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Abstract. While heterotrophic respiration (Rh) makes up
about a quarter of gross global terrestrial carbon fluxes,
it remains among the least-observed carbon fluxes, partic-
ularly outside the midlatitudes. In situ measurements col-
lected in the Soil Respiration Database (SRDB) number only
a few hundred worldwide. Similarly, only a single data-
driven wall-to-wall estimate of annual average heterotrophic
respiration exists, based on bottom-up upscaling of SRDB
measurements using an assumed functional form to account
for climate variability. In this study, we exploit recent ad-
vances in remote sensing of terrestrial carbon fluxes to esti-
mate global variations in heterotrophic respiration in a top-
down fashion at monthly temporal resolution and 4◦× 5◦

spatial resolution. We combine net ecosystem productivity
estimates from atmospheric inversions of the NASA Car-
bon Monitoring System-Flux (CMS-Flux) with an optimally
scaled gross primary productivity dataset based on satellite-
observed solar-induced fluorescence variations to estimate
total ecosystem respiration as a residual of the terrestrial car-
bon balance. The ecosystem respiration is then separated into
autotrophic and heterotrophic components based on a spa-
tially varying carbon use efficiency retrieved in a model–data
fusion framework (the CARbon DAta MOdel fraMework,
CARDAMOM). The resulting dataset is independent of any
assumptions about how heterotrophic respiration responds to
climate or substrate variations. It estimates an annual aver-
age global average heterotrophic respiration flux of 43.6±
19.3 Pg C yr−1. Sensitivity and uncertainty analyses showed
that the top-downRh are more sensitive to the choice of input
gross primary productivity (GPP) and net ecosystem produc-
tivity (NEP) datasets than to the assumption of a static car-
bon use efficiency (CUE) value, with the possible exception
of the wet tropics. These top-down estimates are compared

to bottom-up estimates of annual heterotrophic respiration,
using new uncertainty estimates that partially account for
sampling and model errors. Top-down heterotrophic respira-
tion estimates are higher than those from bottom-up upscal-
ing everywhere except at high latitudes and are 30 % greater
overall (43.6 Pg C yr−1 vs. 33.4 Pg C yr−1). The uncertainty
ranges of both methods are comparable, except poleward of
45◦ N, where bottom-up uncertainties are greater. The ra-
tio of top-down heterotrophic to total ecosystem respiration
varies seasonally by as much as 0.6 depending on season and
climate, illustrating the importance of studying the drivers of
autotrophic and heterotrophic respiration separately, and thus
the importance of data-driven estimates of Rh such as those
estimated here.

1 Introduction

The terrestrial carbon-cycle–climate feedback (together with
atmospheric processes) is a dominant contributor to the un-
certainty of temperature projections in 2100 (Booth et al.,
2012). The future effect of carbon–climate feedbacks de-
pends on the climate sensitivity of net terrestrial carbon
fluxes, which are a close balance of net primary productiv-
ity, disturbance-related fluxes, and heterotrophic respiration
(Rh). The overall sensitivity of the terrestrial carbon uptake
is thus dependent on the climatic response of these fluxes.
Model-based estimates of global Rh vary by almost 50 %
and are highly uncertain (Shao et al., 2013), especially in the
tropics (Tian et al., 2015). The climatic sensitivity of Rh is
also the primary driver of the large divergence across mod-
eled global soil carbon pools (Tian et al., 2015; Todd-Brown
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et al., 2013), which make up the largest terrestrial carbon
pool (Jobbágy and Jackson, 2000).

Few in situ measurements exist to constrain Rh, particu-
larly in the tropics (Xu et al., 2016). For example, the in-
ternational Soil Respiration DataBase (SRDB), which aims
to compile data from all published studies of soil and het-
erotrophic respiration (Bond-Lamberty and Thomson, 2010),
includes only 21 sites with Rh information in Central and
South America and only 2 in Africa. The highly limited
number of Rh data is likely affected by the relative diffi-
culty and uncertainty of methods for partitioning total soil
respiration (Rs) fluxes – which can be easily measured us-
ing respiration chambers – into autotrophic and heterotrophic
components. Performing this partitioning requires isotopic
measurements or destructive techniques such as girdling or
trenching (Ryan and Law, 2005). Like Rs, total ecosystem
respirationReco is also often considered a counterpart to pho-
tosynthetic fluxes but is rarely partitioned further. However,
because most carbon cycle and ecosystem models represent
autotrophic and heterotrophic components separately and be-
cause the climatic and soil sensitivities of the autotrophic and
heterotrophic components of soil respiration differ (Metcalfe
et al., 2010; Scott-Denton et al., 2006), it is challenging to
translate soil or ecosystem respiration data to improvements
of model representations for Rh. Although meta-analyses us-
ing data such as the SRDB have been used to understand the
sources of spatial variability in soil respiration (Hursh et al.,
2016) and heterotrophic respiration (Shao et al., 2013) rates,
such studies are limited (by data availability) to considera-
tion of annual respiration fluxes and sparse, discrete points
in space. Thus, while gross primary productivity (GPP) is
highly uncertain (Anav et al., 2015), GPP and Reco are far
more constrained by observations than Rh, which must be
considered among the most uncertain fluxes in the carbon
cycle. Temporally variable and spatially extensive estimates
of Rh are therefore needed to better understand its drivers.

Starting several decades ago with Raich and
Schlesinger (1992), several authors have tried to upscale
sparse measurements to estimate global Rs. Most commonly,
this is performed using a spatially explicit exponential model
of the relationship between Rs and temperature, modified by
land cover (Adachi et al., 2017), soil property (Chen et al.,
2013), or soil moisture (Xu et al., 2016) limitations. Recent
papers have also used machine learning methods to upscale
the relationship between Rs and climate and biogeophysical
properties, including random forest models (Jian et al., 2018)
and artificial neural networks (Zhao et al., 2017). However,
no similar effort has been made for estimating global Rh.
Only Hashimoto et al. (2015) have extended a rigorous
estimate of global, upscaled Rs to an estimate of global
Rh. This was achieved by employing a previously noted
apparent relationship between annual Rs and Rh at a given
site (Bond-Lamberty et al., 2004). However, the approach
of Hashimoto et al. (2015) assumes a specific functional
form for the relationship between climate and Rs (and thus

Rh), so that investigations of climatic sensitivities of Rh
with this dataset are potentially circular. Furthermore, the
approach assumes that base respiration rates and sensitivity
parameters for temperature and precipitation to soil moisture
are constant across the globe. This approach therefore
cannot account for known dependencies of heterotrophic
respiration on microbial biomass and composition (Johnston
and Sibly, 2018; Walker et al., 2018; Wieder et al., 2013;
Zhou et al., 2011) and substrate type (Cornwell et al., 2008).
Modeling Rh as a function of precipitation alone is also
inconsistent with theoretical, laboratory, and field studies
that have found Rh to be a function of soil water potential
(Manzoni et al., 2012; Moyano et al., 2012, 2013), which
is nonlinearly related to precipitation depending on soil
properties, vegetation cover, topography, and more.

In this paper, we introduce an alternative approach for
estimating Rh at global or regional scales using remote
sensing. Rather than a bottom-up approach for aggregating
sparse point-based measurements, we propose a “top-down”
method that naturally captures average values over large
scales. The method derives Rh as the residual of satellite-
constrained estimates of the carbon balance: net ecosystem
productivity (NEP), gross primary productivity (GPP) and
Ra. The NEP (the net difference between photosynthetic and
respiration fluxes: NEP= GPP−Ra−Rh) is based on atmo-
spheric inversions of satellite observations of column xCO2
and xCO, and GPP is based on upscaling solar-induced flu-
orescence (SIF). The Ra is calculated based on GPP and
carbon use efficiency estimates from a remote-sensing con-
strained model–data fusion framework. The top-down ap-
proach is applied to the period 2010–2012. Coarse-resolution
Rh estimates are difficult to validate using in situ measure-
ments because of representativeness errors. Instead, we rigor-
ously compare the top-down method and its uncertainties to
those of bottom-up Rh estimation, in this case as performed
by Hashimoto et al. (2015).

2 Methods

2.1 Top-down estimates

2.1.1 Top-down approach

As summarized in Fig. 1, the top-down Rh at grid scale is
calculated as the residual of observationally constrained esti-
mates of the carbon balance:

Rh = GPP−NEP−Ra. (1)

The combination of NEP and GPP allows calculation of
the ecosystem respiration Reco, but an estimate of Ra is re-
quired to separate Reco into Ra and Rh components. The
Ra is calculated based on the GPP and on carbon use effi-
ciency (CUE). Specifically, the autotrophic respiration Ra is
assumed to be proportional to GPP according to a spatially
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Figure 1. Schematic diagram of process used to calculate het-
erotrophic respiration Rhe. Input datasets are outlined in red, and
data sources are described in blue italics. Arrows indicate one flux
is used to calculate another. Data sources are described in detail in
Sect. 2.1.2.

variable but temporally constant CUE, where CUE is defined
as the ratio of net primary production (NPP) to GPP. Thus,
CUE= 1−Ra/GPP. Equation (1) then becomes

Rh = GPP−NEP− (1−CUE)GPP. (2)

The CUE is commonly assumed to be constant at a given
location (Gifford, 2003; McCree and Troughton, 1966) but
has been found to vary depending on ecosystem type, stand
age, and forest management (Collalti et al., 2018; Gifford,
2003; De Lucia et al., 2007). Note that by calculating au-
totrophic respiration as proportional to GPP, we classify the
release of CO2 from decomposition of root exudates by my-
corrhizal fungi (Trumbore, 2006) as autotrophic rather than
heterotrophic respiration. This is arguably a misclassification
but is consistent with most in situ methods for measuring het-
erotrophic respiration (e.g., girdling, trenching, or isotopic
measurements) (Ryan and Law, 2005).

The use of this method to calculate spatiotemporal varia-
tions in Rh is enabled by the fact that estimates of each of
NEP, GPP, and CUE are available that are based on remote
sensing and data assimilation. These datasets are further dis-
cussed in the following section.

2.1.2 Datasets used and implementation

The NEP is determined from an atmospheric inversion of re-
motely sensed columnar carbon dioxide and carbon monox-
ide observations in the NASA Carbon Monitoring System-
Flux (CMS-Flux) system. It is described in detail in Bow-
man et al. (2017) and Liu et al. (2017) but summarized here
for convenience. It has been validated using methods in-
troduced in Liu and Bowman (2016). CMS-Flux estimates
carbon fluxes through a 4-D variational inversion approach
that ingests columnar xCO2 observations from the Green-
house gases Observing Satellite (GOSAT) and CO observa-
tions from the Measurement of Pollution in the Troposphere

Instrument (MOPITT) (Worden et al., 2010) into the GEOS-
Chem atmospheric transport model and its adjoint (Bey et
al., 2001; Henze et al., 2007; Nassar et al., 2010; Sunthar-
alingam et al., 2004). The net fluxes are further decomposed
into biomass burning, oceanographic, fossil fuel, and chem-
ical sources (including shipping, aviation, and others), as
well as NEP components. The biomass burning emissions are
constrained by the MOPITT CO observations and published
CO/CO2 ratios. Anthropogenic and oceanographic priors for
the fluxes come from the Fossil Fuel Land Data Assimila-
tion System (Asefi-Najafabady et al., 2014; Rayner et al.,
2010) and ECCO2-Darwin oceanographic model (Brix et
al., 2015), respectively, and NEP flux priors come from the
Carnegie–Ames–Stanford Approach (CASA) model simula-
tions. As shown in Fig. S1 in the Supplement, the posterior
and prior fluxes of NEP differ significantly almost every-
where: 42 % of pixels have a normalized root-mean-square
difference between the prior and posterior fluxes greater than
1, consistent with a previous observing system simulation ex-
periment for the CMS-Flux system (Liu et al., 2014). The
total global NEP averages to 5± 13 Pg C yr−1 across 2010–
2012, and the uncertainty of the NEP estimates is assumed to
be normally distributed with a spatially and temporally vary-
ing standard deviation estimated in the atmospheric inversion
via a Monte Carlo approach (Bousserez et al., 2015).

The GPP is determined based on an optimal rescaling of
SIF observations. SIF is a by-product of photosynthesis and
therefore provides direct information about the magnitude
of GPP (Porcar-Castell et al., 2014). The information con-
tent of SIF for photosynthesis has been demonstrated using
field-scale measurements (Yang et al., 2015) and by compar-
ing satellite-based data to eddy-covariance towers (Guanter
et al., 2014; Joiner et al., 2014; Sun et al., 2017; Wood et al.,
2017; Zuromski et al., 2018), carbon dioxide mole fractions
in Amazonia (Parazoo et al., 2013), and machine-learning-
based estimates of GPP (Alemohammad et al., 2017). De-
spite the abundance of evidence that SIF carries information
about GPP, the linear constant of proportionality between SIF
and GPP depends on the light use efficiency of the vegeta-
tion in question, as well as the satellite efficiency for cap-
turing photons, and is difficult to estimate a priori. Here, we
use GPP estimates from Parazoo et al. (2014), who used a
Bayesian approach to determine an optimal seasonally and
spatially varying scaling parameter between SIF and prior
GPP along with explicit uncertainty estimates. Monthly GPP
at each grid point is inferred from a precision-weighted min-
imization of SIF, which is regressed against biome-specific
GPP from upscaled flux tower data (Frankenberg et al., 2011;
Jung et al., 2011) and prior GPP from eight terrestrial ecosys-
tem models in the TRENDY project (Sitch et al., 2015).
This approach has been used to examine regional GPP re-
sponses to climate variability and drought and has been ex-
tensively validated against flux tower data (Bowman et al.,
2017; Liu et al., 2017; Parazoo et al., 2014, 2015), though
it remains uncertain. The average global GPP across 2010–
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2012 is 114± 41 Pg C yr−1, and the uncertainty of the GPP
estimates is determined as in Parazoo et al. (2014) and as-
sumed to follow a normal distribution.

The CUE is determined from a 10-year (2001–2010)
run of CARDAMOM (CARbon DAta MOdel fraMework)
(Bloom and Williams, 2015; Bloom et al., 2016), in which
uncertainties are explicitly represented as probability density
functions computed from an ensemble. CARDAMOM is a
model–data fusion system that uses a Bayesian framework
to determine global ecological parameter combinations that
minimize the mismatch with observations while still satisfy-
ing a set of ecological realism and dynamic stability con-
straints to regularize the inversion. CARDAMOM is built
on the underlying Data Assimilation Linked Ecosystem Car-
bon model version 2, DALEC2 model (Bloom and Williams,
2015; Williams et al., 2005), with assimilation of observa-
tions of leaf area index (LAI), burned area, tropical biomass,
and soil carbon (Bloom et al., 2016). Within CARDAMOM,
a constant fraction fa of photosynthetic carbon gain is as-
sumed to be allocated to autotrophic respiration (note that
fa = 1−CUE). The fraction fa is directly linked to the allo-
cation fractions of photosynthetic carbon to other pools (la-
bile, wood, foliar, and fine root carbon) through conservation
of mass. The allocation fractions directly influence the ob-
served quantities used for CARDAMOM parameterization
(e.g., LAI, tropical biomass, and soil carbon) and are sub-
ject to several ecological realism constraints. The resulting
range of global CUE (between 0.35 and 0.6, shown in Fig. 2)
is consistent with results found from meta-analyses (Gifford,
2003; De Lucia et al., 2007) and is also supported by theoret-
ical considerations based on conservation of mass (Van Oijen
et al., 2010) and plant carbon dynamics (Dewar et al., 1998).
Average values of CARDAMOM CUE are generally lowest
in the tropics, consistent with previous site-specific observa-
tions (Amthor, 2000; Chambers et al., 2004; De Lucia et al.,
2007; Piao et al., 2010). The zonal mean variation in CAR-
DAMOM CUE (not shown) also compares favorably with
that of a recently produced random forest-derived global up-
scaling of in situ CUE measurements, decreasing at low lati-
tudes and increasing at high latitudes to similar ranges (Tang
et al., 2019), across a similar range (0.43 to 0.52 for CAR-
DAMOM and 0.42 to 0.58 for the estimates of Tang et al.,
2019).

Autotrophic respiration may depend on stored supplies of
carbon, causing a decoupling between the seasonality of GPP
and Ra and thus temporal variation in CUE. This is particu-
larly common in deciduous trees at midlatitudes and high lat-
itudes (Epron et al., 2012; Kuptz et al., 2011). Less is known
about seasonal variations in CUE in the tropics. Although
small variations in CUE (e.g., <= 0.05) have been observed
in both highland and lowland Amazonian sites, these varia-
tions were found to be small relative to seasonal variations in
allocation rates to non-respiratory carbon pools (Doughty et
al., 2015; Rowland et al., 2014). Nevertheless, the assump-
tion of constant CUE likely adds error to the top-down esti-

Figure 2. Global variations in mean carbon use efficiency from
CARDAMOM.

mates of Rh. This error is partially accounted for by the wide
uncertainty range used for CUE. We further performed a sen-
sitivity analysis in which the Rh derived using an assumption
of constant CUE was compared to the Rh with a systematic
seasonal variability in CUE. Although little is known about
the true temporal variation in CUE across the globe, here we
assumed a seasonal cycle of CUE proportional to that of GPP
but renormalized to have a mean equal to the constant CAR-
DAMOM CUE and a standard deviation of 0.1 at each pixel.
That is,

CUE(x,y, t)= CUECARD (x,y)+

+
0.1

SDt
(
GPP(x,y, t)−GPP

) (GPP(x,y, t)−GPP
)
, (3)

where (x,y) determines pixel location in space, t is the
monthly time vector, CUECARD(x,y) is the constant CUE
determined from CARDAMOM, SD refers to standard devi-
ation, and the overbar denotes a time average over the entire
period. The use of a CUE proportional to GPP is chosen so
as to provide a structure to the temporal variability of CUE
that is potentially realistic for each pixel (i.e., not completely
random), even if little is known about the overall controls
on temporal variability in CUE. The 0.1 standard deviation
magnitude is fairly conservative unless true temporal varia-
tion in CUE is much larger than spatial variation – the spatial
standard deviation of CARDAMOM CUE across all global
land surfaces is 0.06.

Additional sensitivity analyses were also performed to test
the sensitivity of Rh to errors in the GPP and NEP datasets.
To test the sensitivity to GPP, we compared Rh with an alter-
native set of Rh estimates calculated using GPP from FLUX-
COM (Tramontana et al., 2016). FLUXCOM estimates of
GPP are derived as the median value across an ensemble
of estimates from 11 different machine learning models ap-
plied to meteorological drivers from reanalysis and remote
sensing and trained on eddy-covariance observations. The
uncertainty of the FLUXCOM GPP is calculated based on
the standard deviation across the different machine learn-
ing methods. Note that FLUXCOM is a bottom-up method
and thus carries many of the same uncertainties as other
bottom-up methods (see Sect. 4.1), particularly in globally
under-sampled regions. For example, only 17 of 225 eddy-
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covariance tower sites used to train the machine learning
models are in the Southern Hemisphere. Furthermore, the
FLUXCOM data are sensitive to the quality of the GPP parti-
tioning of the observed tower NEP. Nevertheless, we use the
FLUXCOM dataset here to study the sensitivity ofRh to GPP
because it is widely used, well-regarded, and cross-validated
against withheld parts of the eddy-covariance record. While
FLUXCOM also estimates NEP, its NEP predictions are of
lower quality than those of other fluxes (Tramontana et al.,
2016). Furthermore, it shows significant bias (Exbrayat et
al., 2019). Instead, taking advantage of the low magnitude of
NEP, we test the sensitivity to NEP data quality by comput-
ing Rh assuming NEP is zero everywhere across the globe
and across the time series. Because an uncertainty in NEP
still needs to be assumed, we simply use the same uncertain-
ties from the CMS-Flux product.

When calculating Rh in either the main or sensitivity anal-
yses, all datasets are averaged to the same monthly temporal
and 4◦ latitude× 5◦ longitude spatial resolution, the native
resolution of flux estimates from CMS-Flux. We use NEP
and GPP data over the period 2010–2012, when the CMS-
Flux data have been validated in the most detail. However,
even at 4◦ by 5◦ resolution, the precision of CMS-Flux data
can still be poor. To reduce the random component of the
error, all visual maps are presented after applying a 3 pixel
by 3 pixel moving average smoother, as in Liu et al. (2018).
When calculating Rh, a 4000-member ensemble is used for
explicit simulation of the uncertainty distributions of each of
the input variables. Additionally, a constraint on the signs of
Rh, Ra, and GPP is used to ensure the estimated Rh is phys-
ically realistic (Bloom and Williams, 2015; Parazoo et al.,
2018) – each of these three fluxes is required to be positive. A
simple accept–reject sampling scheme is used that rejects en-
semble members that violate this criterion. For each of these
ensemble members, new samples of the uncertainty distribu-
tion of NEP, GPP, and CUE are drawn until each of Rh, Ra,
and GPP for that ensemble member are positive. Using such
a constraint is equivalent to using a Bayesian scheme with
prior distributions for Rh, Ra, and GPP that are 0 for nega-
tive values and 1 otherwise.

The uncertainty of the resultant Rh is a combination of the
uncertainty in the three input datasets: NEP, GPP, and CUE.
There is some nonlinearity to this combination because the
positive flux constraints limit what uncertainty combinations
are considered to lead to acceptable Rh. To estimate how
much each of these datasets contributes to the overall Rh un-
certainty, Rh is reestimated three times, but in each case only
one of the input datasets is given nonzero uncertainty. The re-
sultant magnitude of the uncertainty in Rh is then compared.

2.2 Bottom-up estimates

2.2.1 Approach

To the best of our knowledge, only Hashimoto et al. (2015)
have previously estimatedRh based on upscaling in situ mea-
surements. Their method is based primarily on estimatingRs,
for which a simple functional form adapted from Raich et
al. (2002) is used:

Rs = F × e
aT−bT 2

×
αPt + (1−α)Pt−1

K +αPt + (1−α)Pt−1
, (4)

where F (gC m−2 d−1) is a base rate and a (◦C−1) and
b (◦C−2) control the sensitivity to temperature T (◦C).
The Rs also depends on the current-month precipitation Pt
(cm month−1) and the previous-month precipitation Pt−1
(cm month−1), with the relative weight of each determined
by a (–). The K (cm month−1) parameter also controls the
influence of precipitation. For lack of more information, all
parameters are assumed to be globally constant, so that the
only spatial variation is provided by variations in the climatic
drivers. Hashimoto et al. (2015) used temperature and pre-
cipitation from the Climate Research (CRU) 3.21 (Harris et
al., 2014) and fit the above function to observations from the
SRDB using a Bayesian Markov Chain Monte Carlo scheme.
To determine the annual averageRh at a location based on an-
nual Rs, Hashimoto et al. (2015) employed a previously de-
termined relationship between annual soil and heterotrophic
respiration (Bond-Lamberty et al., 2004):

ln(Rh)= c+ d ln(Rs) , (5)

where c = 1.22 and d = 0.73. While it is in theory possible to
apply Eq. (5) to any number of recent bottom-up Rs estima-
tion approaches, we apply it here only to the estimates from
Hashimoto et al. (2015) in Eq. (4), both for consistency with
the literature and since the data from Hashimoto et al. (2015)
are among the most commonly used bottom-up Rs estimates.

2.2.2 Parametrization and implementation

We implemented Eq. (4) using climate data from the CRU
4.01 and using the maximum a posteriori parameter values
from Hashimoto et al. (2015) (that is, F = 1.68 gC m−2 d−1,
a = 0.0528 ◦C−1, b = 0.000628 ◦C−2, α = 0.98, and K =

1.20 cm month−1) to determine monthly resolution estimates
of Rs. The Rs estimates were then temporally aggregated to
determine annual Rh using Eq. (5). These are referred to as
the bottom-up estimates below.

Extrapolating from a limited sample of parameters with
multiple fitted parameters carries the risk of overfitting. For-
tunately, several measurements of Rs and Rh have been
added to the SRDB since the Hashimoto et al. (2015) study;
the number of Rs measurements has increased by 20 %, from
1638 to 1979. Similarly, the number of measurements of het-
erotrophic respiration has increased from 53 measurements

www.biogeosciences.net/16/2269/2019/ Biogeosciences, 16, 2269–2284, 2019



2274 A. G. Konings et al.: Global satellite-driven estimates of heterotrophic respiration

when Bond-Lamberty et al. (2004) originally derived Eq. (4)
to 362 measurements in the most recent SRDB version. To
test the applicability of the original parameters, we also im-
plemented the bottom-up approach at the increased num-
ber of SRDB location-years available since Hashimoto et
al. (2015), i.e., all datapoints in SRDB v20180126. Consis-
tent with the original study, for SRDB experiments for which
the observed annual average was determined over a range of
years, we only used the middle year in the range. We com-
pared simulated to observed annual Rs and Rh for both the
case of the maximum a posteriori parameters from the orig-
inal Hashimoto et al. (2015) study and for a set of updated
model parameters determined by a nonlinear least-squares
fit. For the updated parameters, the coefficients of the Rh–Rs
relationship are also optimized. Because the updated param-
eters did not perform significantly better (see Sect. 3.2), the
original parameters were used in the rest of this study.

No uncertainty was considered in Hashimoto et al. (2015).
To determine the uncertainty of the bottom-up estimates, we
tested them against SRDB observations. Measurements in
the SRDB are highly concentrated in the midlatitudes: 74 %
of Rh measurements and 78 % of Rs measurements were
made at a latitude greater than 30◦ N. The uncertainty of the
bottom-up estimates is therefore likely to exhibit significant
spatial and temporal variability due to sampling error alone,
on top of errors related to the imposed functional form and its
parameterization. To find one or more covariates between the
expected uncertainty of Rh and other factors, the errors as-
sociated with bottom-up implementations at the SRDB sites
were linearly regressed against the following possible pre-
dictors: latitude, longitude, mean and standard deviation of
precipitation, mean and standard deviation of temperature,
and mean predicted Rh. Several nonlinear functions of lat-
itude were also tested. Of these, the mean predicted Rh and
latitude were chosen as predictors because they had the great-
est explanatory power (R = 0.23 when used in combination).
Adding more predictor variables does not further increase the
adjusted R2.

In order to determine a spatiotemporally variable uncer-
tainty range we calculated the 25th and 75th percentile of all
362 Rh errors associated with using the bottom-up model.
These formed a baseline globally averaged confidence inter-
val δbase that was then modified linearly based on the mod-
eled Rh and latitude (consistent with the linear regression
tests mentioned above):

δi = δbase,i

(
γ1+ γ2R

bu
h + γ3lat
γ4

)
, (6)

where i denotes either the 25th or 75th percent confidence
interval, Rbu

h is the predicted mean bottom-up heterotrophic
respiration rate, lat is the pixel latitude, γ1−3 are regression
parameters, and γ4 is the mean error of the bottom-up method
across the SRDB dataset. Although the amount of variability
in error captured using this method (R = 0.23) is still ex-

tremely low, no alternative ways of capturing the expected
spatiotemporal variability in bottom-up Rh uncertainty exist,
and poorly accounting for this variability is still expected to
be more useful than not accounting for it at all.

2.3 Comparison analyses

We compared the mean and uncertainty estimates of the top-
down and bottom-up annual Rh across latitudes. Because no
bottom-up estimates of the seasonal cycle of Rh are avail-
able, we further compared the seasonality of Rh in different
regions to the seasonality of Rs from bottom-up estimates
and Reco from the top-down estimates. Pixels are seasonally
aggregated for simplicity and plotting and to reduce noise
from the propagation of atmospheric inversion uncertainty.
In particular, we consider high-latitude regions (latitudes
greater than 55◦ N/S), midlatitudes (latitudes between 30 and
55◦ N/S), dry tropics (latitudes < 30◦ N/S and mean annual
precipitation less than 1500 mm yr−1), and wet tropics (lati-
tudes < 30◦ N/S and mean annual precipitation greater than
1500 mm yr−1). To calculate the uncertainty of the bottom-
up Rs estimates, a method analogous to that used for deter-
mining the 25th–75th confidence interval of bottom-up Rh
was used.

3 Results

3.1 Annual average Rh from top-down and bottom-up
estimates

3.1.1 Top-down Rh

The annual mean tropical Rh is 450± 200 gC m−2 yr−1. The
spatial pattern of mean annual Rh is similar to that of GPP,
(Fig. 3a, R2

= 0.97, p < 0.001), as expected. More complex
dynamics are revealed by considering the coefficient of vari-
ation (CV) of Rh (e.g., temporal standard deviation divided
by mean per grid cell, Fig. 3b). The CV does not closely fol-
low known spatial patterns in biomes, GPP, turnover times,
or other carbon parameters (e.g., Anav et al., 2015; Bloom
et al., 2016; Carvalhais et al., 2014; FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2009), as it reflects a combination of all these
factors. More information about the temporal variability of
substrate availability (e.g., litter and soil organic matter) is
needed to disentangle the climatic and biogeophysical con-
trols on Rh dynamics. This is left for a future investigation.
Note that the high CV values in semiarid regions are likely
due to the near-zero mean Rh there.

Figure 4 shows the results of sensitivity analyses for each
of GPP (by comparing the Rh estimates with those derived
using GPP from FLUXCOM), NEP (by comparing with Rh
estimates derived assuming zero NEP), and CUE (by com-
paring withRh estimates derived assuming a seasonally vary-
ing CUE, as described in Sect. 2.1). When the GPP data
source is changed to FLUXCOM (Fig. 4a–b), the tempo-
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Figure 3. Spatial variability in top-down Rh. Maps of (a) mean Rh (gC m2 yr−1) and (b) temporal coefficient of variation in top-down Rh,
calculated based on monthly data over 2010–2012.

ral dynamics of Rh are most varied in the central American
Great Plains, Australia, and in the tropics, especially in the
Amazon. However, other hot spots for a mean difference ex-
ist, such as in Central Canada and Eastern Europe. Changing
to using zero value NEP (Fig. 4c–d) most significantly in-
troduces a mean difference in the southern Amazon and in
Central Africa, though, interestingly, the signs of the result-
ing difference are opposite between the continents. The tem-
poral dynamics of these regions is also the most sensitive to
inclusion of actual NEP estimates in the Rh calculation. De-
spite the fact that NEP’s global mean value is more than an
order of magnitude smaller than that of GPP, neglecting NEP
causes large changes to the estimated Rh over much of the
globe, showing the value of including NEP estimates in the
top-down Rh calculation. Note, however, that the mean devi-
ation in Rh for either the NEP or GPP sensitivity analyses is
still smaller than the mean difference between the top-down
and bottom-upRh over most of the world. The only exception
to this is in the high latitudes where all differences between
estimates are of a similar magnitude.

Lastly, Fig. 4e and f show the results of the sensitivity anal-
ysis assuming a temporally variable CUE. Overall, this sen-
sitivity analysis leads to far smaller changes to Rh than those
for GPP and NEP. The magnitude of the Rh change result-
ing from a change in CUE depends on whether the seasonal-
ity of GPP aligns with Rh and whether the changed CUE
causes unrealistic flux combinations across any of the en-
semble members. The difference in time-averaged Rh is rel-
atively small – no more than 50 g C m−2 yr−1 for any pixel.
Despite the change in seasonality of CUE, the temporal dy-
namics of the 36 months of estimated Rh also remain rela-
tively similar in the sensitivity analysis. More than 90 % of
pixels have an R2 between the Rh from constant CUE and
the Rh from seasonally variable CUE that are greater than
0.8. The largest difference in Rh seasonality occurs in the
wet tropics. In these regions, the average GPP is largest, and
a change in CUE seasonality corresponds to the greatest ab-
solute change in Ra.

Figure 5 maps the relative contributions of uncertainty in
NEP, GPP, and CUE to Rh, as calculated by consecutively re-
calculating Rh, assuming in each case that all but one of the
three datasets have zero uncertainty. The uncertainty in GPP
is the dominant source of uncertainty in Rh across most of
the globe, except in parts of the Amazon. Consistent with the

CUE sensitivity analysis (Fig. 4e and f), the contribution of
CUE to the Rh uncertainty is greatest in the tropics. In many
high-latitude regions, NEP also contributes significantly to
the overall Rh uncertainty. This contrasts with the results of
the zero-NEP sensitivity analysis (Fig. 4c–d) in which NEP
effects were no greater in the high latitudes than elsewhere
in the world because the CMS-Flux NEP is close to zero in
mean magnitude in the high latitudes but nevertheless rela-
tively uncertain there. Overall, future efforts to improve top-
down approaches forRh estimation would likely benefit most
from reduced uncertainty in remotely-sensed GPP and NEP
estimates.

3.1.2 Bottom-up Rh

The performance of the bottom-up approach at SRDB
sites for both Rs and Rh is shown in Fig. 6. The influ-
ence of latitude on modeled Rh is stronger than on ob-
served Rh (since the color patterns in Fig. 6 are largely
horizontal). The uncertainties of the bottom-up method
are high. Indeed, for both the bottom-up Rs and Rh,
the root-mean-square error (RMSE) (421 g C m−2 yr−1 for
Rs, 306 g C m−2 yr−1 for Rh) is only less than 15 %
lower than the RMSE for a model that simply pre-
dicted the average observed respiration value everywhere
(RMSE= 488 g C m−2 yr−1 for Rs, 333 g C m−2 yr−1 for
Rh). The Rs RMSE= 421 g C m−2 yr−1 is also higher than
the 376 g C m−2 yr−1 RMSE value reported by Hashimoto
et al. (2015) when their equation was applied to a smaller
subset of the current SRDB dataset. The performance of the
bottom-up model may be even worse on a cross-validation
dataset that is entirely independent.

To test whether the bottom-up model can be
improved, its parameters were optimized using a
nonlinear least-squares fit. The resulting values
(F = 1.30 gC m−2 d−1, a = 0.0565 ◦C−1, b = 0 ◦C−2,
α = 9.8, K = 0.0008 cm month−1, c = 0.92, and
d = 0.75) were of a similar magnitude as the original
parameters (F = 1.68 gC m−2 d−1, a = 0.0528 ◦C−1,
b = 0.000628 ◦C−2, α = 0.98, K = 1.20 cm month−1,
c = 1.22, and d = 0.73) for all values except K and α,
the two parameters controlling the relationship between
precipitation and Rh. This suggests that precipitation is
among the most uncertain controls of Rh, consistent with
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Figure 4. Results of sensitivity analyses for three input datasets. (a, c, e) Mean difference (gC m2 yr−1) between baseline top-down Rh and
alternate-input top-down Rh and (b, d, f) R2 between baseline top-down Rh and alternate-input top-down Rh. Sensitivity analyses performed
include using FLUXCOM GPP (a, b), assuming uniformly zero values of NEP (c, d) and that CUE varies temporally in a manner proportional
to GPP (e, f).

Figure 5. RGB map of relative contributions to Rh uncertainty in
each of the input datasets, NEP (red), CUE (blue), and GPP (green).
Note that a yellow color signifies similarly sized uncertainties for
GPP and NEP, which are much larger than the uncertainty for CUE.

the fact that moisture limitations on Rh are mediated by
soil water potential rather than precipitation. However,
because using the optimized parameters led to only a 3 %
reduction in RMSE (from 306 to 294 g C m−2 yr−1, Fig. S2),
the original parameters were used elsewhere in the paper.
Several constraints and alternative initial conditions were
tested for fitting, but these did not lead to a better-performing
fit (not shown). Some compensation between parameters is
likely occurring when fitting to observations, reducing the
quality of the fit.

In the absence of additional information about the bottom-
up model uncertainty, the SRDB implementation and the as-
sociated errors were also used to determine a model for the
uncertainty of the global bottom-up estimates. As shown in
Fig. 7, the Rh experiments in the SRDB overrepresent mid-
latitudes but underrepresent low and high latitudes relative
to the distribution of global land area. This can also be seen

visually in a map of the experimental locations (Fig. S3). As
a result, pixels with low Rh (which are typical in the high-
latitudes) are underrepresented in the SRDB, such that the
bottom-up model has greater uncertainty there. These fac-
tors are accounted for by the dynamic uncertainty model in
Eq. (5).

3.1.3 Comparison

The top-down and bottom-up estimates and their uncertain-
ties are compared in Fig. 8. Global maps of the two Rh
estimates are also shown in Fig. S4. Except in boreal re-
gions and in Australia, the top-down estimates are greater
than the bottom-up estimates. This is reflected in their global
averages, with mean Rh rates of 452 g C m−2 yr−1 for top-
down vs. 353 g C m−2 yr−1 for bottom-up estimates (43.6
and 33.4 Pg C yr−1, respectively, summed across the globe).
The highest-magnitude fluxes are in the low-latitude trop-
ics, consistent with findings for Rs by Zhao et al. (2017)
and the monotonic Rh–Rs relationship in Eq. (5). The differ-
ence between the two estimates is also largest in this region
– top-down estimates are an average of 281 g C m−2 yr−1

larger than bottom-up ones between 30 ◦S and 30 ◦N but
are only 10 g C m−2 yr−1 larger than bottom-up estimates
between 30 and 45◦ N/S. When compared against SRDB
observations (Fig. 6b), the bottom-up estimates were 500–
2000 g C m−2 yr−1 or more lower than observations at sev-
eral low-latitude sites, suggesting the bottom-up estimates
may be underrepresenting Rh across the region. The tropics
is also the region where the relative uncertainties in both top-
down (57 % median relative 25th–75th confidence interval
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Figure 6. Comparison of observed annual respiration terms at SRDB sites vs. bottom-up estimates at the same sites for (a) 1979 soil
respiration sites and (b) 362 heterotrophic respiration sites. Each point denotes a single experiment and is colored by the experiment’s
latitude.

Figure 7. Distribution of all SRDB experiments (dashed red lines)
and global land points where top-down retrievals were possible in
terms of (a) latitude and (b) bottom-up modeled Rh. Modeled Rh
rather than observed Rh were used for the SRDB data in the com-
parison to isolate the differences due to the representativeness of
the SRDB experiments relative to the entire global land area and to
remove any possible effects of biases in modeled global values and
observed SRDB values.

width) and bottom-up (76 % median relative 25th–75th con-
fidence interval width) estimates are highest. For the bottom-
up estimation, this is due to a lack of representative in situ
observations, while for the top-down estimates this is likely
driven by uncertainties in NEP from atmospheric diffusion
and satellite sampling in the atmospheric inversions (Liu et
al., 2014) and GPP (Parazoo et al., 2014). Remarkably, al-
though uncertainty estimates for both the bottom-up and top-
down approaches were conservative, the two estimates are so
different at low latitudes that there is almost no overlap in
their uncertainty ranges.

The greatest overlap between the two datasets and their
uncertainty ranges occurs between 30 and 50◦ N, where more
than 48 % of SRDB observations fall and the bottom-up es-
timates are likely the most reliable. At high latitudes (above
55◦ N), the top-down uncertainty narrows but the bottom-up

Figure 8. Longitudinally averaged Rh as estimated from top-down
(black solid line) and bottom-up (dashed blue line) estimates, re-
spectively. Shaded areas represent the average 25th–75th uncer-
tainty bars at each latitude.

uncertainty does not. In this region, bottom-up uncertainties
are about 30 % greater than the uncertainties of the top-down
Rh.

3.2 Seasonal cycle of respiration components

The bottom-up estimates only provide Rh at annual
timescales. To gain insight into the realism of the seasonal
cycle of the top-down Rh estimates, they are compared to the
seasonal cycle of bottom-up Rs and top-down Reco in several
regions in Fig. 9. Consistent with the low values of bottom-
up Rs (Sect. 3.1.3), the top-down Rs are not much lower
than Rh. There is significant overlap between the uncertainty
ranges of both in many region–month combinations, despite
the fact that true Rh is always lower than (or equal to) Rs due
to the occurrence of belowground autotrophic respiration. In-
deed, the bottom-up Rs and top-down Rh nearly overlap in
the January–March period in the wet tropics. Remarkably,
during boreal winter at high latitudes, the top-down Reco, Rs,
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Figure 9. Comparison between the regionally and temporally av-
eraged seasonal cycle of different respiration components: top-
down Rh (black solid line and area), bottom-up Rs (dashed blue
line and blue area), and top-down Reco (dashed–dotted red line
and area). Shaded areas represent the average 25th–75th uncer-
tainty bars at each latitude. (a) High latitudes (latitude > 55◦ N/S)
(b) midlatitudes (30◦ N/S< latitude< 55◦ N/S), (c) dry tropics (lat-
itude < 30◦ N/S and mean annual precipitation < 1500 mm yr−1),
and (d) wet tropics (latitude < 30◦ N/S and mean annual precipita-
tion > 1500 mm yr−1).

and Rh all agree. This is likely because the constant CUE as-
sumption assumes that Ra is near-zero in boreal winter when
GPP shuts down, which may not be realistic. Previous stud-
ies have found that wintertime Rs can provide as much as
20 % or more of total boreal soil CO2 fluxes (see overview
in Hobbie et al., 2000), but here only 5.2 % of bottom-up
estimated Rs and 8.8 % of top-down estimated Rh occurs be-
tween December and February. In the dry tropics, the sea-
sonal cycle of top-down Rh is remarkably flat and flatter than
that of bottom-up Rs. This could be explained by the fact that
temperature, moisture, and substrate variabilities do not vary
the same way across the seasons and may partially compen-
sate for one another. However, more research is needed to
determine what controls dry tropical variations in Rh and a
detailed investigation of this issue is beyond the scope of this
paper.

The ratio of estimated Rh to Reco spans between close to 1
in high-latitude winters and 0.4 in the wet tropics. Similarly,
the ratio of Rh to Rs varies from 0.75 to 0.94 for different
month–region combinations.

4 Discussion

4.1 Top-down and bottom-up approaches are both
uncertain

Top-down estimates of Rh are 30 % higher, on average, than
bottom-up estimates. At low-latitudes, the top-down esti-
mates of Rh are so much larger than the bottom-up ones that
there is almost no overlap between their respective 25th–75th
uncertainty intervals, despite efforts to create conservative
uncertainty intervals in each case. Consistent with these re-
sults, the bottom-up Rh were previously shown to be biased
low relative to models from the Climate Model Intercom-
parison Project 5 (CMIP5) (Taylor et al., 2012) in the low
latitudes, though it is unclear whether this is because CMIP5
models are biased high or because the bottom-up estimates
are biased low relative to true Rh (Hashimoto et al., 2015,
Fig. 10). Zhou et al. (2009) found that attributing a globally
uniformQ10 value decreases model-simulated averageRh by
40 %, and a similar dynamic may be causing the bottom-up
Rh estimates to be too low. It should also be noted that the
global average Rs estimates of the bottom-up approach are
10–20 Pg lower than the six other estimates of global Rs pub-
lished in the last decade (Bond-Lamberty, 2018) and that a
lower bottom-up Rs leads to a lower bottom-up Rh (Eq. 5).

The top-down and bottom-up approaches to estimation of
Rh have complementary strengths and weakness, as detailed
in Table 1. Top-down estimates are indirect, and errors and
uncertainties in any of the source datasets can propagate to
errors and uncertainties in the retrieved Rh. These include
the assumption of a temporally constant CUE, which, among
other factors, can lead to unrealistically low Rh in boreal
winters. Additional uncertainties also include, for example,
choices made in the atmospheric inversion (Peylin et al.,
2013) or the retrieval of SIF and its scaling to GPP (e.g.,
whether a constant set of values is used, or whether this scal-
ing is dynamic as in the Parazoo et al., 2014, data used here).
GPP is the most uncertain of the input fluxes (Fig. 5). De-
spite their uncertainties, the top-down estimates are globally
representative. By contrast, bottom-up upscaling starts with
more accurate, direct observations of Rh but suffers from a
lack of representativeness: direct observations are often tem-
poral snapshots covering only a single year or a few years
at a given site, with the time period observed varying dra-
matically between sites. More importantly, they underrep-
resent boreal and tropical regions and may over- or under-
sample disturbed sites in different regions. While the uncer-
tainties of the remote-sensing datasets used for top-down es-
timation show some variations across different parts of the
globe, remote-sensing-based estimates of vegetation proper-
ties such as photosynthesis and biomass have previously been
argued to contain significantly lower representativeness error
than bottom-up estimates (Saatchi et al., 2015; Schimel et al.,
2015). A similar dynamic is at play for Rh.
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Table 1. Advantages and disadvantages of top-down vs. bottom-up estimation methods.

Top-down Bottom-up

Advantages Inherently global Based on direct, high-resolution measurements

Disadvantages Uncertainty in constant CUE assumption
Uncertainty in NEP and GPP data

Sparse, nonrepresentative sampling
Based on temporal snapshots in nonconsecutive years

The top-down approach introduced here is dependent on
the quality of the input datasets used. Among the sensitivity
analyses performed, NEP and GPP generally had a greater
effect on the resulting Rh than the assumed values of CUE.
The primary GPP and NEP datasets used here (those from
Parazoo et al. (2014) and CMS-Flux, respectively) are sen-
sitive to both observational error (e.g., due to cloud cover)
and uncertainties in the retrieval algorithms (including, but
not limited to, uncertainties in the relationship between SIF
and GPP and, for NEP, in the inversion of atmospheric trans-
port models). As shown in Fig. 4, uncertainties in top-down
GPP and NEP can have significant effects on the mean and
temporal variability of estimated Rh. Nevertheless, the sensi-
tivity ofRh to alternative GPP and NEP assumptions was still
lower than the difference between the top-down and bottom-
up Rh estimates everywhere outside the high latitudes. Thus,
despite the large sensitivity of the top-down Rh to the quality
of the input datasets (and to a lesser degree, to the assumption
of constant CUE), our new approach still provides meaning-
ful new constraints on Rh not available from bottom-up esti-
mation alone.

For the bottom-up approach, the errors associated with
sampling bias are likely also exacerbated by the uncertainty
in parameterizing a single functional model and the difficulty
of parameter optimization. When the model parameters were
refit on a version of the SRDB that was slightly expanded
from that used in Hashimoto et al. (2015), the precipitation-
sensitivity parameterization changed dramatically, while the
error statistics remained similar, suggesting possible overfit-
ting. Furthermore, even comparing against an SRDB dataset
that was similar to that used to derive the original parameters,
the bottom-up approach barely had improved error statis-
tics (RMSE of 306 g C m−2 yr−1) relative to a model that
simply ignores spatial variations and everywhere assigns the
same value (RMSE of 333 g C m−2 yr−1). Such results sug-
gest a structural problem with the underlying modeling ap-
proach (no good parameters exist) but also call into question
whether currently used parameters are truly optimal given the
model structure. In a recent study, machine-learning-based
approaches for estimating Rs were able to explain 60 %–
70 % of the Rs variability (Zhao et al., 2017), considerably
more than the 35 % variability explained in this study us-
ing the Hashimoto et al. (2015) approach. If the robustness
of machine-learning-based bottom-up upscaling methods can
be further established, they may form a path forward for im-
proved fidelity of bottom-up estimation of Rh and for allow-

ing estimation of Rh at a temporal resolution finer than the
current annual timescales. However, the number of Rh ob-
servations in the SRDB – and presumably the literature as a
whole – is 5 times smaller than the number of Rs sites. Thus,
additional measurements of Rh are needed for this approach,
and they must include under-sampled areas. This is unlikely
to be possible in the foreseeable future.

Despite the complementary sources of uncertainties in
both top-down and bottom-up Rh estimates, the strong over-
lap between the two estimates and their uncertainty ranges in
the latitude range 30–50◦ N (the same latitude range where
SRDB observations are most common, Fig. 7) is encourag-
ing. Indeed, if the uncertainty of top-down estimates can be
reduced, they could be used to constrain or help parameterize
bottom-up models similar to those compared to here, allow-
ing creation of a longer record than may be possible with
top-down observational data alone.

4.2 General applicability of the carbon balance
inversion method

This paper introduced a new method for top-down estima-
tion of Rh by calculating it as the residual of the carbon
balance. The propagation of uncertainty under realism con-
straints (in the form of the correct sign on each of the res-
piration components and GPP) is key to avoiding large er-
rors in this approach. In this paper, we used large-scale, re-
gionally available estimates for the carbon balance compo-
nents, including recently developed atmospheric inversion-
based net biome exchange (NBE) and NEP estimates from
CMS-Flux. However, the approach could also be applied
at finer resolutions, for example using regional-scale atmo-
spheric inversions. If the local carbon use efficiency can be
determined (Tang et al., 2019), the method could also be ap-
plied at smaller spatial and temporal scales, such as to data
from eddy-covariance towers. For example, constraints based
on estimates of Rh from a carbon balance inversion could be
useful in upscaling chamber-based soil respiration measure-
ments to the tower scale, which could help explain inconsis-
tencies between tower and chamber measurements of respi-
ration fluxes (Barba et al., 2017; Phillips et al., 2016).

4.3 Implications for carbon–climate feedbacks

The response of terrestrial net carbon fluxes to climate
change is likely to feed back to future climate (Bodman et al.,
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2013), but the sign and magnitude of this feedback is highly
uncertain (Friedlingstein et al., 2014). The tropics likely form
a dominant control on global carbon–climate feedbacks (Cox
et al., 2000; Schimel et al., 2015). However, in the period
2010–2015, GPP explained less than one-third of variations
in tropical NEP, suggesting an important role for Ra and Rh
in controlling net terrestrial carbon uptake and its climate
sensitivity (Sellers et al., 2018). A recent modeling study also
suggested that Rh forms a dominant control on net biome
production (NBP) at multi-decadal timescales (Zhang et al.,
2018). Studies of climate-carbon feedbacks commonly con-
sider either Reco or Rs, but in doing so they conflate two
separate respiration components (total Ra and Rh, or be-
lowground Ra and Rh, respectively), which have different
biogeophysical controls and responses to climate. The large
spatial and temporal variations in the ratio of top-down het-
erotrophic to Reco and Rs in Fig. 8 act as a reminder that
heterotrophic respiration should be studied separately from
other respiration fluxes in this context.

The recent launch of TROPOMI, which has daily cover-
age and approximately 7 km× 3.5 km pixel resolution, will
greatly increase measurements of SIF, and hence will also
greatly increase the number of estimates of GPP (Kohler et
al., 2018), the largest source of uncertainty in the global Rh
estimates (Fig. 5). Increased data density from OCO-2 (Crisp
et al., 2004) and, in the future, GeoCarb (Polonsky et al.,
2014) should also provide better regional estimates of NEP.
With these and other improvements to remote-sensing-driven
estimates of GPP and NEP, top-down estimation of Rh may
be a promising avenue for creating a better understanding
the role of Rh fluxes in carbon–climate feedbacks. However,
because the temporal variability of the derived Rh varies de-
pending on the quality of the GPP, NEP, and CUE datasets
(as well as, to a lesser degree, the assumed constancy of the
CUE assumptions), any studies using top-down Rh should
carefully consider uncertainty propagation in any hypothe-
sis testing. Nevertheless, with careful consideration of uncer-
tainty, top-down estimation may be a promising approach for
understanding or bounding the role of Rh in carbon–climate
feedbacks.
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