimp vials prefilled with 20 and 100 µL of 4 M HCl. Vials were sealed and shipped to the UMünster Lab in Germany, where rations of δ^{13} C of CO₂ and CH₄ were determined by Cavity Ringdown Spectroscopy (CRDS; Picarro G2201-*i*, Picarro Inc., Santa Clara, US), as described in the manuscript. Isotopic signatures of CH₄ and CO₂ in pore-water ranged from -75.81 ± 0.19 to -39.87 ± 0.48 ‰ for CH₄ and from -26.25 ± 1.25 to +1.63 ± 1.06 ‰ for CO₂. Maximum CH₄ and CO₂ values were measured at Site 4 in 7 cm depth in June and at site 3 in 59 cm depth in July respectively. Minimum δ^{13} C values were measured at site 2 in 55 cm depth in September or in 9 cm depth in July.

Both δ^{13} C-CH₄ and CO₂ signatures showed a temporal trend which was decreasing for CH₄ and increasing for CO₂. This trend was most distinctive at site 4 for CH₄ and overall more distinctive for CH₄ than for CO₂ (see Fig. 4).

 δ^{13} C-CH₄ became more depleted with depth while δ^{13} C-CO₂ values got less depleted. Whereas for δ^{13} C-CO₂, this trend was more or less linear with depth, δ^{13} C-CH₄ profiles exhibited a more complex pattern. Profiles at sites 1 and 2 revealed a D-shaped curve. Signatures at sites 3 and 4 revealed an S-shaped curve (see Fig. S6). Average δ^{13} C-CH₄ signatures in 20 to 60 cm depth at site 3 differed significantly from those at sites 2 and 4 in July (p < 0.05) with lowest values at site 3 and highest at site 4. In September, signatures became more negative with vicinity to the reservoir shore, but differences were not significant. For mean δ^{13} C-CO₂ signatures, significant differences between the sites 1 and 2 and the sites 3 and 4 were found in July (p < 0.01) with the sites 1 and 2 and the sites 3 and 4 were found in July (p < 0.01) with the sites 1 and 2 and the sites (p < 0.05). δ^{13} C-CO₂ values were generally decreasing with distance to the reservoir shore at both sampling dates with average values at site 1 reaching -8.67 ± 2.57 and - 6.55 ± 2.16 ‰ compared to values at site 4 that came to -2.92 ± 2.31 respectively -4.78± 4.88 ‰.

Figure S5: Depth profiles of δ^{13} C-CH₄ (left) and δ^{13} C-CO₂ (right) signatures in the peat at sites 1 to 4 obtained with pore-water peepers. Squares = June (06/17), circles = July (07/23), diamonds = September (09/17).

Table S6: Comparison values for organic matter quality indices of pore water.

soil type	location	value	study		
SUVA ₂₅₄ [I mg ⁻¹ m ⁻¹]					
bog to fen	Luther Marsh, Ontario, Canada	2.54 (+/- 0) – 3.85 (+/- 0.20)	this study		
intermediate, raised and lowered water table site of a poor fen peatland complex	Seney, Michigan, USA	3.36 - 3.88	(Hribljan et al. 2014)		
bog, forested wetland and fen	Juneau, Alaska, USA	3.51 - 4.41	(Fellman et al. 2008)		
ombrotrophic peatland	north Wales, UK	4.00 (+/- 0.47), (3.44 to 4.77)	(Peacock et al. 2014)		
poorly drained thermokarst wetland sites, moderately well drained and well drained sites	central Alaska, USA	4.0 (+/- 0.06)	(Wickland et al. 2007)		
north fen	Stordalen peatland complex, Sweden	2.23 (1.33 - 2.95)	(Olefeldt and Roulet 2012)		
south fen	Stordalen peatland complex, Sweden	2.16 (1.35 - 3.02)	(Olefeldt and Roulet 2012)		
bog	Stordalen peatland complex, Sweden	2.68 (1.44 - 3.82)	(Olefeldt and Roulet 2012)		
E2:E3					
bog to fen	Luther Marsh, Ontario, Canada	4.40 (+/- 0.057) - 6.38 (+/- 0)	this study		
intermediate, raised and lowered water table site of a poor fen peatland complex	Seney, Michigan, USA	4.49 - 5.51	(Hribljan et al. 2014)		
soil type	location	value	study		
ombrotrophic peatland	north Wales, UK	3.70 (+/- 0.14)	(Peacock et al. 2014)		
		(3.44 - 3.84)			
north fen	Stordalen peatland complex, Sweden	4.70 (4.19 - 5.29)	(Olefeldt and Roulet 2012)		
south fen	Stordalen peatland complex, Sweden	4.56 (3.78 - 5.07)	(Olefeldt and Roulet 2012)		
bog	Stordalen peatland complex, Sweden	4.88 (3.64 - 6.52)	(Olefeldt and Roulet 2012)		
ніх					
bog to fen	Luther Marsh, Ontario, Canada	0.90 (+/- 0.02) – 0.94 (+/- 0.00)	this study		

References

Fellman, J. B., Hood, E., Spencer, R. G. M.: Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review, Limnology Oceanography, 55, 2452–2462, 2010.

Hribljan, J. A., Kane, E. S., Pyker, T. G., Chimner, R. A.: The effect of long-term water table manipulations on dissolved organic carbon dynamics in a poor fen peatland, Journal of Geophysical Research Biogeosciences, 119, 577–595, 2014.

Peacock, M., Evans, C. D., Fenner, N., Freeman, C., Gough, R., Jones, T. G., Lebron, I.: UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation, Environmental Science: Processes and Impacts, 16, 1445–1461, 2014.

Peuravuori, J., Pihlaja, K.: Molecular size distribution and spectroscopic properties of aquatic humic substances, Analytica Chimica Acta, 337, 133–149, 1997.

Ohno, T.: Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter, Environmental Science and Technology, 36, 742–746, 2002.

Olefeldt, D., Roulet, N. T.: Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex, Journal of Geophysical Research Biogeosciences, 117, 1–15, 2012.

Weishaar, J. L., Aiken, G. R., Bergamischi, B. A., Fram, M. S., Fujii, R., Mopper, K.: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environmental Science & Technology, 37, 4702–4708, 2003.

Wickland, K. P., Neff, J. C., Aiken, G. R.: Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability, Ecosystems, 10, 1323–1340, 2007.