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Unifying soil organic matter formation and persistence frameworks: the MEMS model 2 
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FULL MODEL DESCRIPTION OF MEMS V1.0 5 

Mathematical representation of MEMS v1.0 6 

Below are the differential equations for dynamics through time as calculated by MEMS v1.0. For 7 

simplicity, many of the individual fluxes are summarized by single names (e.g., 𝐶1𝑖𝑛
𝑖  to represent 8 

total inputs to the C1 pool from litter material i, instead of including the separate calculation). 9 

Please refer to the equations provided in this Supplementary Materials. Parameter descriptions can 10 

be found in Table 2 of the main manuscript. Please note that the below list equations are fully 11 

representative of the carbon dynamics of MEMS v1.0 but are layer- and time-specific. However, 12 

for simplicity are presented in a generalized form. 13 

 14 

𝒅𝑪𝟏

𝒅𝒕
= 𝑪𝟏𝒊𝒏

𝒊 − (𝒖𝒌 ∗ 𝑪𝟏 ∗ 𝒌𝟏)        (1)  15 

𝒅𝑪𝟐

𝒅𝒕
= 𝑪𝟐𝒊𝒏

𝒊 − (𝒖𝒌 ∗ 𝑪𝟐 ∗ 𝒌𝟐) − (𝑪𝟐 ∗ 𝑳𝑰𝑻𝒇𝒓𝒈)     (2)  16 

𝒅𝑪𝟑

𝒅𝒕
= 𝑪𝟑𝒊𝒏

𝒊 − (𝑪𝟑 ∗ 𝒌𝟑) − (𝑪𝟑 ∗ 𝑳𝑰𝑻𝒇𝒓𝒈)      (3)  17 

𝒅𝑪𝟒

𝒅𝒕
= 𝑪𝟒𝒂𝒔𝒔

𝑪𝟏 + 𝑪𝟒𝒂𝒔𝒔
𝑪𝟐 − (𝑪𝟒 ∗ 𝒌𝟒)       (4)  18 

𝒅𝑪𝟓

𝒅𝒕
= 𝑪𝟓𝒈𝒆𝒏

𝑪𝟒 + 𝑪𝟓 
 

𝒇𝒓𝒈

𝑪𝟐 + 𝑪𝟓 
 

𝒇𝒓𝒈

𝑪𝟑 − (𝑪𝟓 ∗ 𝒌𝟓)      (5)  19 

𝒅𝑪𝟔

𝒅𝒕
= 𝑪𝟔𝒊𝒏

𝒊 + 𝑪𝟔𝒊𝒏
𝑪𝟏 + 𝑪𝟔𝒊𝒏

𝑪𝟐 + 𝑪𝟔𝒊𝒏
𝑪𝟑 + 𝑪𝟔𝒊𝒏

𝑪𝟒 − 𝑪𝟖𝒊𝒏
𝑪𝟔     (6)  20 

𝒅𝑪𝟕

𝒅𝒕
= 𝑪𝟏𝒄𝒐𝟐 + 𝑪𝟐𝒄𝒐𝟐 + 𝑪𝟑𝒄𝒐𝟐 + 𝑪𝟒𝒄𝒐𝟐 + 𝑪𝟓𝒄𝒐𝟐 + 𝑪𝟖𝒄𝒐𝟐 + 𝑪𝟗𝒄𝒐𝟐 + 𝑪𝟏𝟎𝒄𝒐𝟐 (7)  21 

𝒅𝑪𝟖

𝒅𝒕
= 𝑪𝟖𝒊𝒏

𝑪𝟓 + 𝑪𝟖𝒊𝒏
𝑪𝟔 + 𝑪𝟖𝒊𝒏

𝑪𝟏𝟎 − 𝒔𝒐𝒓𝒑𝒕𝒊𝒐𝒏 − (𝑪𝟖 ∗ 𝑫𝑶𝑪𝒍𝒄𝒉) − (𝑪𝟖 ∗ 𝒌𝟖)  (8)  22 

𝒅𝑪𝟗

𝒅𝒕
= 𝒔𝒐𝒓𝒑𝒕𝒊𝒐𝒏 − (𝑪𝟗 ∗ 𝒌𝟗)       (9)  23 

𝒅𝑪𝟏𝟎

𝒅𝒕
= 𝑪𝟏𝟎 

 
𝒇𝒓𝒈

𝑪𝟐 + 𝑪𝟏𝟎 
 

𝒇𝒓𝒈

𝑪𝟑 − (𝑪𝟏𝟎 ∗ 𝒌𝟏𝟎)      (10)  24 

𝒅𝑪𝟏𝟏

𝒅𝒕
= (𝑪𝟖 ∗ 𝑫𝑶𝑪𝒍𝒄𝒉)        (11)  25 

 26 
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Carbon inputs from external sources 27 

In MEMS v1.0 the above- and below-ground plant residue inputs are combined and input to the 28 

system on a daily timestep. These total inputs are partitioned between C1, C2, C3 and C6 as a 29 

function of the external source (i) input properties (Eqs. 12-15): the cold water extractable fraction 30 

of the hot-water extractable litter input (𝑓𝐷𝑂𝐶
𝑖 ), the hot water extractable fraction of the litter input 31 

(𝑓𝑆𝑂𝐿
𝑖 ) and acid-insoluble fraction of the litter input (𝑓𝐿𝐼𝐺

𝑖 ). 32 

𝑪𝟏𝒋 𝒊𝒏
𝒊 = ( 𝑪𝑻𝒋

𝒊 ∗ 𝒇𝑺𝑶𝑳
𝒊 ) − ( 𝑪𝑻𝒋

𝒊 ∗ 𝒇𝑺𝑶𝑳
𝒊 ∗ 𝒇𝑫𝑶𝑪

𝒊 )    (12) 33 

𝑪𝟐𝒋 𝒊𝒏
𝒊 = 𝑪𝑻𝒋

𝒊 − ( 𝑪𝑻𝒋
𝒊 ∗ (𝒇𝑺𝑶𝑳

𝒊 + 𝒇𝑳𝑰𝑮
𝒊 ))     (13) 34 

𝑪𝟑𝒋 𝒊𝒏
𝒊 = ( 𝑪𝑻𝒋

𝒊 ∗ 𝒇𝑳𝑰𝑮
𝒊 )       (14) 35 

𝑪𝟔𝒋 𝒊𝒏
𝒊 = 𝑪𝑻𝒋

𝒊 ∗ 𝒇𝑺𝑶𝑳
𝒊 ∗ 𝒇𝑫𝑶𝑪

𝒊       (15) 36 

 37 

Where 𝑋𝑗 𝑖𝑛
𝑖  is refers to the daily carbon input to pool 𝑋 from external source 𝑖 on day 𝑗, and 𝐶𝑇𝑗

𝑖 38 

is the total daily carbon input from external source 𝑖 on day 𝑗. For MEMS v1.0 the layer is fixed 39 

to the aboveground litter layer only, allowing for use of the same functions as those presenting in 40 

the LIDEL model (Campbell et al., 2016). However, future versions may incorporate the same 41 

structure for different points of entry for C inputs (e.g., root death and the rhizosphere). 42 

 43 

Once allocated to their initial pools, the carbon is susceptible to assimilation in microbial biomass 44 

if it is water-soluble (C1) or acid-soluble (C2) but only co-metabolized if it is acid-insoluble (C3). 45 

The contents of these pools represent compounds of increasing chemical complexity (e.g., C1, 46 

mostly soluble carbohydrates, phenols and amino acids; C2, mostly cellulose, xylans and other 47 

hemicelluloses; C3, mostly lignin aboveground and suberin/cutin belowground) and are associated 48 

with decreasing microbial use efficiency. 49 

 50 
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Microbial assimilation from litter pools 51 

Many of the biogeochemical processes represented by MEMS are assumed to be microbially 52 

mediated, and therefore are associated with C-mineralization and the resulting carbon dioxide 53 

(CO2) emissions from microbial respiration. The primary carbon losses  result from the 54 

metabolic processes of bacteria and fungi within the soil and are aligned with the mathematical 55 

representations as described by Campbell et al. (2016) and, in part, summarise the findings of 56 

Sinsabaugh et al. (2013), Moorhead et al. (2013) and Soong et al. (2015). In addition, carbon 57 

assimilation by microbial biomass (C4) in the litter layer results from the balance between anabolic 58 

and catabolic processes and thus, as biomass is formed, dissolved organic matter (DOM) and CO2 59 

are also produced . Microbial assimilation is a function of nitrogen content and lignocellulosic 60 

index (Eq. 16) of the structural litter pools (C2 and C3; organic matter > 2 mm) and controlled by 61 

maximum decomposition rates for C1 (𝑘1) and C2 (𝑘2) that assume first-order decay. 62 

𝑳𝑪𝑰𝒋 𝒍𝒊𝒕
 =

𝑪𝟑𝒋

( 𝑪𝟐𝒋 + 𝑪𝟑𝒋 )
        (16) 63 

𝑪𝟒𝒋 𝒂𝒔𝒔
𝑪𝟏 = 𝒖𝑩 ∗ 𝑩𝟏 ∗ (𝟏 − 𝒍𝒂𝟒) ∗ 𝒖𝒌 ∗ 𝒌𝟏 ∗ 𝑪𝟏𝒋     (17) 64 

𝑪𝟒𝒋 𝒂𝒔𝒔
𝑪𝟐 = 𝒖𝑩 ∗ 𝑩𝟐 ∗ (𝟏 − 𝒍𝒂𝟏) ∗ 𝒖𝒌 ∗ 𝒌𝟐 ∗ 𝑪𝟐𝒋     (18) 65 

 66 

Where 𝐶4𝑗 𝑎𝑠𝑠
𝐶1  and 𝐶4𝑗 𝑎𝑠𝑠

𝐶2  refer to the fraction of the given litter pool (i.e., C1 or C2) that is 67 

microbially assimilated to pool C4 on day j from pool C1 or C2, respectively. Note that these 68 

functions are make microbial assimilation explicit in this aboveground litter layer. In the soil itself, 69 

microbial assimilation of organic matter is still occurring but assumed to be implicit and 70 

incorporated in the carbon mineralization rates for each of the soil pools (e.g., C5, C8, C9 and 71 

C10). In future versions of the model, the same general structure can apply, with an explicit 72 

microbial component at the different points of entry (i.e., rhizospheric inputs vs aboveground 73 
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litter) but parameter values may differ between layers, when more are added. Detail about the 74 

concepts behind this approach can be found in Sokol et al., 2018.  75 

 76 

More information of the parameters 𝑢𝐵 , 𝑢𝑘 , 𝐵𝑥 , 𝑙𝑎𝑥  and 𝑘𝑥  can be found in Campbell et al. 77 

(2016) and in the equations below, but briefly: 78 

• 𝑢𝐵𝑗  and 𝑢𝑘𝑗  are rate modifiers to represent the litter chemistry controls (LCI and 79 

available nitrogen) on microbial use efficiency, on day j. 80 

𝒖𝑩𝒋 = 𝒎𝒊𝒏 ((
𝟏

𝟏+𝒆−𝑵𝒎𝒂𝒙( 𝑵 
 

𝒍𝒊𝒕−𝑵𝒎𝒊𝒅)
) , (𝟏 − 𝒆−𝟎.𝟕(| 𝑳𝑪𝑰𝒋 𝒍𝒊𝒕−𝟎.𝟕|∗𝟏𝟎)))   (19) 81 

𝒖𝒌𝒋 = 𝒎𝒊𝒏 ((
𝟏

𝟏+𝒆−𝑵𝒎𝒂𝒙( 𝑵 
 

𝒍𝒊𝒕−𝑵𝒎𝒊𝒅)
) , (𝒆−𝟑∗ 𝑳𝑪𝑰𝒋 𝒍𝒊𝒕))    (20) 82 

 83 

Where 𝑁𝑚𝑎𝑥 and 𝑁𝑚𝑖𝑑 are maximum and mid points of litter nitrogen content having an impact 84 

on microbial use efficiencies, using a logistic curve (see Figure S7). 𝑁 
 

𝑙𝑖𝑡 and 𝐿𝐶𝐼𝑗 𝑙𝑖𝑡 are the input 85 

material nitrogen content and LCI being simulated on day j. 86 

 87 

IMPORTANT NOTE – In MEMS v1.0 there is no nitrogen cycling and therefore the 𝑁 
 

𝑙𝑖𝑡 value 88 

is not dynamic, as it likely should be. Consequently, MEMS v1.0 uses the nitrogen content of the 89 

input material, and therefore 𝑁 
 

𝑙𝑖𝑡   is a constant through time and across layers. This constant 90 

nitrogen value is consistent with the approach used by the LIDEL model (Campbell et al., 2016) 91 

however it is expected that a dynamic nitrogen (i.e. be 𝑁𝑗 𝑙𝑖𝑡 – as equivalent to 𝐿𝐶𝐼𝑗 𝑙𝑖𝑡) content 92 

would more likely reflect real-world conditions, especially in extended periods without litter input. 93 

• 𝐵1 and 𝐵2 are maximum growth efficiencies associated with the water-soluble and acid-94 

soluble litter pools (C1 and C2), respectively (See Table 2 in the main manuscript). 95 
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• 𝑙𝑎1 and 𝑙𝑎4 are estimates of carbon in DOM generation from leaching the decayed litter 96 

pools on day j. 97 

𝒍𝒂𝒋 𝟏 = 𝒎𝒊𝒏 ((𝑬𝑯𝒎𝒂𝒙 −  
(𝑬𝑯𝒎𝒂𝒙−𝑬𝑯𝒎𝒊𝒏)

𝑳𝑪𝑰𝒎𝒂𝒙
∗ 𝑳𝑪𝑰𝒋 𝒍𝒊𝒕) , (𝑬𝑯𝒎𝒂𝒙 − 

(𝑬𝑯𝒎𝒂𝒙−𝑬𝑯𝒎𝒊𝒏)

𝑵𝒎𝒂𝒙
∗ 𝑵 

 
𝒍𝒊𝒕)) (21) 98 

𝒍𝒂𝒋 𝟒 = 𝒎𝒊𝒏 ((𝑬𝑺𝒎𝒂𝒙 − 
(𝑬𝑺𝒎𝒂𝒙−𝑬𝑺𝒎𝒊𝒏)

𝑳𝑪𝑰𝒎𝒂𝒙
∗ 𝑳𝑪𝑰𝒋 𝒍𝒊𝒕) , (𝑬𝑺𝒎𝒂𝒙 − 

(𝑬𝑺𝒎𝒂𝒙−𝑬𝑺𝒎𝒊𝒏)

𝑵𝒎𝒂𝒙
∗ 𝑵 

 
𝒍𝒊𝒕)) (22) 99 

 100 

Where 𝐸𝐻𝑚𝑎𝑥 and 𝐸𝐻𝑚𝑖𝑛 are the maximum and minimum amount of DOM leached from decay of 101 

acid-soluble litter (C2), and 𝐸𝑆𝑚𝑎𝑥 and 𝐸𝑆𝑚𝑖𝑛 are the maximum and minimum amount of DOM 102 

leached from decay of water-soluble litter (C1). 𝐿𝐶𝐼𝑚𝑎𝑥 refers to the maximum lignocellulosic 103 

index that can have an impact on these rates. As noted above, 𝑁 
 

𝑙𝑖𝑡 and 𝐿𝐶𝐼𝑗 𝑙𝑖𝑡 are the nitrogen 104 

content of input material and LCI being simulated on day j. 105 

• 𝑘1 and 𝑘2 are the maximum decay rates of water-soluble (C1) and acid-soluble (C2) litter 106 

pools, respectively (See Table 2 in the main manuscript). 107 

 108 

Microbial mortality and necromass production 109 

After carbon is metabolized by microbes and incorporated in pool C4, the death and products of 110 

microbial activity result in the compounds that form the coarse, heavy particulate SOM (C5) that 111 

is often found coating sand particles in the > 53 µm soil fraction (Ludwig et al., 2015). In the 112 

aboveground litter layer simulated by MEMS v1.0, this process of microbial biomass decay results 113 

in loss to DOC (C6) and CO2 (C7), in addition to the C5 pool belowground. 114 

𝑪𝟓𝒋 𝒈𝒆𝒏
𝑪𝟒 = 𝑩𝟑 ∗ (𝟏 − 𝒍𝒂𝟐) ∗ 𝒌𝟒 ∗ 𝑪𝟒𝒋      (23) 115 

 116 

Where 𝐶5𝑗 𝑔𝑒𝑛
𝐶4  refers to the fraction of carbon that is transferred from C4 to C5 (i.e., microbial 117 

products transported belowground when physical and hydrological processes mix between the 118 
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input layer [aboveground litter only in MEMS v1.0] and soil layer) on day j. The flux from the 119 

aboveground microbial biomass pool (C4) is assumed to move belowground, to the first soil layer 120 

(see Figure 1 in the main manuscript). More information of the parameters 𝐵3, 𝑙𝑎2 and 𝑘4 can be 121 

found in Table 2 in the main manuscript, but briefly, 𝐵3 refers to a maximum rate of microbial 122 

product (C5) generation per unit of microbial biomass (C4) decayed, 𝑙𝑎2 refers to the maximum 123 

amount of DOM produced per unit of microbial biomass (C4) decayed and 𝑘4  refers to the 124 

maximum rate of microbial biomass (C4) decay. 125 

 126 

Fragmentation and perturbation 127 

To quantify the transfer of carbon from large (> 2 mm) particulates to small particulates 128 

belowground, simple parameter values have been allocated to represent first-order rates of transfer 129 

from both structural litter pools (C2 and C3). As model development continues, these rates will be 130 

improved to provide more mechanistic relationships with site conditions (see Braakehekke et al., 131 

2011). See Table 2 for information about the parameter used in MEMS v1.0 (𝐿𝐼𝑇𝑓𝑟𝑔). The amount 132 

of litter C fragmented and transferred vertically from structural litter pools to the belowground 133 

POM pools (C5 and C10) is also governed by the 𝑃𝑂𝑀𝑠𝑝𝑙𝑖𝑡 parameter that defines how much of 134 

the total is allocated to C5. 135 

 136 

𝑪𝟓𝒋 𝒇𝒓𝒈
𝑪𝟐 = 𝑷𝑶𝑴𝒔𝒑𝒍𝒊𝒕 ∗ 𝑳𝑰𝑻𝒇𝒓𝒈 ∗ 𝑪𝟐𝒋       (24) 137 

𝑪𝟓𝒋 𝒇𝒓𝒈
𝑪𝟑 = 𝑷𝑶𝑴𝒔𝒑𝒍𝒊𝒕 ∗ 𝑳𝑰𝑻𝒇𝒓𝒈 ∗ 𝑪𝟑𝒋       (25) 138 

𝑪𝟏𝟎𝒋 𝒇𝒓𝒈
𝑪𝟐 = (𝟏 − 𝑷𝑶𝑴𝒔𝒑𝒍𝒊𝒕) ∗ 𝑳𝑰𝑻𝒇𝒓𝒈 ∗ 𝑪𝟐𝒋      (26) 139 

𝑪𝟏𝟎𝒋 𝒇𝒓𝒈
𝑪𝟑 = (𝟏 − 𝑷𝑶𝑴𝒔𝒑𝒍𝒊𝒕) ∗ 𝑳𝑰𝑻𝒇𝒓𝒈 ∗ 𝑪𝟑𝒋      (27) 140 

 141 
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Where 𝐶𝑋𝑗 𝑓𝑟𝑔
𝐶𝑌  refers to the amount of carbon that is transferred from pool CY to pool CX on day 142 

j. 143 

 144 

Dissolved organic matter production 145 

Dissolved organic matter plays a major role in the MEMS model as it is the only way in which 146 

carbon can sorb to mineral surfaces in the soil, meaning that if there is limited DOM there will 147 

also be limited stabilization in MAOM (C9). Consequently, DOM production from all model pools 148 

is simulated explicitly according to the formulae provided by the LIDEL model (Campbell et al., 149 

2016) and based on empirical data in Soong et al. (2015). Each timestep, the aboveground litter 150 

layer DOM (C6) receives a fraction of inputs from external sources directly (Eq. 15; 𝐶6𝑗 𝑖𝑛
𝑖 ), from 151 

all litter layer pools ( 𝐶6𝑗 𝑖𝑛
𝐶1, 𝐶6𝑗 𝑖𝑛

𝐶2, 𝐶6𝑗 𝑖𝑛
𝐶3) and from microbial biomass ( 𝐶6𝑗 𝑖𝑛

𝐶4). 152 

𝑪𝟔𝒋 𝒊𝒏
𝑪𝟏 = 𝒍𝒂𝟒 ∗ 𝒖𝒌 ∗ 𝒌𝟏 ∗ 𝑪𝟏𝒋      (28) 153 

𝑪𝟔𝒋 𝒊𝒏
𝑪𝟐 = 𝒍𝒂𝟏 ∗ 𝒖𝒌 ∗ 𝒌𝟐 ∗ 𝑪𝟐𝒋      (29) 154 

𝑪𝟔𝒋 𝒊𝒏
𝑪𝟑 = 𝒍𝒂𝟑 ∗ 𝒌𝟑 ∗ 𝑪𝟑𝒋       (30) 155 

𝑪𝟔𝒋 𝒊𝒏
𝑪𝟒 = 𝒍𝒂𝟐 ∗ 𝒌𝟒 ∗ 𝑪𝟒𝒋       (31) 156 

 157 

Where 𝐶𝑥𝑗 𝑖𝑛
𝐶𝑦

 refers to DOM leaching from pool y to pool x on day j. The parameters used are 158 

detailed in Table 2 in the main manuscript, and/or defined in previous equation in this section. 159 

Note that pool C6 is not the DOM consumed by microbial biomass but rather the amount leftover 160 

after microbial activity. In this initial model version, the litter layer only refers to the aboveground 161 

component, but the same structure can equally apply to belowground C inputs such as root death. 162 

However, measurably, the DOM in the C6 pool is directly equivalent to the belowground soil 163 

DOM (C8). In MEMS v1.0, DOM enters the soil through the C6 pool only. When explicit inputs 164 

from belowground litter (e.g., roots) are simulated in future versions Eqs. 28-31 can apply for each 165 
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soil layer adding the DOM that is in excess of microbial activity directly to pool C8 instead of the 166 

‘C6’ shown in the equations above. Similarly, root exudates can be simulated as direct addition to 167 

the C8 pool of any specific soil layer. Hence, just as the litter layer DOM (C6) receives inputs 168 

from the aboveground litter layer pools, the soil DOM (C8) would receive inputs from the 169 

belowground pools (e.g., decomposing root matter and root exudation). In addition, the soil DOM 170 

pool receives inputs from the POM and MAOM pools ( 𝐶8𝑗 𝑖𝑛
𝐶5, 𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛𝑗 , 𝐶8𝑗 𝑖𝑛

𝐶10) as well as 171 

from leached litter DOM (C6). Here, the 𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛  flux represents the net carbon exchange 172 

between soil DOM (C8) and MAOM (C9). 173 

𝑪𝟖𝒋 𝒊𝒏
𝑪𝟓 = 𝒍𝒂𝟑 ∗ 𝒌𝟓 ∗ 𝑪𝟓𝒋       (32) 174 

𝑪𝟖𝒋 𝒊𝒏
𝑪𝟔 = 𝑫𝑶𝑪𝒇𝒓𝒈 ∗ 𝑪𝟔𝒋       (33) 175 

𝑪𝟖𝒋 𝒊𝒏
𝑪𝟏𝟎 = 𝒍𝒂𝟑 ∗ 𝒌𝟏𝟎 ∗ 𝑪𝟏𝟎𝒋       (34) 176 

 177 

The parameter values are defined in Table 2 in the main manuscript. As with the 𝐿𝐼𝑇𝑓𝑟𝑔 parameter, 178 

the 𝐷𝑂𝐶𝑓𝑟𝑔 value in MEMS v1.0 is set as a tuning parameter and simply assumes first-order rates 179 

to allocate a given proportion of the carbon in litter layer DOM pool (C6) to the soil DOM pool 180 

(C8) each timestep. As noted earlier, these functions are layer-specific and therefore in a multi-181 

layer version of MEMS, there would be vertical leaching of DOM between C8 pool of different 182 

layers, instead of from the aboveground C6 pool alone (i.e., to replace Eq. 33). 183 

 184 

Sorption and desorption 185 

The formation of organo-mineral complexes in MEMS v1.0 is represented by a net sorption-186 

desorption process that uses the amount of soil DOM (C8) to estimate adsorption rates based on a 187 

Langmuir isotherm (Kothawala et al., 2008). The key elements of this isotherm are the ‘binding 188 

affinity’ (𝐾𝑙𝑚) – see Eq. 35 – and maximum sorption capacity (𝑄𝑚𝑎𝑥) – see Eq. 36 – which are 189 



 

10 

controlled by site-specific conditions (soil pH and soil texture, respectively). It is worth noting 190 

that each of these site-specific conditions are provided as driving variables to the model, and are 191 

constants that represent the site at time-zero (i.e., soil pH is not simulated to change through time). 192 

The net sorption rate (𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛) aims to account for several different sorption mechanisms (e.g., 193 

cation bridging, surface complexation, etc.) to retain parsimony. A more accurate net flux may 194 

simulate the different mechanisms individually to allow for more detailed representation of 195 

different mineralogies as per Six et al. (2002) (e.g., dominated by 2:1 clays vs 1:1 clays). Future 196 

development of MEMS may adopt these changes.  197 

𝑲 𝒍𝒎 = 𝟏𝟎(−𝟎.𝟏𝟖𝟔 𝒔𝒐𝒊𝒍𝒑𝑯 −𝟎.𝟐𝟏𝟔)     (35) 198 

 199 

Where 𝑠𝑜𝑖𝑙𝑝𝐻  refers to the ‘native’ soil pH of the simulated soil. The soil pH, as used in Eq 35, 200 

acts as a proxy for mineralogical differences between soils, with higher native soil pH being 201 

equated with weaker chemical bonding. This tenet is adopted from the regression provided in 202 

Mayes et al. (2012) and results in 𝐾𝑙𝑚 being estimated as in the MILLENNIAL model (Abramoff 203 

et al., 2017). However, the MEMS v1.0 estimate of 𝑄𝑚𝑎𝑥 does not follow the MILLENNIAL 204 

model and instead calculates a general relationship between maximum soil carbon capacity and 205 

soil texture using the entire dataset of Six et al. (2002). This takes a simple linear regression 206 

approach using the soil layer’s percent silt and clay content (i.e., 100 − 𝑠𝑎𝑛𝑑) 207 

𝑸 𝒎𝒂𝒙 = 𝝆 ∗ (𝟎. 𝟐𝟔𝟏𝟐𝟔 ∗ (𝟏𝟎𝟎 − 𝒔𝒂𝒏𝒅 ) + 𝟏𝟏. 𝟎𝟕𝟖𝟐𝟎) ∗ (𝟏 − 𝒓𝒐𝒄𝒌 ) (36) 208 

 209 

Where 𝜌  refers to the bulk density of the soil at the site being simulated. Note that the bulk 210 

density is a conversion specific to the depth of the soil layer that converts a concentration from 211 

the regression of Six et al. (2002) to carbon density (e.g., gC m-2 layer depth-1) and therefore the 212 

equations shown here assume a 1 meter deep layer for simplification. Both the sand content 213 

( 𝑠𝑎𝑛𝑑 ) and rock fraction ( 𝑟𝑜𝑐𝑘 ) are expressed in percent (i.e., 0-100). The resulting equation 214 
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to represent net sorption is controlled by a Langmuir saturation function, using the amount of soil 215 

DOC (C8) available for sorption as well as the saturation deficit of MAOM (C9). Note, all 216 

coefficients in the equation below are layer- and timestep-specific. 217 

𝒔𝒐𝒓𝒑𝒕𝒊𝒐𝒏𝒋 = 𝑪𝟖𝒋 ∗

((
( 𝑲 𝒍𝒎∗ 𝑸 𝒎𝒂𝒙∗ 𝑪𝟖𝒋 )

𝟏+( 𝑲𝒋 𝒍𝒎∗ 𝑪𝟖𝒋 )
)− 𝑪𝟗𝒋 )

𝑸 𝒎𝒂𝒙
     (37) 218 

 219 

Where 𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛𝑗  is a net exchange of carbon between the soil DOM (C8) and MAOM (C9) pools 220 

given their size on day j. Since 𝐾𝑙𝑚 and 𝑄𝑚𝑎𝑥 are site-specific parameters, and the pool sizes (C8 221 

and C9) are dynamic through time, there are interactions between these factors which mean 222 

sorption rates are not necessarily comparable between sites. This sorption process is assumed to 223 

be abiotic in that it results in no CO2 emitted. As a net rate, sorption and desorption are not 224 

simulated individually which may make it difficult to represent potential priming effects on 225 

organo-mineral associations (e.g., Keiluweit et al., 2015). Future MEMS model version will 226 

explore these feedbacks further. 227 

 228 

Decomposition and pool decay rates 229 

Apart from the litter layer DOM (C6), each of the state variables in MEMS v1.0 decay directly 230 

with unique decay rates informed by literature values (see Table 2). This decay results in CO2 231 

emissions which continually accumulate in the sink C7. The amount of CO2 associated with each 232 

microbial process is equivalent to the amount of carbon leftover after losses to DOM are calculated 233 

so the decay rate constants for pool x (𝑘𝑥) also embody explicit DOM generation and not just CO2 234 

emissions, as is more common in traditional SOM models (e.g., CENTURY or RothC). As with 235 

earlier equations, these below can be layer- and time-specific but for simplicity are presented in a 236 

generalized form. 237 

𝑪𝟏𝒄𝒐𝟐 = ((𝟏 − (𝒖𝑩 ∗ 𝑩𝟏)) ∗ (𝟏 − 𝒍𝒂𝟒)) ∗ 𝒖𝒌 ∗ 𝒌𝟏 ∗ 𝑪𝟏   (38) 238 
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𝑪𝟐𝒄𝒐𝟐 = ((𝟏 − (𝒖𝑩 ∗ 𝑩𝟐)) ∗ (𝟏 − 𝒍𝒂𝟏)) ∗ 𝒖𝒌 ∗ 𝒌𝟐 ∗ 𝑪𝟐   (39) 239 

𝑪𝟑𝒄𝒐𝟐 = (𝟏 − 𝒍𝒂𝟑) ∗ 𝒌𝟑 ∗ 𝑪𝟑       (40) 240 

𝑪𝟒𝒄𝒐𝟐 = ((𝟏 − 𝑩𝟑) ∗ (𝟏 − 𝒍𝒂𝟐)) ∗ 𝒌𝟒 ∗ 𝑪𝟒     (41) 241 

𝑪𝟓𝒄𝒐𝟐 = (𝟏 − 𝒍𝒂𝟑) ∗ 𝒌𝟓 ∗ 𝑪𝟓       (42) 242 

𝑪𝟖𝒄𝒐𝟐 = 𝒌𝟖 ∗ 𝑪𝟖        (43) 243 

𝑪𝟗𝒄𝒐𝟐 = 𝒌𝟗 ∗ 𝑪𝟗        (44) 244 

𝑪𝟏𝟎𝒄𝒐𝟐 = (𝟏 − 𝒍𝒂𝟑) ∗ 𝒌𝟑 ∗ 𝑪𝟏𝟎      (45) 245 

 246 

Where all parameters are defined in Table 2 in the main manuscript and earlier in this section. 247 

While the maximum decay rates (𝑘𝑥) for most pools are fixed constants, Campbell et al. (2016) 248 

suggested that 𝑘3 is best estimated in relation to the maximum decay rate of the microbially-249 

accessible litter (C2) pool (𝑘2). 250 

𝒌𝒋 𝟑 = 𝒌𝟐 ∗ (
𝟎.𝟐

𝟏+
𝟐𝟎𝟎

𝒆
𝟖.𝟏𝟓∗ 𝑳𝑪𝑰𝒋 𝒍𝒊𝒕

)       (46) 251 

 252 

Note that when 𝑘2 is a fixed value, 𝑘3 only fluctuates with changes in the LCI of the litter layer. 253 

Also note that because the maximum decay rate of acid-insoluble litter (𝑘3) is determined relative 254 

to the LCI of all litter pools on a given day (j) the parameter itself can also be layer- and time-255 

specific. At present, CO2 emitted from soil DOM (determined by the maximum decay rate, 𝑘8) is 256 

associated with the values presented in Kalbitz et al. (2005). 257 

 258 

𝒌𝟖 =
(((𝟎.𝟎𝟎𝟎𝟎𝟗𝟗)∗(

𝟏

𝟏𝟎𝟎
))+((𝟎.𝟎𝟎𝟎𝟖𝟓𝟓)∗(

𝟏

𝟒𝟐
))+((𝟎.𝟎𝟎𝟏𝟕𝟗𝟔)∗(

𝟏

𝟏𝟑
)))

𝒔𝒖𝒎((
𝟏

𝟏𝟎𝟎
),(

𝟏

𝟒𝟐
),(

𝟏

𝟏𝟑
))

   (47) 259 

 260 
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 261 

Decay rate modifiers 262 

Soil temperature is simulated to have a polynomial relationship with decomposition, modifying 263 

each pool’s decay rate according to the mean soil temperature of that layer on that day. The 264 

rationale behind this is to attempt to capture microbial processes and equate with realistic changes 265 

in enzymatic activity to be consistent with Michaelis-Menten kinetics. This follows the same 266 

function that is used by the STANDCARB 2.0 model (Harmon and Domingo, 2001) and produces 267 

a multiplier based on provided coefficients of optimum decomposition temperature (𝑇𝑜𝑝𝑡), the rate 268 

at which the decomposition rate increases with a 10 °C increase (𝑇𝑄10), the reference temperature 269 

at which that Q10 value was derived (𝑇𝑟𝑒𝑓), the shape of the excessive temperature limitation (𝑇𝑠ℎ𝑝) 270 

and the difference between optimum temperature and the decline above that threshold (𝑇𝑙𝑎𝑔).  271 

𝑻𝒋 𝒎𝒐𝒅
 = 𝒆

(−(
𝒔𝒐𝒊𝒍𝑻𝒋

𝑻𝒐𝒑𝒕+𝑻𝒍𝒂𝒈
))

𝑻𝒔𝒉𝒑

∗ 𝑻𝑸𝟏𝟎

𝒔𝒐𝒊𝒍𝑻𝒋 −𝑻𝒓𝒆𝒇

𝑻𝒓𝒆𝒇     (48) 272 

 273 

Where 𝑇𝑗 𝑚𝑜𝑑
  is the temperature multiplier applied to decomposition of pools on day j, given the 274 

soil temperature on that day ( 𝑠𝑜𝑖𝑙𝑇𝑗 ). An initial MEMS v1.0 evaluation (prior to use with the 275 

LUCAS sites reported in the main manuscript), indicated the model consistently overestimated 276 

decomposition due to the temperature modifier effect. Consequently, the coefficients reported in 277 

Harmon and Domingo (2001) were revised down from those reported in Table 2 of the main 278 

manuscript (𝑇𝑜𝑝𝑡 reduced to 35 °C, 𝑇𝑠ℎ𝑝 reduced to 3, 𝑇𝑙𝑎𝑔 increased to 7 °C and 𝑇𝑄10 increased 279 

to 3). In MEMS v1.0 this single function is used for all pools and over the single soil layer, 280 

however, it is also sufficiently generalizable to represent varying temperature sensitivities of the 281 

different pools (i.e., through the 𝑇𝑄10  coefficient) and of different layers. In which case, the 282 

temperature modifier would be specific to pool x on day j – e.g. 𝑇𝑗 𝑚𝑜𝑑
𝑥 . Furthermore, in future 283 
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versions of the MEMS model, we expect more explicit and complex relationships to temperature 284 

and moisture. 285 

 286 

DOM transfer through soil layers 287 

MEMS v1.0 does not have an explicit hydrological model, however this is likely needed for 288 

MEMS outputs to be reliably compared with empirical data at most sites (soil moisture often has 289 

a considerable influence on SOM formation and decomposition rates). Consequently, this is one 290 

of the first developments intended for MEMS. As a placeholder, leaching is assumed to be a 291 

unidirectional process with DOM lost to deeper soil layers (in the single-layer version) at a given 292 

maximum rate. This follows a first order rate of loss and simply assumes half the highest literature 293 

value found when performing a search of relevant studies. 294 

 295 

DRIVING VARIABLES AND INITIALIZING MEMS V1.0 296 

Site inputs and interpolating daily values from annual measurements 297 

Driving variables of MEMS v1.0 can be either provided manually if they are known, or 298 

interpolated/estimated using basic site information. The format of this input information is 299 

typically in comma separated values (CSV) or any other ASCII text format and in R (R Core 300 

Team, 2018) is stored as a dataframe. As a single-layer, carbon model that only simulates litter 301 

and soil components of a site, MEMS v1.0 includes only a few essential driving variables. These 302 

fall into three major categories (climatic, edaphic and land use). For convenience, a summary of 303 

these essential inputs is provided in Table 3 of the main manuscript. The model operates on the 304 

assumption that a user must have measurements of soil pH, soil bulk density, annual NPP, sand 305 

content and rock fraction in order to simulate the site. Additionally, if daily temperature data are 306 

not known, the maximum, minimum and mean annual temperature can be used to interpolate daily 307 

values. 308 
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 309 

At the time of writing, daily soil temperature is the only climatic variable simulated in MEMS 310 

v1.0. The model can either be initialized using real, site-specific temperature data (if available), 311 

or daily values can be roughly estimated using a simple sine function related to the mean annual 312 

temperature (MAT) of the site (Eq. 49). This sine function provides 365 days of temperature values 313 

that are normally distributed around the MAT (therefore ensuring that the average from these daily 314 

values will also equal the MAT provided), with the peak of this sine on Julian day 182 (July 1st). 315 

This assumes the site is in the northern hemisphere but simulating a site in the southern hemisphere 316 

simply requires changing the sign of the 1.5 coefficient in Equation 49 below. 317 

𝒔𝒐𝒊𝒍𝑻𝒋 =
𝑻𝒓𝒂𝒏𝒈𝒆

𝟐
∗ 𝒔𝒊𝒏((𝟐 ∗ 𝑷𝑰𝒔𝒆𝒒) − 𝟏. 𝟓) + 𝑴𝑨𝑻   (49) 318 

 319 

Where 𝑠𝑜𝑖𝑙𝑇𝑗  is the soil temperature in degrees Celsius on day j, Trange is the difference between 320 

the maximum daily soil temperature and minimum daily soil temperature measured over a year in 321 

degrees Celsius, PIseq is a sequence of 365 values evenly distributed from 0 to pi (≈ 3.14159), 322 

and MAT is the mean annual temperature in degrees Celsius of the site in question. While this 323 

approximation provides more realistic inputs than a constant temperature for each day, where 324 

possible, real, measured values should be imported separately as a list of average daily soil 325 

temperature values.  326 

 327 

It should be noted that this sine function (with an intra-annual variation of 𝑇𝑟𝑎𝑛𝑔𝑒 degrees Celsius) 328 

may not work well for sites near the equator where reduced seasonal dynamics mean that a 329 

smoothed sine curve does not represent reality. The 𝑇𝑟𝑎𝑛𝑔𝑒 coefficient in Equation 49 is ideally 330 

calculated from estimates/measurements of a site’s maximum and minimum soil temperatures of 331 

an average year, included alongside the MAT as inputs. However, these are optional and instead, 332 

a constant 𝑇𝑟𝑎𝑛𝑔𝑒 value (i.e., the same range at all sites simulated) can be set as a global parameter 333 
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as shown in Table 2 in the main manuscript. This should be chosen carefully by the model user to 334 

best represent their site(s). It should also be noted that when simulating deeper soil layers they are 335 

also less likely to see large fluctuations in soil temperature and this should be considered when the 336 

user initializes multi-layer versions of the MEMS model.  337 

 338 

Land use and management conditions 339 

As with the sine function estimate soil temperature, the daily carbon inputs ( 𝐶𝑇𝑗
 

 
𝑖) can also be 340 

estimated crudely according to a simplistic relationship with annual net primary productivity 341 

(NPP) – Equation 50). 342 

𝑪𝑻𝒋
 

 
𝒊 = 𝒅𝒏𝒐𝒓𝒎(𝒔𝒆𝒒𝑫𝑨𝒀, 𝒑𝒆𝒂𝒌𝑫𝑨𝒀, 𝒔𝒅𝑵𝑷𝑷) ∗ 𝒂𝒏𝒏𝑵𝑷𝑷   (50) 343 

 344 

Where 𝐶𝑇𝑗
 

 
𝑖 are the daily total carbon inputs from material i on day j, 𝑠𝑒𝑞𝐷𝐴𝑌 is a list of 365 345 

integers that represent each day of the year, 𝑝𝑒𝑎𝑘𝐷𝐴𝑌 is a parameter value to specify the julian 346 

day of year when inputs peak (around which a normal distribution is generated) and 𝑠𝑑𝑁𝑃𝑃 is the 347 

‘width’ of the distribution around the peak value. The 𝑎𝑛𝑛𝑁𝑃𝑃 value is the site-specific annual 348 

NPP value in gC m-2 yr-1. The 𝑠𝑑𝑁𝑃𝑃 parameter (specified as a global parameter) can be modified 349 

to represent different intra-annual distributions of the total carbon inputs. Specifically, this can 350 

change how ‘quickly’ the inputs are added to the soil (is the whole carbon input added within a 351 

few days or is it spread out over months?). For different land uses, 𝑠𝑑𝑁𝑃𝑃 may change according 352 

to the trends in plant growth at a given site. However, when simulating an equilibrium scenario 353 

where steady-state inputs are assumed, this has little or no effect over long simulations (i.e., 500+ 354 

years). 355 

 356 

In most systems the total annual NPP is not directly equivalent to the total carbon inputs to the 357 

topsoil layer. Consequently, MEMS v1.0 reduces the annual amount based on how much of the 358 
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total can be realistically expected to be input to the specific layer given that site’s land use. For 359 

example, Bolinder et al. (2007) suggest that, in arable sites where all residues are returned to soil, 360 

the proportion of annual NPP that is input to all soil varies between 55% and 78%. Whereas when 361 

all residues are removed, the proportion input can be as little as 21%. Furthermore, not all of this 362 

will be input to the topsoil layer simulated by MEMS v1.0. Consequently, before the daily inputs 363 

are interpolated from an annual value using Equation 50, the total is reduced based on best 364 

estimates for the land use and management routines of the site simulated. 365 

𝒂𝑪𝑻𝒋
 

 
𝒊 = 𝑪𝑻𝒋

 
 
𝒊 ∗ (

𝟏

𝑹𝒕𝒐𝑺𝒊+𝟏
) ∗ (𝟏 − 𝒂𝑯𝑨𝑹𝑽𝒋

 
 
𝒊)     (51) 366 

𝒃𝑪𝑻𝒋
 

 
𝒊 = 𝑪𝑻𝒋

 
 
𝒊 ∗ (

𝑹𝒕𝒐𝑺𝒊

𝑹𝒕𝒐𝑺𝒊+𝟏
) ∗ (𝟏 − 𝒃𝑯𝑨𝑹𝑽𝒋

𝑳
 
𝒊)     (52) 367 

 368 

Where 𝑎𝐶𝑇𝑗
 

 
𝑖 and 𝑏𝐶𝑇𝑗

 
 
𝑖 are the aboveground and belowground carbon inputs of material i on day 369 

j. The aboveground and belowground split is achieved by use of a land-use specific root to shoot 370 

ratio of material i (𝑅𝑡𝑜𝑆𝑖) which are then reduced by fixed fractions (i.e., 0-1) to represent any 371 

losses through harvesting. Another parameter to describe natural losses due to weather (e.g., high 372 

winds) is also possible and resides as a placeholder in the general crop parameters file of MEMS 373 

v1.0. After the realistic aboveground fraction of NPP is derived, it can then replace the 𝐶𝑇𝑗
 

 
𝑖 term 374 

in Equation 50 and be used to interpolate daily inputs. However, the belowground fractions of 375 

NPP also includes inputs that are likely allocated to deeper soil layers than the topsoil simulated 376 

by MEMS v1.0. Consequently, the 𝑏𝐶𝑇𝑗
 

 
𝑖  as calculated in Equation 52 is reduced by use of a 377 

Michaelis-Menten style function (see Kätterer et al., 2011) to proportion roots to the simulated 378 

soil layer. 379 

𝒃𝑪𝑻𝒋  
𝒊 = 𝒃𝑪𝑻𝒋

 
 
𝒊 ∗ (

𝒅𝒆𝒑𝒕𝒉 ∗(𝑹𝒅𝒆𝒑𝟓𝟎+𝑹𝒅𝒆𝒑𝒎𝒂𝒙)

𝑹𝒅𝒆𝒑𝒎𝒂𝒙∗(𝑹𝒅𝒆𝒑𝟓𝟎+ 𝒅𝒆𝒑𝒕𝒉 )
)    (53) 380 

 381 
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Where 𝑏𝐶𝑇𝑗  
𝑖 is the belowground carbon input of material i on day j, 𝑑𝑒𝑝𝑡ℎ  is the depth of the 382 

soil in centimetres, 𝑅𝑑𝑒𝑝50 is the soil depth from the surface at which 50 % of the root biomass is 383 

proportioned in centimeters, and 𝑅𝑑𝑒𝑝𝑚𝑎𝑥 is the maximum rooting depth in centimeters. These 384 

last two parameters are site specific but can be generalized according to different land-uses, 385 

reducing the number of inputs required by the model user. For information regarding these 386 

generalized parameters, see Canadell et al. (1996) and Jackson et al. (1996). For an example 387 

implementation of Equation 53 for the purpose of simulating SOM dynamics, see Poeplau (2016). 388 

 389 

As with the interpolation of daily soil temperature from MAT, estimating daily values of carbon 390 

input are less precise than using real measured data. When possible, empirical data should be 391 

preferred and can be input along with daily climate data.  392 

  393 
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SUPPLEMENTARY FIGURES 394 

(see attached files for high-resolution versions) 395 

 396 

Figure S1 – Site information of all 8192 forest and grassland sites of the LUCAS dataset (Toth et 397 

al., 2013) used for validation of the MEMS v1.0 soil organic matter model. Different shapes 398 

represent different land use classes and all are overlaid over each other (grass = circles, n = 3487; 399 

broadleaved forests = triangle, n = 1590; mixed forest = crosses, n = 1402; coniferous forest = 400 

squares, n = 1713). 401 

 402 

 403 

 404 

 405 
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Figure S2 - Geographical distribution of 154 grassland and forest sites chosen for fractionation (a 406 

representative subsample of the total LUCAS database, see Toth et al., 2013). Reported mean 407 

annual temperature, mean annual precipitation and sand content are indicated for each site along 408 

with Net Primary Productivity (NPP) in 2009 derived from MODIS. Symbols indicate the land 409 

use division within grassland and forest. Cin is the C input, MAP is the mean annual precipitation 410 

and MAT is the mean annual temperature. 411 

 412 

 413 
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Figure S3 - Summary statistics of the site information and soil C stocks for four land use classes (Grassland, n=78; Broadleaved forest, n=25; 414 

Coniferous forest, n=27; Mixed forest, n=24) across Europe. Boxplots indicate the median, first and third quartiles with the box and maximum 415 

and minimum at the extent of the whiskers. Outliers beyond the 95% are shown by individual points. MAT = Mean Annual Temperature; MAP = 416 

Mean Annual Precipitation; NPP = Net Primary Productivity; SOC = Soil Organic Carbon; POM = Particulate Organic Matter; MAOM = Mineral-417 

Associated Organic Matter. 418 

 419 

 420 
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Figure S4 - One-way ANOVA results with pairwise comparisons for each measured fractionation data (bulk soil C stock, mineral-associated 421 

organic matter (MAOM) C stock, particulate organic matter (POM) C stock, and the MAOM:POM ratio) between the four land use classes 422 

(Grassland, n=78; Broadleaved forest, n=25; Coniferous forest, n=27; Mixed forest, n=24) of topsoils (0-20 cm) from 154 sites across Europe. 423 

Significant differences indicated by p-values for each pair (p < 0.001, red; p < 0.01, orange; p < 0.05, yellow; p < 0.1, green; p > 0.1, blue). NPP 424 

= Net Primary Productivity. 425 

  426 
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Figure S5 – Fully-colourised version of main text Figure 2. Global sensitivity analysis results showing the relative contribution of each parameter 427 

to a change in carbon stock of each pool in MEMS v1.0 (leached carbon to deeper soil layers [pool C11] is omitted for clarity). Details of each 428 

parameter and the abbreviations used can be found in Table 2. The sensitivity analysis was repeated annually for simulation times between 1 and 429 

100 years, every 10 years after that to 400-year simulations and every 100 years after that up to a 1000-year simulation. Results are presented on 430 

a log scale in years. Parameters involved in different SOM formation processes are grouped by colour: yellows – parameters that define DOM 431 

leaching from the organic horizon to the soil layer; reds – parameters that affect microbial carbon use efficiency, purples – parameters that affect 432 

organic matter vertical transport to deeper layers, greens – maximum decay rates.   433 

   434 



 

24 

Figure S6 – Variability in model-data residuals compared with mean annual temperature for 8192 forest and grassland sites of the LUCAS dataset 435 

(Toth et al., 2013) simulated with the MEMS v1.0 soil organic matter model. Residuals indicate the modelled minus measured total topsoil (0-20 436 

cm) organic carbon stock in MgC ha-1 for each of four land-use classes (Grassland, red; Broadleaved forest, blue; Coniferous forest, purple; Mixed 437 

forest, green). Sites are divided into high and low groups of mean annual precipitation, MAP (top vs bottom panels), soil texture (left vs right 438 

panels) and annual carbon inputs (provided by net primary productivity, NPP) (alternating panels left to right).   439 

   440 
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Figure S7 - Modifiers for microbial carbon use efficiency and rates of water-soluble and acid-

soluble litter fractions decay by lignocellulosic index (A and B) and initial litter percent 

nitrogen (C). Reproduced with permission from Campbell et al., 2016. 
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SUPPLEMENTARY TABLES 

Table S1 - Fractionation scheme to measure each OM pool of MEMS v1.0. Physical particle 

size is given sequentially from top to bottom (i.e. C9 pools are between 0.45 µm and 53 µm in 

size). Soil particles (< 2mm) are primary particles obtained after soil aggregates dispersion. All 

SOM fractions can be separated sequentially on one soil sample by first isolating the DOM 

through centrifugation, separating the solid subnatant into a light POM and a heavy fraction by 

density (at 1.8 g/cm3) and the latter into a heavy POM and a MAOM by wet sieving (at 53m).  

NDF – Neutral detergent fibre; ADF – Acid detergent fibre; HWE – Hot-water extractable. 
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Table S2 - Optimized parameter values for the mid-point of the nitrogen modifier (Nmid), 

maximum decay rate for coarse, heavy particulate organic matter (k5), maximum decay rate 

for mineral-associated organic matter (k9) and maximum decay rate for light particulate 

organic matter (k10). Depending on what fraction was match (measured-modelled 

comparisons), different parameter values were derived. Root mean square error (RMSE) was 

minimised for each unique parameter set and assessed for each fraction (Mineral-Associated 

Organic Matter, MAOM; total Particulate Organic Matter, POM; bulk soil Soil Organic 

Carbon, SOC). Note that total POM refers to the composite of light and heavy POM 

measurements and the sum of the C5 and C10 pools). Analysis was performed on 154 forest 

and grassland sites from the LUCAS database – see Figure S2 and Figure S3 for more 

information. 

 

Parameter 

Default 

(Initial optimized 

range) 

Optimized for 

POM 

Optimized for 

MAOM 

Optimized for 

total SOC 

Nmid 
1.750 

(0.875 – 2.625) 
1.617 0.923 2.448 

k5 
5.00-4 

(6.0-5 – 1.0-3) 
5.66-4 2.37-4 2.51-4 

k9 
2.19-5 

(1.0-5 – 4.0-5) 
2.33-5 2.98-5 3.97-5 

k10 
2.96-4 

(1.0-4 – 1.0-3) 
4.31-4 2.93-4 3.01-4 

RMSE between measured and modelled C stocks for 154 sites (Mg C ha-1) 

Total SOC 35.5 35.9 35.2 33.5 

POM-C 23.4 23.5 23.1 25.5 

MAOM-C 17.9 17.8 17.5 20.2 

  



 

28 

SUPPLEMENTARY REFERENCES 

Abramoff, R., Xu, X., Hartman, M., O’Brien, S., Feng, W., Davidson, E., Finzi, A., Moorhead, 

D., Schimel, J., Torn, M. & Mayes, M. A.: The Millennial model: in search of measurable 

pools and transformations for modeling soil carbon in the new century. Biogeochemistry, 

137(1-2), 51-71, 2018. 

Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A., & VandenBygaart, A. J.: An 

approach for estimating net primary productivity and annual carbon inputs to soil for 

common agricultural crops in Canada. Agriculture, Ecosystems & Environment, 118(1-

4), 29-42, 2007. 

Braakhekke, M. C., Beer, C., Hoosbeek, M. R., Reichstein, M., Kruijt, B., Schrumpf, M., & 

Kabat, P.: SOMPROF: A vertically explicit soil organic matter model. Ecological 

modelling, 222(10), 1712-1730, 2011. 

Campbell, E. E., Parton, W. J., Soong, J. L., Paustian, K., Hobbs, N. T., & Cotrufo, M. F.: 

Using litter chemistry controls on microbial processes to partition litter carbon fluxes 

with the litter decomposition and leaching (LIDEL) model. Soil Biology and 

Biochemistry, 100, 160-174, 2016. 

Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., & Schulze, E. D.: 

Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4), 583-

595, 1996. 

Harmon, M., and Domingo, J.: A User’s Guide to STANDCARB Version 2.0: A Model to 

Simulate the Carbon Stores in Forest Stands, Dep. of For. Sci., Oreg. State Univ., 

Corvallis, 2001. 

Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D.: A 

global analysis of root distributions for terrestrial biomes. Oecologia, 108(3), 389-411, 

1996. 

Kalbitz, K., Schwesig, D., Rethemeyer, J., & Matzner, E.: Stabilization of dissolved organic 

matter by sorption to the mineral soil. Soil Biology and Biochemistry, 37(7), 1319-1331, 

2005. 

Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H., Menichetti, L.: Roots contribute 

more to refractory soil organic matter than aboveground crop residues, as revealed by a 

long-term field experiment. Agriculture Ecosystems and Environment, 141(1-2), 184–

192, 2011. 

Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., & Kleber, M.: Mineral 

protection of soil carbon counteracted by root exudates. Nature Climate Change, 5(6), 

588, 2015. 

Kothawala, D. N., Moore, T. R., & Hendershot, W. H.: Adsorption of dissolved organic carbon 

to mineral soils: A comparison of four isotherm approaches. Geoderma, 148(1), 43-50, 

2008. 

Ludwig, M., Achtenhagen, J., Miltner, A., Eckhardt, K. U., Leinweber, P., Emmerling, C., & 

Thiele-Bruhn, S.: Microbial contribution to SOM quantity and quality in density fractions 

of temperate arable soils. Soil Biology and Biochemistry, 81, 311-322, 2015. 

Mayes, M. A., Heal, K. R., Brandt, C. C., Phillips, J. R., & Jardine, P. M.: Relation between 

soil order and sorption of dissolved organic carbon in temperate subsoils. Soil Science 

Society of America Journal, 76(3), 1027-1037, 2012. 

Moorhead, D. L., Lashermes, G., Sinsabaugh, R. L., & Weintraub, M. N.: Calculating co-

metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biology 

and Biochemistry, 66, 17-19, 2013. 

Poeplau, C.: Estimating root: shoot ratio and soil carbon inputs in temperate grasslands with 

the RothC model. Plant and soil, 407(1-2), 293-305, 2016. 



 

29 

R Core Team: R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/, 2018. 

Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L., & Richter, A.: Carbon use efficiency of 

microbial communities: stoichiometry, methodology and modelling. Ecology letters, 

16(7), 930-939, 2013. 

Six, J., Conant, R. T., Paul, E. A., & Paustian, K.: Stabilization mechanisms of soil organic 

matter: implications for C-saturation of soils. Plant and soil, 241(2), 155-176, 2002. 

Sokol, N. W., Sanderman, J., & Bradford, M. A.: Pathways of mineral‐associated soil organic 

matter formation: Integrating the role of plant carbon source, chemistry, and point of 

entry. Global change biology. https://doi.org/10.1111/gcb.14482, 2018. 

Soong, J. L., Parton, W. J., Calderon, F., Campbell, E. E., & Cotrufo, M. F.: A new conceptual 

model on the fate and controls of fresh and pyrolized plant litter decomposition. 

Biogeochemistry, 124(1-3), 27-44, 2015. 

Toth G., Jones A., Montanarella L.: LUCAS Topsoil Survey — methodology, data and results. 

In: JRC Technical Reports. European Union, Luxemburg, 2013. 

https://www.r-project.org/
https://doi.org/10.1111/gcb.14482

