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Figure S1: View of the study sites 1-4 of the Wylde Lake peatland.



Table S2: Formulas to calculate indices for organic matter quality.

index formula reference
UV-vis data

SUVAss, absorption at 254 nm * UV — vis dilution factor (Weishaar et al.
I m? mg'l] cuvette length [m] * DOC concentration [mg1— 1] * DOC dilution factor 2003)

absorption at 250 nm

E2:E3
absorption at 365 nm

fluorescence data

Y em 435 nm —» em 480 nm at ex 254 nm
HIX (X em 300 nm - em 345 nm + Y, em 435 nm —» em 480 nm) at ex 254 nm

(Peuravuori and
Pihlaja 1997)

(Ohno 2002)




Table S3: Correlation coefficients (R?) and p-values for NEP, Reco, GPP, CHj flux, Tyaer, Wtd and DIC and CH, concentrations in 5, 15, 25, 35, 45 and 55 cm soil depth. P-values
< 0.05 indicate a statistically significant correlation. “+” and “-” indicate the direction of the correlation.

NEP
VS.: Reco GPP CH, LR e DIC conc. . B . . B wtd Twater
55
5cm 15cm 25 cm 35cm 45 cm 55 cm 5cm 15¢cm 25cm 35cm 45 cm cm
Site 1 n.s n.s n.s. n.s n.s n.s n.s n.s n.s n.s n.s n.s n.s n.s n.s n.s n.s
0.20
Site 2 n.s n.s n.s. n.s n.s n.s n.s n.s n.s n.s n.s n.s n.s n.s n.s n.s (0.043)
+
0.20 0.62
Site 3 n.s n.s (0.025) n.s n.s 0.23(0.024) 0.17 (0.049) 0.27 (0.016) 0.15 (0.065) n.s n.s n.s n.s n.s ns 053(0.002) (<0.001)
- - = = = = +
0.23
Site 4 n.s n.s n.s. n.s n.s n.s n.s n.s n.s n.s n.s n.s n.s n.s ns 0.13(0.091) (0.036)
- +
Reco R CH, conc
Vs.: GPP e =A== DIC conc. 3 3 B B 3 wtd Twater
55
5cm 15cm 25 cm 35cm 45 cm 55 cm 5cm 15cm 25 cm 35cm 45 cm cm
0.69 0.57 0.66 0.70 041 0.47
Site 1 n.s (<0.001) (0.002) (<0.001) n.s 0.47 (0.006)  (<0.001) n.s (0.011) n.s n.s n.s n.s n.s 0.60(0.001) (0.006)
+ o o - - - - +
0.41 0.70 0.43
Site 2 n.s (<0.001) n.s n.s n.s 0.16 (0.057) 0.26 (0.017) 0.35 (0.006) n.s n.s n.s n.s n.s n.s (<0.001) (0.002)
+ - - - = +
0.60 0.56 0.74 0.37
Site 3 n.s (<0.001) n.s n.s 0.32(0.009) 0.44(0.002) (<0.001) 0.42(0.002) n.s n.s n.s n.s n.s n.s (<0.001) (0.012)
+ = = = = = +
0.43 0.31 0.58 0.26 0.60
Site 4 n.s (0.001) n.s 0.28 (0.021) 0.47 (0.002) n.s n.s n.s n.s (0.016) (<0.001) 0.47 (0.002) (0.027) ns 0.21(0.043) (0.001)
+ + + + + + + - +
GPP
Vs.: CH, Ll ine DIC conc. _ _ _ _ _ wtd Twater
55
5cm 15cm 25cm 35¢cm 45 cm 55 cm 5cm 15¢cm 25cm 35¢cm 45cm cm
0.66 0.84 0.43
Sitel 0.7 (0.006) (<0.001) (<0.001) 0.22(0.061) 0.39(0.013) 0.40(0.012) n.s n.s n.s n.s n.s n.s n.s 0.50(0.004) (0.009)
- - - - - - - +
0.36 0.58 0.52

Site2  (0.001) n.s 0.14 (0.071) n.s 0.16 (0.057) 0.22 (0.028) 0.26 (0.017) ns ns n.s n.s ns ns  (<0.001)  (<0.001)



0.71

+

0.54 0.59 0.55
Site 3 (<0.001) n.s n.s 0.41 (0.003) 0.44(0.002)  (<0.001)  0.40 (0.003) n.s n.s n.s n.s n.s n.s (<0.001) (<0.001)
- - S S S - +
0.26 0.26 0.51
Site 4 n.s. n.s 0.44 (0.003) 0.16 (0.073) n.s 0.29 (0.018) 0.35(0.010) n.s (0.026) (0.026)  0.14 (0.087) n.s n.s n.s (0.001)
+ + - - - - - +
CH, vs.: CH, conc. DIC conc. _ _ _ _ _ wtd Twater
55
5cm 15cm 25¢cm 35cm 45cm 55cm 5cm 15cm 25¢cm 35cm 45cm cm
0.57 0.421 0.62
Site 1 (0.002)  0.54 (0.002) n.s. 0.27 (0.039) 0.59 (0.001) n.s. (0.010) n.s. n.s. n.s. n.s. ns. 0.55(0.002) (<0.001)
= = > > - o +
0.50 0.48 0.45
Site 2 n.s. 0.16 (0.059) n.s. 0.40 (0.003)  (<0.001) (<0.001) n.s. n.s. n.s. n.s. n.s. n.s. 0.38(0.005) (0.002)
= S S - = +
0.565 0.57
Site 3 n.s. n.s. 0.17 (0.050) 0.33 (0.008) 0.51(0.050) 0.41 (0.002) n.s. n.s. n.s. n.s. n.s. n.s. (0.001) (0.001)
= S S - = +
0.28 0.55 0.23
Site 4 n.s. 0.14 (0.088) 0.29 (0.019) n.s. n.s. n.s. n.s. (0.020) (<0.001)  0.40 (0.005) n.s. n.s. n.s. (0.036)
+ + + +

+ +
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Figure S4: Cumulative fluxes of CO, [g CO, m?] and CH, [g CH, m™?] + SE during the study period in hollows of the

sites 1-4. A negative value for CO, indicates a net CO, uptake, while positive numbers for CH, indicate net emission.



Isotopic signatures of pore-water

To obtain high resolution depth profiles of signatures of CH, and DIC in the peat, pore-water peepers of 60 cm
length and a 1 cm resolution were inserted on three occasions in June, July and September 2015. Pore-water
peepers were filled with distilled water, then covered with a permeable membrane (0.2 um pore size, OE, 66,
Schleicher & Schuell) which was fixed with a perforated Plexiglass cover. For isotope analysis, pore-water
samples were extracted from the chambers with 1 ml syringes and a needle and filled into 2 ml GC vials
respectively 10 ml crimp vials prefilled with 20 and 100 uL of 4 M HCI. Vials were sealed and shipped to the
UMuiinster Lab in Germany, where rations of §"*C of CO, and CH, were determined by Cavity Ringdown
Spectroscopy (CRDS; Picarro G2201-i, Picarro Inc., Santa Clara, US), as described in the manuscript.

Isotopic signatures of CH, and CO, in pore-water ranged from -75.81 + 0.19 to -39.87 £ 0.48 %, for CH, and
from -26.25 £ 1.25 to +1.63 £ 1.06 %o for CO,. Maximum CH, and CO, values were measured at Site 4 in 7 cm
depth in June and at site 3 in 59 cm depth in July respectively. Minimum &"C values were measured at site 2 in
55 cm depth in September or in 9 cm depth in July.

Both §"3C-CH, and CO, signatures showed a temporal trend which was decreasing for CH, and increasing for
CO,. This trend was most distinctive at site 4 for CH, and overall more distinctive for CH, than for CO, (see Fig.
4).

81C-CH, became more depleted with depth while §*C-CO, values got less depleted. Whereas for §*C-CO,,
this trend was more or less linear with depth, §*3C-CH, profiles exhibited a more complex pattern. Profiles at
sites 1 and 2 revealed a D-shaped curve. Signatures at sites 3 and 4 revealed an S-shaped curve (see Fig. S6).
Average 8*3C-CH, signatures in 20 to 60 cm depth at site 3 differed significantly from those at sites 2 and 4 in
July (p < 0.05) with lowest values at site 3 and highest at site 4. In September, signatures became more negative
with vicinity to the reservoir shore, but differences were not significant. For mean §*C-CO, signatures,
significant differences between the sites 1 and 2 and the sites 3 and 4 were found in July (p < 0.01) with the sites
1 and 2 and the sites 3 and 4 not differing amongst themselves. In September, §*C-CO, signatures at site 1
differed significantly from those at the other sites (p < 0.05). §**C-CO, values were generally decreasing with
distance to the reservoir shore at both sampling dates with average values at site 1 reaching -8.67 + 2.57 and -
6.55 = 2.16 %o compared to values at site 4 that came to -2.92 + 2.31 respectively -4.78+ 4.88 %o.
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Figure S5: Depth profiles of §°C-CH, (left) and $*C-CO, (right) signatures in the peat at sites 1 to 4 obtained with
pore-water peepers. Squares = June (06/17), circles = July (07/23), diamonds = September (09/17).



Table S6: Comparison values for organic matter quality indices of pore water.

soil type location value study
SUVA,s, [l mg* m™]
bog to fen Luther Marsh, 2.54 (+/-0) - this study
Ontario, Canada 3.85 (+/- 0.20)
intermediate, raised and Seney, Michigan, 3.36-3.88 (Hribljan et al. 2014)
lowered water table site of a USA
poor fen peatland complex
bog, forested wetland and fen  Juneau, Alaska, USA 3.51-4.41 (Fellman et al. 2008)

ombrotrophic peatland

poorly drained thermokarst

wetland sites, moderately well

drained and well drained sites

north fen

south fen

bog

E2:E3

bog to fen

intermediate, raised and
lowered water table site of a
poor fen peatland complex

soil type

ombrotrophic peatland

north fen

south fen

bog

HIX

bog to fen

north Wales, UK

central Alaska, USA

Stordalen peatland
complex, Sweden

Stordalen peatland
complex, Sweden

Stordalen peatland
complex, Sweden

Luther Marsh,
Ontario, Canada

Seney, Michigan,
USA

location

north Wales, UK

Stordalen peatland
complex, Sweden

Stordalen peatland
complex, Sweden

Stordalen peatland
complex, Sweden

Luther Marsh,
Ontario, Canada

4.00 (+/- 0.47),
(3.44 to 4.77)

4.0 (+/- 0.06)

2.23(1.33-2.95)

2.16 (1.35-3.02)

2.68 (1.44 - 3.82)

4.40 (+/- 0.057) -
6.38 (+/- 0)

4.49 -5.51

value

3.70 (+/-0.14)
(3.44-3.84)
4.70 (4.19 - 5.29)

4.56 (3.78 - 5.07)

4.88 (3.64 - 6.52)

0.90 (+/-0.02) —
0.94 (+/- 0.00)

(Peacock et al. 2014)

(Wickland et al. 2007)

(Olefeldt and Roulet
2012)

(Olefeldt and Roulet
2012)

(Olefeldt and Roulet
2012)

this study

(Hribljan et al. 2014)

study

(Peacock et al. 2014)

(Olefeldt and Roulet
2012)

(Olefeldt and Roulet
2012)

(Olefeldt and Roulet
2012)

this study



poorly drained thermokarst central Alaska, USA  0.94-0.96 (Wickland et al. 2007)
wetland sites, moderately well
drained and well drained sites
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