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Abstract. Unique bell-shaped underwater speleothems were
recently reported from the deep (∼ 55 m) meromictic El Za-
pote sinkhole (cenote) on the Yucatán Peninsula, Mexico.
The local diving community has termed these speleothems
as Hells Bells because of their shape and appearance in a
dark environment in ∼ 28–38 m water depth above a sulfidic
halocline. It was also suggested that Hells Bells form un-
der water, yet the mystery of their formation remained un-
resolved. Therefore, we conducted detailed hydrogeochemi-
cal and geochemical analyses of the water column and Hells
Bells speleothems including stable carbon isotopes. Based on
the comprehensive results presented in this study we deduce
that both biogeochemical processes in the pelagic redoxcline
and a dynamic halocline elevation of El Zapote cenote are
essential for Hells Bells formation. Hells Bells most likely
form in the redoxcline, a narrow 1–2 m thick water layer im-
mediately above the halocline where a pelagic chemolithoau-
totrophic microbial community thrives from the upward dif-
fusion of reduced carbon, nitrogen and sulfur species re-
leased from organic matter degradation in organic-rich de-
bris. We hypothesize that chemolithoautotrophy, in particu-
lar proton-consuming nitrate-driven anaerobic sulfide oxida-
tion, favors calcite precipitation in the redoxcline and hence
Hells Bells formation. A dynamic elevation of the halocline
as a hydraulic response to droughts, annual tidal variability

and recharge events is further discussed, which might explain
the shape of Hells Bells as well as their occurrence over
a range of 10 m water depth. Finally, we infer that highly
stagnant conditions, i.e., a thick halocline, a low-light envi-
ronment and sufficient input of organic material into a deep
meromictic cenote are apparent prerequisites for Hells Bells
formation. This might explain their exclusivity to only a few
cenotes in a restricted area of the northeastern Yucatán Penin-
sula.

1 Introduction

Speleothems, such as stalactites or dripstones, result from
physicochemical processes under subaerial conditions in a
cave atmosphere. Calcite usually precipitates due to CO2-
degassing and evaporation of water enriched in dissolved
carbonate dripping into the cave. In recent years, however,
researchers have identified a small group of speleothems
that appear to have calcified underwater. For these forma-
tions, interactions between physicochemical and biological
calcite precipitation processes are interpreted (Barton and
Northup, 2007; Bontognali et al., 2016; Gradzinski et al.,
2012; Guido et al., 2013; Holmes et al., 2001; Jones et al.,
2008, 2012; Macalady et al., 2007; Macintyre, 1984; Me-
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Figure 1. Location of the studied El Zapote cenote with respect to
Mexico and the Yucatán Peninsula.

lim et al., 2001; Queen and Melim, 2006; Tredici et al.,
2018). We recently presented a spectacular example for these
subaqueous speleothems termed Hells Bells from El Zapote
sinkhole about 26 km west of Puerto Morelos on the Yucatán
Peninsula of southern Mexico (Fig. 1) (Stinnesbeck et al.,
2017b).

These bell-shaped structures consist of calcite and reach
lengths of up to 2 m. Hells Bells conically expand down-
ward with strictly horizontal ring-like concentric swellings
and neckings on the surface (Fig. 2). Apparently, they form
in a lightless environment in freshwater above the anoxic
and sulfidic halocline (Stinnesbeck et al., 2017b). Because
of these environmental conditions which include complete
darkness, the local diving community has termed the El Za-
pote speleothem formations as Hells Bells. They grow from
the cavern ceiling and wall. Additionally, small individuals
also cover a tree that has fallen into the sinkhole around
∼ 3.5 ka cal BP, which indicates that Hells Bells must have
formed during the Holocene and thus at periods when the
deep sections of the cenote had already been submerged
for thousands of years (Stinnesbeck et al., 2017b). Thus,
the conditions for the formation of the biggest underwa-
ter speleothems worldwide must have existed consistently
throughout the past thousands of years at El Zapote cenote.

The internal structure of Hells Bells is characterized by
laminar fabrics of alternating units of elongated dogtooth
spar calcite and microcrystalline spar calcite. Microspar lay-
ers and corroded lobes of dogtooth spar crystals indicate ei-

ther discontinuous growth of Hells Bells and/or intermittent
dissolution. Phylogenetic analyses of Hells Bells speleothem
surfaces from specimens of 33 and 34 m water depths indi-
cate that microorganisms inhabiting the Hells Bells poten-
tially support a full nitrogen cycle and autotrophic growth
(Stinnesbeck et al., 2017b). The growth of Hells Bells may
thus be mediated by specific physical and biogeochemical
conditions above and in the halocline, while formation of
Hells Bells was likely restricted to the lowermost part of the
freshwater body. However, due to the limited available data
including geochemical parameters, the suggested processes
for Hells Bells formation were regarded as highly specula-
tive.

Therefore, in this study we conducted detailed geochem-
ical analysis including stable carbon isotopes of the water
body and Hells Bells speleothems of El Zapote cenote. Based
on the results, we present a hypothesis on the subaqueous
growth of these exceptional structures. We deduce that both
biogeochemical processes in the pelagic redoxcline and a dy-
namic halocline elevation of El Zapote cenote are essential
for Hells Bells formation.

1.1 Geological background

The northeastern Yucatán Peninsula (YP) consists of hor-
izontally layered shallow-water carbonates of Miocene,
Pliocene and Pleistocene ages (Lefticariu et al., 2006; Wei-
die, 1985) and probably hosts the largest network of under-
water caves in the world. The Mexican state of Quintana Roo
alone counts more than 370 underwater caves with a con-
firmed total length of ∼ 1460 km and individual cave sys-
tems reaching up to> 350 km in length (QRSS, 2018). These
cave systems developed predominantly by the interaction of
glacioeustasy, littoral processes and mixing-zone hydrology
during glacial periods of the Pleistocene (Smart et al., 2006;
Weidie, 1985). Precipitation rapidly infiltrates through the
porous limestone into the underlying coastal aquifer con-
sisting of a meteoric water mass, the freshwater lens above
a saline water mass intruding from the coast (e.g., Kovacs
et al., 2017a). The thickness of the freshwater lens varies
between ∼ 10 and 100 m and is generally thinner towards
the coast (Beddows et al., 2002), while seawater intrudes
up to 100 km inland (Beddows et al., 2007). The halocline
separates the meteoric and marine water bodies and is usu-
ally characterized by undersaturation with respect to CaCO3,
leading to cave formation and conduit enlargement in the
coastal carbonate aquifer (Back et al., 1986; Gulley et al.,
2016; Mylroie and Carew, 1990; Smart et al., 2006). The
depth of the halocline increases with distance from the coast
(Bauer-Gottwein et al., 2011); areas closer to the coast show
a higher salinity of the freshwater lens than inland areas (Ko-
vacs et al., 2017b). The position of the halocline is also de-
pendent on global sea level and the thickness of the freshwa-
ter lens. Hydraulic gradients are generally very low with val-
ues of 1–10 cm km−1 (Bauer-Gottwein et al., 2011, and ref-
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Figure 2. Technical diver in El Zapote cenote during a sample-collecting dive carrying the Niskin bottle, sample containers and the multi-
parameter sonde attached to the sidemount gas bottle (a). Turbid layer immediately above the halocline forming a distinct horizontal white
cloud at around 36 m water depth (b). Transition of cenote shaft to the open dome-shaped cavern at 28 m water depth (c), where the vertical
wall of the cenote shaft is devoid of Hells Bells speleothems (upper part of c), whereas small specimens of Hells Bells grow down from the
horizontal ceiling below (lower part of c). Brown-colored manganese oxide coatings on host rock carbonates and Hells Bells speleothems
reach down from 28 m water depth to around 30 m water depth at the transition of the cenote shaft to the wide dome-like cavern (c, d).
Below around 30 m water depth, Hells Bells speleothem and host rock carbonate surfaces are devoid of brownish manganese oxide coatings.
They are white to light-gray colored revealing a distinct horizontal boundary (d). Close-up shot of the lowermost calcite rim of a Hells Bells
speleothem at around 32–35 m water depth showing millimeter-sized calcite crystals (e).

erences therein). Although Moore et al. (1992) and Stoessell
et al. (1993) report that the thickness of the freshwater lens
does not vary significantly between seasons or on a yearly ba-
sis, local and short-termed variations are possible and were
reported by Escolero et al. (2007), who documented a signif-
icant halocline elevation of up to 17.5 m between two mea-
surements in the years 2000 and 2003.

Sinkholes (locally called cenotes) were formed by disso-
lution and collapse of the carbonate rock. They are common
throughout the YP, connecting the subterranean cave sys-
tem with the surface (Bauer-Gottwein et al., 2011). For more

detailed information about the formation and occurrence of
cenotes on the YP we refer the readers to Torres-Talamente
et al. (2011) and Schmitter-Soto et al. (2002).

1.2 El Zapote cenote

El Zapote cenote is located 26 km west of Puerto More-
los on the YP of southeast Mexico (20◦51′27.78′′ N,
87◦07′ 35.93′′W; Fig. 1). In cross-section the cenote is
bottle-shaped with a deep vertical water-filled shaft that
opens at 28 m water depth to a wide cavern of 60 to 100 m in
diameter that reaches to about 54 m water depth with a 20 m
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high debris mound in the center (Fig. 3a). A fallen tree stands
on top of the debris mound and small Hells Bells cover the
stem. There are no apparent passages or conduits that connect
El Zapote cenote to a cave system. Additional details on El
Zapote cenote are given in Stinnesbeck et al. (2017b) and in
Stinnesbeck et al. (2017a), who described the new genus and
species of a giant ground sloth, Xibalbaonyx oviceps, from an
individual that was found on the floor of El Zapote cenote.

2 Methods

2.1 Sampling

Sampling at El Zapote cenote was carried out between 10 and
15 December 2017. Water samples were taken early in the
morning prior to any tourist diving group activities to ensure
sampling of an undisturbed water column. Water sample re-
covery and the recording of the in situ parameters were car-
ried out with a winch from the surface down to the top of the
debris mound (0–36 m) and by technical divers from the top
of the debris mound down to the cenote floor following the
slope of the debris mound (Fig. 2a).

In situ parameters pH (±0.1), eH (±20 mV), dissolved
oxygen (±0.1 mg L−1, detection limit 0.2 mg L−1), electri-
cal conductivity (±0.05 % of value), temperature (±0.01 ◦C)
and turbidity (±2 % of value) were determined with a mul-
tiparameter water sonde EXO1 (Xylem Analytics, Norway).
All parameters, including water depth via pressure measure-
ment (±0.04 m), were internally logged by the sonde. Water
depths were corrected to the ambient air pressure of the re-
spective day of sampling. In order to reach the greatest possi-
ble water depth, a total of four winch-operated profiles were
run within 2 d, with laterally shifting starting points of the
profile at the surface. In order to complete the measurement
in the whole water column, technical divers carried the EXO1
probe with them during sampling. Due to increasing sulfide
concentrations in water depths below the turbid layer and in-
teraction of sulfide with the Ag/AgCl pH electrode, a shift
of pH of up to 0.2 pH units towards higher values was ob-
served when comparing the pH logs of the way down with
the pH logs of the way up (Fig. S1). This shift is dependent
on the exposure time of the electrode and the respective sul-
fide concentrations and could neither be quantified nor cor-
rected for. However, the sensor recovers to initial pH values
after a certain time in non-sulfide water. Therefore, the pH
values presented in this study are representative for the water
column from 0 to 37 m water depth and are overestimated in
water depths from 37 to 50 m where the actual absolute pH
values are most likely lower, i.e., more acidic. Repeated mea-
surements with a new sonde of the same type in June 2018
confirmed this assumption and showed lower pH values be-
low 37 m water depth (Fig. S2).

Water samples from 15 to 35 m water depth were re-
trieved using a winch and a 5 L polyethylene Niskin bottle
(HYDRO-BIOS, Kiel, Germany). Sampling depths represent
the center of the 0.6 m tall sampling bottle and were deter-
mined by cable length with a depth counter attached to the
winch. Water samples from 35.2 to 45 m water depth were re-
trieved by technical divers (Fig. 2a). Water samples collected
by the technical divers were taken with 120 mL polyethy-
lene (PE) containers. The containers were carried open and
water-filled by the divers. At the desired sample depth, the
water in the containers was exchanged with surrounding wa-
ter via shaky motions, sealed underwater and the water depth
was noted for each sample. Water samples for the analysis of
dissolved gases (CO2, CH4) were taken in 24 mL glass vials
and sealed underwater at the respective depth (four samples
at each depth level). The EXO1 sonde was attached to a side
mounted compressed air bottle pointing towards the front of
the technical diver in order to record the in situ parameters of
each water sample (Fig. 2a). The depth of the water samples
taken by technical divers was corrected to the depth of the at-
tached logging device (EXO1). For four samples between 35
and 37 m, depth was interpreted from the increase of sodium
and chloride contents correlated to the electrical conductivity
in this interval.

Water samples were treated on-site immediately after the
water samples were retrieved. Samples for determination of
dissolved ions were taken with 20 mL sterile polypropylene
syringes and then filtered through a cellulose acetate filter
(0.45 µm). Samples for cation determination were acidified
with 50 µL of 65 % HNO3 analytical grade (A.G.) to ad-
just a pH< 2; they were stored in 15 mL Falcon polypropy-
lene centrifuge tubes. Samples for anion determination were
taken following the same procedure, but not acidified, and
stored cool in 15 mL Falcon polypropylene centrifuge tubes.
Samples for the determination of dissolved inorganic car-
bon (DIC) and dissolved organic carbon (DOC) were filtered
through a cellulose acetate filter (0.45 µm), stored in 24 mL
glass vials and sealed gas-tight. Samples for the determi-
nation of content and isotopic ratios of the dissolved gases
CH4 and CO2 were filled in 24 mL glass vials; subsequently
100 µL 60 % HgCl2 solution was added via a syringe pierced
through the septum to sterilize the samples.

A large volume sample (5 L) of the turbid layer water at
around 36 m water depth was taken with a Niskin bottle by
technical divers and subsequently filtered through a 0.45 µm
cellulose acetate filter with a vacuum pump. The filter was
air-dried, and back in the laboratory a small piece of the filter
was coated with carbon for subsequent secondary electron
(SE) imaging and analyses.

Sulfide and nitrite were determined on-site by photomet-
ric analysis with a photometer (Hach Lange DR200) using
Merck Spectroquant® spectrometric methods.

Technical divers collected several Hells Bells samples
grown on the tree trunk from seven water depth levels be-
tween 32.7 and 37.3 m. To obtain the youngest part of indi-
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Figure 3. Hydrogeochemistry of the water column of El Zapote cenote. The horizontal gray band indicates the depth position of the turbid
layer, while the dashed line indicates the top of the halocline at 36.6 m water depth. (a) Water in situ parameters versus water depth (left) in
relation to the El Zapote cenote cross section (right). In situ parameters and samples were taken along a winch profile and a diver profile as
shown in the cenote cross section. Note the logarithmic scale of the electrical conductivity (EC). (b) Close-up of the water in situ parameters
at 31–41 m water depth. Note that the scale of EC is non-logarithmic and is only shown for the range between 1 and 5 mS cm−1, in order to
point out the increase in salinity at the beginning of the halocline. (c) Water chemical parameters determined in the water column between
31 and 41 m water depth. Na+ and Cl− concentrations are only shown in the range of 0–80 mmol L−1 to highlight the concentration pattern
above and within the halocline.
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vidual Hells Bells growth, samples were first studied under
the microscope. Only samples with apparently fresh, well-
accentuated crystal tips were chosen for geochemical and
stable isotope analysis.

2.2 Analytical measurements

2.2.1 Major and trace element analysis

Major cation concentrations (Ca, Mg, Sr, Ba, K, Na, Si) of
water samples were determined by optical emission spec-
troscopy with an Agilent 720 ICP-OES. Quality control was
performed using the reference materials SPS-SW1, SPS-
SW2 and TMDA-70.2. Recovery rates were in the range of
97 %–104 % for the analyzed elements. Measurement preci-
sion for each element was < 2 % (RSD, n= 3).

Concentrations of anions Cl−, SO2−
4 and NO−3 were deter-

mined with ion chromatography (Dionex ICS-1100) with an
RSD of < 3 % derived from long-term repeated analysis of
reference material SPS-NUTR-WW1. The concentrations of
DOC were determined with a Total Carbon Analyzer (Shi-
madzu TOC-CPH) with an RSD of < 2 % derived from re-
peated analysis of an in-house standard water.

Orthophosphate was determined by the photometric
molybdenum phenyl blue method on 880 nm light extinction
with a UV-VIS photometer (SPECORD® 50, Analytik Jena).

Trace element concentrations (Fe, Mn, Mo, P, S, U) of se-
lected water samples were determined by high resolution in-
ductively coupled plasma mass spectrometry (HR-ICP-MS)
(Thermo Finnigan™ Element 2™). Analyses were normal-
ized by an internal indium standard. Calibration solutions
were prepared with the MERCK multi-element standard VI
solution. The recovery rates of SLRS5 reference material
were 95 % (Fe), 93 % (Mn), 82 % (Mo) and 133 % (U) with
respect to the referenced values, and P and S were within
the range of reported uncertified values. The precision was
< 3.7 % (RSD) derived from repeated (n= 5) measurements
of the reference material in the measurement run.

Around 3 mg of the powdered speleothem samples was di-
gested in 2 mL 10 % HNO3 for major and trace cation analy-
ses. Subsequently, concentrations of Ca, Mg, Sr, Ba, P, S, Fe
and Mn of the aliquots were determined by ICP-OES. Qual-
ity control of the measurement was performed using refer-
ence materials SPS-SW1 and SPS-SW2 with recovery rates
ranging from 99 % to 111 % for the analyzed elements. Qual-
ity control for digestion of the carbonate material was per-
formed with limestone reference material ECRM 752-1 with
recovery rates between 106 % and 110 % for the elements
Ca, Mg, Ba, Sr and Mn, and 82 % for the element Fe.

Calcite saturation and HS− activity was calculated with
PHREEQC (Parkhurst and Appelo, 1999) using phreeqc.dat.
The diffusion J was calculated with the first Fick’s law with
diffusion coefficients of DO2 , DNO−3

, DHCO−3
and DHS− of

2.1, 1.9, 1.2 and 1.8×10−9 m−2 s−1, respectively taken from
phreeqc.dat (Parkhurst and Appelo, 1999).

2.2.2 Stable carbon isotope and concentration
measurements of CH4 and CO2

For the determination of dissolved gases, a 5 mL headspace
with nitrogen gas (N2 99.999 %) was created in each of the
four samples of the respective water depth. Samples were
taken for the analysis of dissolved gases at ambient labora-
tory temperatures of 23 ◦C. After equilibration (∼ 24 h), the
headspaces of the four samples were transferred and com-
bined in one 12 mL evacuated exetainer vial. To ensure a
pressureless transfer of the gas phase from the headspace to
the exetainer, a brine solution of 200 g L−1 NaCl was intro-
duced at the bottom of the vial and the gas phase was si-
multaneously removed and subsequently transferred to evac-
uated exetainer vials. Concentrations of CH4 and CO2 in
the gas samples were measured as follows: headspace sam-
ples (50 µL) were injected in a flow of 1 mL min−1 of he-
lium with a split ratio of 5 : 1 to a ShinCarbon ST col-
umn (80/100 mesh, 2 m× 0.53 mm i.d., Restek Corporation)
quantified by a gas chromatograph (GC-2010 Plus, Shimadzu
Corporation, Kyoto, Japan) coupled to a barrier ionization
discharge (BID) detector (BID-2010 Plus, Shimadzu Cor-
poration, Kyoto, Japan). The GC oven was initially held
at 30 ◦C for 1 min and then ramped at 10 ◦C min−1 up to
200 ◦C. Quantification of CH4 and CO2 was carried out by
comparison of the integrals of the peaks eluting at the same
retention time as that of the authentic standard with calibra-
tion curves. The dissolved concentrations of CH4 in the water
were then calculated from the measured mixing ratio using
Henry’s law (Wiesenburg and Guinasso, 1979) and solubil-
ity coefficients for CH4 according to Weiss (1974) and Ya-
mamoto et al. (1976).

Stable carbon isotope ratios of CO2 (δ13C-CO2 values)
were analyzed by gas chromatography stable isotope ratio
mass spectrometry (GC-IRMS) by an HP 6890N gas chro-
matograph, coupled to a 253 Plus™ isotope ratio mass spec-
trometer (ThermoQuest Finnigan, Bremen, Germany) with
average analytical uncertainties of 0.2 ‰ for δ13C-CO2 val-
ues. 2σ uncertainties were derived from five replicates. All
13C/12C isotope ratios are expressed in the conventional δ
notation in per mill versus VPDB, defined in Eq. (1):

δ13CVPDB =
[(

13C/12Csample

)/(
13C/12Cstandard

)]
− 1. (1)

For details of the δ13C-CO2 measurements by GC-IRMS
we would like to refer to previous studies by Keppler et
al. (2010) and Laukenmann et al. (2010).

Stable carbon isotope ratios of CH4 (δ13C-CH4 values)
were determined by GC-IRMS. In brief, CH4 of the sam-
ple was trapped on HayeSep® D and then transferred to
the IRMS system (ThermoFinnigan Deltaplus XL, Thermo
Finnigan, Bremen, Germany). The working reference gas
was carbon dioxide of high purity (carbon dioxide 4.5,
Messer Griesheim, Frankfurt, Germany) with a known δ13C-
CH4 value of −23.634 ‰± 0.006 ‰ versus Vienna Peedee
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Belemnite (VPDB). All δ13C-CH4 values were corrected us-
ing two CH4 working standards (Isometric Instruments, Vic-
toria, Canada) and normalized by two-scale anchor calibra-
tion according to Paul et al. (2007). The average standard
deviation of the analytical measurements was in the range of
0.1 ‰ to 0.3 ‰.

The δ13C-HCO−3 values were calculated from the mea-
sured δ13C-CO2 of the headspace of the water samples
that was generated in the laboratory as equilibrium frac-
tionation at 23 ◦C (δ13C-CO2+8.16‰= δ13C-HCO−3 ) after
Mook (2000).

For stable carbon isotope analyses of carbonates, ap-
proximately 50 µg of powdered speleothem subsamples was
analyzed using a ThermoFinnigan™ MAT253 Plus™ gas
source mass spectrometer equipped with a Thermo Fisher
Scientific™ Kiel IV carbonate device at Heidelberg Univer-
sity. Values are reported relative to VPDB (Eq. 1) through the
analysis of an in-house standard (Solnhofen limestone) cali-
brated to IAEA-603. The precision of the δ13Ccalcite analyses
is better than 0.08 ‰ and 0.06 ‰ (at 1σ level), respectively.

2.2.3 Optical methods

Hells Bells specimen ZPT 7, described in Stinnesbeck et
al. (2017b), was vertically cut in half and thin sections were
prepared from one half of the specimen. Photographs of the
thin sections were taken with a KEYENCE VHX-6000.

Polished counterparts of the thin sections and small pieces
of Hells Bells were coated with carbon for secondary elec-
tron (SE) imaging and energy dispersive X-ray (EDX) anal-
yses. SE imaging and element mapping were performed with
a Leo 440 at 20 kV with an X-Max 80 mm2 detector.

3 Results

3.1 Hydrogeochemistry

The water column of the El Zapote cenote is stratified into an
oxygenated freshwater body overlying an anoxic transition
zone of increasing electrical conductivity (EC), the halocline,
and an anoxic saltwater body below (Fig. 3a). Water tem-
peratures vary little between 0 to 30 m water depth (24.37–
24.42 ◦C); a steep increase is identified in a narrow zone from
30 to 32 m water depth (24.42–24.55 ◦C), followed by almost
invariable temperatures from 32 m water depth (24.55 ◦C)
down to the bottom of the cenote (25.22 ◦C) (Fig. 3a and b).
A distinct density boundary, the top of the halocline, is
identified at 36.6 m water depth by a steep increase in EC.
Seawater-like salinity is reached at around 46 m water depth
indicating a thick halocline layer of around 10 m in thickness
(Fig. 3a and b). Low turbidity readings indicate clear wa-
ter throughout the water column, except for a ∼ 1.6 m thick
layer of increased turbidity immediately above the halocline
from 35.0 to 36.6 m water depth, with a peak of 8.0 Formazin
Nephelometric Units (FNUs) detected at 35.8 m water depth

(Fig. 3a and b; Table S1). This turbid layer is also easily de-
tected macroscopically in the water column as a white cloudy
layer (Fig. 2b) and coincides with a distinct redoxcline from
∼ 35 to 37 m water depth, in which the redox potential (EH)
decreases from ∼ 250 to ∼−140 mV (Fig. 3a and b). Dis-
solved oxygen (DO) decreases nearly linear from 30 m to
concentrations below detection limit at ∼ 35 m water depth
just above the turbid layer. Below, DO is below detection
limit (Fig. 3a and b). The pH shows neutral values from 0
to 30 m water depth and slightly decreases to 6.90 at the top
of the turbid layer (Fig. 3a). Within the turbid layer pH val-
ues increase to more alkaline values of around 6.94 at 35.8 m
water depth. The pH values decrease again below the turbid
layer to 6.73 at 40 m and invariably remain at about this value
down to 48 m. From there, values increase to about neutral
(6.95) close to the cenote bottom at 49 m water depth (Fig. 3a
and b).

Concentrations of the major dissolved ions Na+, Cl−,
Ca2+, Mg2+ and SO2−

4 reflect the stratification of the water
column in the cenote, with generally low concentrations in
the freshwater body from 0 to 30 m water depth and slightly
increasing concentrations from 30 m water depth to the top
of the turbid layer at 35 m water depth, a stronger increase
within the turbid layer from 35 to 36.6 m water depth, and
an even strong increase from the top of the halocline at
36.6 m water depth down to the cenote bottom (Fig. 3c and
Table S2). Mg/Ca ratios strongly increase from the top of
the turbid layer at 35 m water downwards, due to higher Mg
concentrations in the saltwater body (Fig. 3c). Although sul-
fate concentrations increase downwards from the top of the
halocline, a relative decrease of SO2−

4 ions is detected, com-
pared to the chemically conservative ion Cl−, by a decrease
in SO2−

4 /Cl− within the turbid layer and below in the halo-
cline (Fig. 3c).

Concentrations of DIC are about 7.8 mmol L−1 in the
freshwater body. They increase in the turbid layer and show
a peak at 40 m water depth with concentrations increasing
to 14.5 mmol L−1; below, they decrease towards the cenote
bottom (Fig. 3c and Table S2). The dissolved organic car-
bon (DOC) concentrations are low in the freshwater body and
show a distinct peak within the turbid layer, coinciding with
the peak in turbidity at 35.7 m water depth (Fig. 3c). Below
the turbid layer DOC concentrations slightly increase and
peak at 39–40 m water depth, decreasing from there towards
the cenote bottom (Fig. 3c and Table S2). Nitrate concentra-
tions are ∼ 50 µmol L−1 in the freshwater unit of the cenote
shaft (Table S2). They decrease from 30 m water depth to-
wards the top of the turbid layer and rapidly fall below de-
tectable concentrations within this layer (Fig. 3c). Nitrite
peaks in a narrow zone at the top of the turbid layer with con-
centrations of up to 0.8 µmol L−1 (Fig. 3c). High total sulfide
(S(-II)) concentrations of up to 5.6 mmol L−1 were detected
in 40 m water depth. Concentrations decrease upwards, fad-
ing in the lower part of the turbid layer at 36 m water depth
(Fig. 3c). Below the 40 m depth level, S(-II) concentrations
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decrease to values around 3 mmol L−1 down to 45 m water
depth (Fig. 3c and Table S2). Concentrations of dissolved
CH4 (CH4(aq)) are low in the freshwater body with values of
about 0.09 µmol L−1. Methane concentrations increase from
the turbid layer at 36 m water depth downwards to values of
25 µmol L−1 at 39 m water depth (Fig. 3c).

3.1.1 Calcite saturation

The calculated saturation index (SI) of calcite shows calcite
saturation in the freshwater body and the uppermost part of
the halocline with values from 0.03 to 0.07 (Fig. S2). The SI
closely follows the pH in the freshwater body revealing a dis-
tinct peak of slightly higher values of SI= 0.1 in the turbid
layer at ∼ 36 m water depth. The water body below the re-
doxcline is undersaturated with respect to calcite, indicating
calcite dissolution in the halocline (Fig. S2).

3.1.2 Trace elements

Dissolved iron and manganese concentrations are very low
in the freshwater body with concentrations of 0.1 and
0.01 µmol L−1, respectively, and slightly increase within the
turbid layer towards the saltwater body, to concentrations of
up to 0.47 (Fe) and 0.06 (Mn) µmol L−1 (Fig. S3). Phosphate
and silica concentrations are invariably low in the freshwater
body (Portho ∼ 0.25 and Si∼ 63 µmol L−1) and increase in
the saltwater body peaking at 40 m water depth with concen-
trations up to 10.3 (Portho) and 275 (Si) µmol L−1 (Fig. S3).
Uranium content correlates to the redox potential of the wa-
ter as indicated by uniform contents of ∼ 0.012 µmol L−1 in
the freshwater column and rapidly decreasing values of 1 or-
der of magnitude in the turbid layer, to 0.0012 µmol L−1 at
40 m water depth (Fig. 4 and Table S2).

3.1.3 Stable carbon isotopes of DIC and CH4

The δ13C-HCO−3 values at water depths from 28 to 42 m are
shown in Fig. 4. The average δ13C-HCO−3 value is−9.8 ‰ in
the freshwater body where DIC content is about 8 mmol L−1.
In the turbid layer, δ13C-HCO−3 values show a distinct peak
towards less negative values of up to −7.9 ‰ at slightly in-
creasing DIC concentrations. Below the turbid layer, δ13C-
HCO−3 values rapidly decrease towards more negative values
of −12.4 ‰ between 39 and 42 m water depth at increasing
DIC concentrations (Fig. 4). A rather slight increase in δ13C-
HCO−3 values (−11.6 ‰± 0.7 ‰) is observed towards the
cenote bottom at 44 m water depth (Table S3).

The δ13C-CH4 values are shown alongside with the CH4
concentrations in Fig. 5. The pattern of δ13C-CH4 within
the water column is similar to that of δ13C-HCO−3 . In the
freshwater body, values of δ13C-CH4 are approximately con-
stant at about −49 ‰ and CH4 concentrations are very
low, roughly corresponding to that of atmospheric equilib-
rium (0.04–0.09 µmol L−1). The δ13C-CH4 values increase
to −28 ‰ within the turbid layer and again decrease to

Figure 4. Stable carbon isotope values δ13C-HCO−3 eq of the dis-

solved HCO−3 in equilibrium with δ13C-CO2 values measured in
headspace and δ13C-CH4 values of water samples alongside the
concentrations of DIC and CH4 of water samples. The gray band
represents the turbid layer in 35–36.6 m water depth, and the hori-
zontal dashed line indicates the top of the halocline at 36.6 m water
depth. Horizontal error bars represent 2σ uncertainties, and vertical
error bars indicate up to 0.6 m uncertainty of gas samples that were
not taken from the sample used to determine chemical parameters
(see Sect. 2.1).

−61 ‰ below the turbid layer, while CH4 concentrations in-
crease within and below the turbid layer (Fig. 4).

3.2 Petrography of Hells Bells speleothems

Petrographic characteristics of Hells Bells are shown in
Fig. 6. The size of individual crystals of Hells Bells is vary-
ing from micrometer scale to several millimeter-sized crys-
tals that are easily identified macroscopically. The latter are
frequently dominant in the youngest calcite rims at the bot-
tom of Hells Bells at water depths reaching from ∼ 28 to
∼ 35 m (Fig. 2e). Hells Bells at greater water depths show
rounded or globular calcite surfaces at the lowermost margin
of the speleothems indicating dissolution (Fig. 2f). Scanning
electron microscope (SEM) images of the lowermost part
of Hells Bells surfaces are shown in Fig. 6a, b and c. The
calcite morphology varies from bladed or book-like calcite
crystals (Fig. 5a), dogtooth-like calcite crystals (Fig. 5b) and
blocky calcite rhombs (Fig. 5c). In thin sections of the speci-
men ZPT-7 (Fig. 5d1) (see also Stinnesbeck et al., 2017b),
these crystal morphologies are expressed as rather botry-
oidal (dogtooth-like and blade-shaped) and as mosaic calcite
phases (blocky calcite rhombs) (Fig. S5). Electron images
of the polished counter pieces of the thin section are shown
in Fig. 5d2. An element map of Mg shows that botryoidal
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Figure 5. Petrographic characteristics of Hells Bells speleothems. SEM images of Hells Bells samples Z17-8DC (a), Z17-18J (b) and Z17-
9J (c) of El Zapote cenote showing bladed (a), dogtooth-like (b) and blocky calcite rhombs (c). Polarized transmitted light-microscopic
images of a thin section from ZPT-7 (d1) (shown in Stinnesbeck et al., 2017b) showing different calcite fabrics of angular coarse-grained
mosaic calcite (mo) and fine-grained elongated botryoidal calcite (by). The same detail is shown in the BSE image of the polished counter slab
that corresponds to the thin section (d2). The Mg element map (d3), where higher abundances of Mg appear brighter, indicates a difference in
Mg content between the botryoidal and mosaic calcite phases. The white rectangles represent areas of measured integrated element spectra.

calcite phases incorporated more Mg (appearing brighter in
Fig. 5d3) than the mosaic calcite phases (appearing darker in
Fig. 5d3).

3.3 Geochemistry of Hells Bells speleothems

Samples were collected from the lowermost and presumably
youngest part of several Hells Bells specimens that grew
on a ceiba tree fallen into the El Zapote cenote at about
3.5 ka cal BP (Stinnesbeck et al., 2017b). They were analyzed
for major and trace elements and stable carbon isotopes. The
results are given in Table 1.

3.3.1 Major and trace elements

The calcite of Hells Bells speleothems revealed no residues
after digesting∼ 3 mg sample in 12 mL dilute 1 M nitric acid
indicating that Hells Bells calcite is devoid of acid insolu-
ble impurities. The Mg/Ca, Sr/Ca and Ba/Ca molar ratios
show narrow ranges with mean values of 22.5± 2.9× 10−3,
38.6±5.9×10−5 and 1.10±0.31×10−5, respectively. They
are closely related and positively correlate in each sam-
ple (Fig. 6a). There is also a trend towards decreasing ra-
tios with increasing water depth of the respective sample
(Fig. 6b). Iron and manganese show more variable concentra-
tions with molar ratios of Fe/Ca and Mn/Ca between 3.0 and
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Figure 6. Geochemical data of Hells Bells speleothems showing a strong correlation between Sr /Ca and Ba /Ca ratios (r2
= 0.91) and

between Ba/Ca and δ13Ccalcite (r2
= 0.89) (a) and a trend of increasing δ13Ccalcite and decreasing Sr /Ca with increasing water depth of

the samples (b). Given uncertainties represent 2σ standard deviations and±0.25 m is assumed as uncertainty for the water depth of the Hells
Bells samples.

Table 1. Geochemistry of samples from the lowermost tips of Hells Bells growing on a subfossil ceiba tree that fell into the El Zapote cenote
about 3500 cal BP. Individual tree bells were sampled at water depths from 31.3 to 37.3 m. The lack of samples in water depths from 34.3
to 36.8 m water depth is due to poor visibility in the turbid layer above the halocline (compare Fig. 1b). Given uncertainties represent 2σ
standard deviations.

Sample Water Mg/Ca Sr/Ca Ba/Ca Fe/Ca Mn/Ca S/Ca δ13Ccalcite
no. depth (m) (×10−3) (×10−5) (×10−5) (×10−5) (×10−6) (×10−3) (‰VPDB)

1 31.3
2 31.3 21.4 41.6 1.27 4.3 21 2.78 −13.47± 0.01
3 32.8 25.6 41.0 1.19 5.2 26 2.69 −13.69± 0.01
4 32.8
5 33.3 22.0 42.7 1.30 3.8 24 3.05 −13.82± 0.01
6 33.3 22.3 38.5 1.14 3.0 16 2.54 −13.43± 0.01
7 33.8
8 33.8 20.8 37.9 1.12 3.5 24 2.72 −13.52± 0.01
9 33.9 23.2 40.0 1.18 3.9 22 2.76 −13.68± 0.01
10 33.9
11 36.8 22.3 34.0 0.88 11.3 39 3.14 −12.87± 0.02
12 36.8 21.1 34.1 0.88 10.6 28 3.02 −12.85± 0.00
13 37.3 24.0 37.3 0.92 6.2 32 3.17 −12.99± 0.01
14 37.3

Mean 22.5 38.6 1.10 5.76 25.8 2.87 −13.37
2σ 2.9 5.9 0.31 5.84 12.8 0.42 0.70

11.3×10−5 and 16–39.3×10−6, respectively. Iron and man-
ganese show a weak positive correlation but no dependency
on water depth. The content of sulfur in Hells Bells carbonate
is constantly high with concentrations of 0.8–1.0 g kg−1 (Ta-
ble S4) and mean S/Ca molar ratios of 2.87± 0.42× 10−3,
showing no dependency on water depth of the sample (Ta-
ble 1).

3.3.2 Hells Bells stable carbon isotopes

Stable carbon isotope values of Hells Bells calcite samples
(δ13Ccalcite) from different water depth range from−12.85 ‰
to −13.82 ‰ with a mean value of −13.37 ‰± 0.70 ‰
(n= 9, Table 1). There is a weak correlation of increasing
δ13Ccalcite values with water depth of the samples (Fig. 6b).
Furthermore, δ13Ccalcite values show a strong negative corre-
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Figure 7. SEM analysis of turbid layer filtrate. Various particles on the filter are visible on the SEM picture of a larger area of the filter (a).
An element map for O, S, Si and Ca of the same filter area of (a) is shown in (b) revealing that most particles consist of elemental sulfur,
calcium-rich particles and silica particles. EDX analysis of individual particles on the filter verified the particles as calcium carbonates (c, c1),
elemental sulfur (d, d1) and silicate phases (e, e1). The white arrow in c1 points to a fragmentary silica shell.

lation with Sr/Ca and Ba/Ca with r2values of 0.82 and 0.89
(Fig. 6a).

The stable carbon isotope ratio of the HCO−3 that is
in equilibrium with the Hells Bells calcite (δ13C-eqHCO−3 )
at 25 ◦C water temperature (δ13CCalcite− 0.91‰= δ13C−
eqHCO−3 ) was calculated after Mook (2000). The calculated
δ13C-eqHCO−3 is −14.28 ‰± 0.70 ‰, which is lower than
the δ13C-HCO−3 determined for the water column with a
range of −9.1 ‰ to −12.3 ‰.

3.4 Turbid layer filtrate

Although the turbid layer appears dense in photographs taken
during dives, the water sampled from the turbid layer was
clear, with no visible turbidity during sample handling. Elec-
tron microscopy of the filter, however, reveals that abundant
particles were extracted from the turbid layer (Fig. 7a). Par-
ticle sizes range between 1 and 100 µm, but most are in the
range of 1–10 µm. They consist of calcium carbonate crys-
tals (Fig. 7c and c1), globular particles consisting of ele-
mental sulfur (Fig. 7d and d1) and silicate particles of dif-
ferent compositions (Fig. 7e and e1). Also, numerous intact
and broken shells of siliceous diatoms were found on the fil-
ter. Some calcite crystals incorporated broken parts of silica
shells (Fig. 7c1).

4 Discussion

4.1 Limnological and hydrological conditions in El
Zapote cenote

The water temperature profile (Fig. 3a) offers valuable clues
on the hydrological conditions in the El Zapote cenote. Mix-
ing of the water in the narrow cenote shaft from 0 to 30 m wa-
ter depth is indicated by constant temperatures and oxygena-
tion, whereas linearly increasing temperatures in the wide
dome-shaped cenote from 30 to 55 m water depth and lin-
early decreasing dissolved oxygen concentrations indicate
conductive heat transport and oxygen diffusion, respectively
(Fig. 3a). This suggests that the water body from 0 to 30 m
water depth is mixing-dominated and is diffusion-dominated
at 30 to > 50 m water depth. This interpretation is also sup-
ported by constant EC values in the cenote shaft and con-
stantly increasing EC values from 30 m water depth down to
the top of the halocline at 36.8 m water depth (Fig. 3a). An-
other indication for stagnant conditions of the water body is
the shape of the halocline itself. Compared to other cenotes
of the Yucatán Peninsula being deep enough to reach the
halocline, El Zapote cenote particularly differs in the extent
of the halocline, the transition zone from fresh to saltwa-
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ter. At El Zapote cenote, the halocline is about 10 m thick
(Fig. 3a) in comparison to a transition zone thickness of 1–
5 m of other cenotes of Quintana Roo (Kovacs et al., 2017b;
Stoessell et al., 1993).

The constant decrease of DIC, sulfide and orthophosphate
below about 40 m water depth indicates a sink of these chem-
ical species into depths greater than the cenote (> 54 m water
depth). This sink may result from advection of flowing wa-
ter masses in conduits or zones of intensified hydraulic con-
ductivity in a deeper cave system at around 60 m below the
present sea level. Such deep cave systems could have devel-
oped during glacial sea level low stands (e.g., Smart et al.,
2006).

In general, the water body of El Zapote cenote is stagnant
from 30 m water depth down to the bottom of the cave where
mass transfer is predominantly due to chemical diffusion.
This is essential for the understanding of hydrogeochemistry
and the ongoing biogeochemical processes in the El Zapote
cenote.

4.2 Hydrogeochemical processes in El Zapote cenote

4.2.1 Sedimentary biogeochemical processes

The anaerobic conditions and high concentrations of metabo-
lites such as S(-II) and CH4 can be attributed to anaero-
bic heterotrophic organic matter (OM) decay in the debris
mound sediments. Both the debris mound and the cenote
floor are covered with a relatively thick layer (∼ 1 m) of
OM, consisting of mostly leaves and other plant remains, ac-
cording to the descriptions of the divers. As a consequence
of stagnancy in the meromictic water body and oxygen de-
ficiency on the cave bottom, this OM is respired by het-
erotrophic microorganisms in the sediment via anaerobic fer-
mentative and respiratory pathways.

Anaerobic OM degradation by fermentation and sulfate-
reducing bacteria produce hydrogen and hydrogen sulfide
(S(-II)), CO2 (DIC) and acidity, thus lowering the pH. Ele-
vated concentrations of DIC and S(-II) are found in the halo-
cline (Fig. 3c), and low δ13C-HCO−3 indicates a microbial
origin of the hydrogen carbonate (e.g., Mook, 2000) (Fig. 4).
Additionally, pH values are more acidic in the halocline
(Fig. 3a and b) and sulfate reduction is further supported by
decreasing SO2−

4 /Cl− ratios in the halocline of up to 32 %
compared to the seawater ratio of 5.2 (Fig. 3c) (Stoessell et
al., 1993).

Methane-producing archaea (methanogens) metabolize
degraded OM releasing CH4 and DIC. Although this path-
way is less energy efficient than sulfate reduction, and
methanogenesis is not expected in the presence of sulfate,
methanogens may dominate in deeper parts of the sediments
where sulfate is already consumed (e.g., Whiticar, 1999).
Diffusion of CH4 from the sediment into the water column
leads to CH4 concentrations of up to 25 µmol L−1 identified
in the halocline of El Zapote.

Figure 8. Concentration profiles of dissolved O2, NO−3 and HS−

(calculated with PHREEQC) in water depths around the redoxcline.
The fluxes J are given in 10−5 µmol m−2 s−1. The linear fit of O2
and HS− is calculated for the range of plotted values, while for
NO−3 it is calculated only for the range from 34.4 to 36.6 m water
depth. Only O2 values above detection limit (6.3 µmol L−1) from
winch profile 2 were considered for the calculation (Table S1).

Ammonium is likely released from organic matter degra-
dation in the organic-rich sediment and is also released to the
water column at the halocline.

Other common anaerobic heterotrophic metabolic path-
ways in sediments, such as the reduction of iron, are sub-
ordinated processes, most likely due to low concentrations
of iron in limestone and limited source of siliciclastic mate-
rials in this part of the YP. The elevated but still exceedingly
low amounts of dissolved iron in the halocline as compared
to the freshwater body (Fig. S3) are rather not indicative of
the absence of these processes, as iron solubility is limited
by the affinity to form iron sulfides in the presence of high
amounts of S(-II).

4.2.2 Water column biogeochemical processes

The redoxcline from 35 to 36.8 m water depth coincides with
a peak in turbidity which is detectable both visually (Fig. 2b)
and geochemically (Fig. 3a and b). Dissolved oxygen (DO)
concentrations drop to undetectable levels at the top of the
redoxcline, indicating that anaerobic biogeochemical pro-
cesses prevail within the redoxcline (Fig. 8).

In our previous study we tentatively attributed these con-
ditions to a full heterotrophic redox zonation due to organic
matter decomposition (Stinnesbeck et al., 2017b). Fine or-

Biogeosciences, 16, 2285–2305, 2019 www.biogeosciences.net/16/2285/2019/



S. M. Ritter et al.: Hells Bells – subaqueous speleothems 2297

ganic matter accumulates along the density contrast at the
top of the halocline and heterotrophic microbial communi-
ties thrive from the aerobic and anaerobic decomposition of
this organic matter. This is also indicated in the results of this
study by minor nitrification from ∼ 34 to 35 m water depth
(Fig. 3b), non-linearly decreasing dissolved oxygen contents
from ∼ 34 to 35 m, and by slightly more acidic pH values
above and in the uppermost part of the turbid layer.

However, the more detailed data presented in this study
now underline the importance of planktonic chemolithoau-
totrophic processes in the pelagic redoxcline which are
driven by the upward diffusion of reduced sulfur, carbon and
nitrogen species released from the anaerobic degradation of
organic material at the cenote floor. Pelagic redoxclines de-
velop in density stratified marine (e.g., Berg et al., 2015) as
well as lake environments (e.g., Noguerola et al., 2015). In
redoxclines below the photic zone the microbial community
is dominated by chemolithoautotrophs, with a considerable
amount of chemoautotrophic production and dark CO2 fix-
ation (e.g., Grote et al., 2008; Jørgensen et al., 1991; Jost
et al., 2010; Noguerola et al., 2015). The development of
pelagic redoxclines was also reported for deep density strat-
ified cenotes of the YP (e.g., Socki et al., 2002; Stoessell et
al., 1993; Torres-Talamente et al., 2011).

In our previous study members of the Betaproteobacte-
ria Hydrogenophilaceae and the Epsilonproteobacteria genus
Sulfurovum were reported as dominant within the aque-
ous microbial community. Most members of these bacterial
groups are chemolithotrophic or mixotrophic using reduced
sulfur compounds or hydrogen as electron donors and oxy-
gen or nitrogen compounds as electron acceptors (Stinnes-
beck et al., 2017b).

The white cloudy turbid layer could be the result of a dense
accumulation of these microorganisms, e.g., sulfur-oxidizing
bacteria, analogous to that reported for Bundera sinkhole in
Australia (Seymour et al., 2007). Elemental sulfur particles
or polysulfides were detected on the turbid layer filtrate and
indicate sulfur oxidation in the turbid layer or redoxcline
(Sect. 3.4 and Fig. 7); these particles are formed as interme-
diates in the microbial oxidation of sulfide (Findlay, 2016).

The oxidation of sulfide in the redoxcline is likely anaero-
bic, as sulfide vanishes at around 36 m while dissolved oxy-
gen is already at undetectable levels at 35 m water depth and
both concentration profiles are not overlapping (Fig. 8). Fur-
thermore, the oxygen flux towards the redoxcline is around
one magnitude lower than the flux of the reduced sulfur
species HS−, indicating that sulfide oxidation via aerobic
pathways is minor (Fig. 8). Thus, sulfide oxidation within
the redoxcline must be predominantly via anaerobic path-
ways. As the downward flux of NO−3 towards the redoxcline
intersects with the upward flux of HS− (Fig. 8), assimila-
tory anaerobic sulfide oxidation could be obtained with ni-
trate as the terminal electron acceptor producing elemental
sulfur and nitrogen under the consumption of protons (e.g.,
Bailey et al., 2009). The overall mass-balanced energy gener-

ating reaction for chemoautotrophic nitrate-driven anaerobic
sulfide oxidation (ND-SO) is given in Reaction (R1):

7HS−+ 2NO−3 +CO2+ 9H+→ (R1)

7S0
+N2+CH2O+ 7H2O.

According to Reaction (R1) ND-SO could account to one-
third of the HS− oxidation, despite the flux of NO−3 towards
the redoxcline is around 1 order of magnitude lower than the
HS− flux (Fig. 8). Furthermore ND-SO is proton-consuming
and sulfide oxidation to elemental sulfur is more acid proton-
consuming than the full sulfide oxidation to sulfate (see also
Visscher and Stolz, 2005). The abundance of elemental sul-
fur particles found in the turbid layer filtrate (Fig. 7) indicates
that sulfide oxidation to elemental sulfur is predominant. Full
oxidation of sulfide to sulfate is less likely as no increase
of sulfate is observed in the redoxcline (Fig. 3c). Maxima
in pH are known to occur when sulfide is oxidized to ele-
mental sulfur with nitrate as the electron acceptor (Kamp et
al., 2006). Consequentially, the minimum amount of nitrate
in the redoxcline and the slight alkaline pH shift, indicate
that ND-SO is a relevant process in the redoxcline (Figs. 3b
and c, 8). Therefore, the proton-consuming ND-SO could be
the biogeochemical process in the redoxcline creating a dis-
equilibrium in the carbonate dissolution–precipitation reac-
tion, favoring calcite precipitation. This mechanism was re-
cently reported for the formation of stromatolites below the
photic zone of the Arabian Sea. There, a collective effect of
proton-consuming ND-SO and alkalinity-producing sulfate-
driven oxidation of CH4 (SD-OM) leads to authigenic car-
bonate precipitation in microbial mats in the vicinity of CH4
seeps (Himmler et al., 2018).

Anaerobic SD-OM (e.g., Bailey et al., 2009) is likely to oc-
cur at the redoxcline, as dissolved CH4 concentrations vanish
at around the same depth of sulfide (∼ 36.5 m), and δ13C-
CH4 values show a strong peak towards higher values at the
same water depth (Fig. 4).

Autotrophy also supports calcite precipitation by taking
up CO2 for the synthesis of biomass (Castanier et al., 1999;
Kosamu and Obst, 2009). Although a decrease of DIC is
not observed at the redoxcline, chemolithoautotrophy is indi-
cated by the δ13C-HCO−3 in the water body (Fig. 4). The peak
of higher values in the redoxcline indicates inorganic carbon
assimilation by microorganisms (dark CO2 fixation). Organ-
isms usually prefer to metabolize 12C (it takes less energy to
break the 12C bond instead of 13C), which results in higher
δ13C-HCO−3 values in the remaining dissolved inorganic car-
bon. Hence, the peak towards more positive δ13C-HCO−3 val-
ues identified in the redoxcline of El Zapote at ∼ 36 m wa-
ter depth may be attributed to microbial CO2 assimilation or
dark CO2 fixation.

4.3 Hypothesis on Hells Bells formation

It was suspected before that Hells Bells form within the
freshwater body of El Zapote cenote (Stinnesbeck et al.,
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2017b). The depth zone of Hells Bells formation within the
freshwater layer can now be narrowed down by the applica-
tion of Eq. (2) with a given distribution coefficientD(Mg) of
the temperature-dependent partitioning of Mg into calcite.

(Mg/Ca)solution =
(Mg/Ca)solid

D(Mg)
(2)

Applying the mean value of Mg/Casolid determined for
Hells Bells calcites (Table 1) and D(Mg) at 25 ◦C given by
Huang and Fairchild (2001) and Rimstidt et al. (1998), the
calculation of Mg/Casolution of the solution from which the
Hells Bells calcite precipitated yields a Mg/Casolution of 0.73
and 1.06, respectively. Mg/Casolution ratios in this range are
found in the water of the redoxcline and the uppermost top
of the halocline in 36–37 m water depth, thus supporting the
interpretation that Hells Bells formation takes place in the
redoxcline (Fig. 3c and Table S4).

The calcite crystals found in the turbid layer filtrate give
further information on calcite precipitation in the redoxcline
(Fig. 7c). It is not yet known whether these particles repre-
sent autochthonous matter of the turbid layer. Nevertheless,
formation of calcite crystals at the density boundary is likely,
as fine particulate matter is accumulated there and may act
as crystallization seeds. This process is indicated by calcite
crystal formation around silica shells (Fig. 7c1). The high
sulfur contents found in Hells Bells calcite also supports this
assumption as small sulfur particles are abundant in this wa-
ter layer and are easily enclosed in calcite crystals growing
there (Table 1).

Based on the indications of Hells Bells formation in the
redoxcline and taking the biogeochemical processes dis-
cussed before into account we propose the following sce-
nario illustrated in Fig. 9. It summarizes the biogeochemi-
cal processes inducing calcite oversaturation and calcite pre-
cipitation in the turbid layer and the redoxcline of El Za-
pote cenote. Heterotrophic bacterial decomposition of or-
ganic matter in the sediment of the debris mound releases
CO2 (HCO−3 ), nutrients (Portho), and reduced species of sul-
fur (S(-II)) and nitrogen (NH+4 ). Due to the stagnant con-
ditions in the cenote, these species are transported via dif-
fusion, thereby allowing for the formation of a defined and
stable redoxcline. Here, anaerobic chemolithoautotrophy, es-
pecially proton-consuming nitrate-driven sulfide oxidation
(ND-SO), increase alkalinity, thus favoring calcite precipita-
tion (Fig. 9). The required Ca2+ ions for calcite precipitation
are constantly supplied to the redoxcline by upward diffusion
from the calcium-enriched saline water body (Stinnesbeck et
al., 2017b).

4.3.1 Calcite precipitation rates

In order to test the plausibility of the hypothesis on Hells
Bells formation within the redoxcline, calcite precipitation
rates of both biogeochemical processes, ND-SO and CO2 as-

similation are assessed. All used parameters and results are
given in Table S5.

The overall chemical reaction of the carbonate balance is
given in Reaction (R2), and the partial reactions are given in
Reactions (R2a)–(R2d). Under equilibrium conditions, car-
bonate precipitation after Reaction (R2) is acid producing be-
cause for each mole of precipitated calcite in Reaction (R2)
one proton is released to compensate for the abstracted car-
bonate ion (Reaction R2b) due to proton shift in the partial
reactions (Reaction R2b–R2d).

Ca2+
+ 2HCO−3 ↔ CaCO3+CO2+H2O (R2)

Ca2+
+CO2−

3 ↔ CaCO3 (R2a)

HCO−3 ↔ CO2−
3 +H+ (R2b)

HCO−3 +H+↔ H2CO3 (R2c)
H2CO3↔ CO2+H2O (R2d)

The calcite precipitation rate RND-SO derived from ND-SO
within the redoxcline can be estimated with Eq. (3) under the
following assumptions: (i) up to one-third of the hydrogen
sulfide flux towards the redoxcline (Fig. 8) is oxidized by the
proton consuming ND-SO after Reaction (R1), and (ii) the
proton consumption of this process is buffered by both the
observed increase in pH values of 0.04 within the redoxcline
(Fig. 3b) and calcite precipitation after Reaction (R2).

RND-SO =
1
3
JHS− ×

(
α

mHS−
−

β

mHS−

)[
mol (m2 s)−1

]
(3)

With mHS− = 7 (moles of HS− in Reaction R1), α = 9
(moles of H+ in Reaction R1) and β = 0.91 (moles of H+

consumed in pH increase of 0.04).
Equation (3) yields that 7.3 mmol calcite m−2 a−1 or

0.73 g calcite m−2 a−1 could be precipitated within the re-
doxcline due to ND-SO. This adds up to a total calcite pre-
cipitation rate RND-SO of 2.2–6.2 kg calcite a−1 in the whole
redoxcline of the circular 60–100 m wide El Zapote cenote.

Additionally, the second biogeochemical process in the re-
doxcline that might lead to calcite precipitation, the CO2 as-
similation or dark CO2 fixation (Fig. 9), has to be taken into
account. Under equilibrium conditions, for each mole of ab-
stracted or assimilated CO2 one proton is consumed due to
the carbonate balance (Reactions R2a–R2d) and this proton
consumption is compensated by calcite precipitation (Reac-
tion R2). The CO2 assimilation rate in the redoxcline can be
approached by the upward flux of DIC (JDIC(HCO3)) towards
the redoxcline (calculated as HCO−3 and given in Fig. S4).
The calcite precipitation rate RCO2-assim. derived from the
CO2 assimilation is then limited to the half of the DIC flux
towards the redoxcline as given in Eq. (4).

RCO2-assim. =
1
2
JDIC

(
HCO−3

) (4)
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Figure 9. Scheme of the biogeochemical processes involved in the sediment and redoxcline of the water column of the El Zapote cenote that
lead to Hells Bells formation.

Equation (4) yields a calcite precipitation rate RCO2-assim.
of 40 mmol calcite m−2 a−1, which is 12–34 kg a−1 in the
whole redoxcline. Such rates seem reasonable when com-
pared to reported dark CO2 fixation rates from 0.2 to
2.7 µmol CO2 L−1 d−1 of deep marine pelagic redoxclines
in the Black Sea (Jørgensen et al., 1991), the Baltic Sea
(Glaubitz et al., 2009; Jost et al., 2008) as well as for a
deep karstic lake pelagic redoxcline (Noguerola et al., 2015)
(Table S5). Applied to the redoxcline of El Zapote cenote,
these rates would yield calcite precipitation rates from 11–
420 kg calcite a−1 in the 0.5 m thick and 60–100 m wide re-
doxcline of the circular El Zapote cenote.

The summed up calcite precipitation rates of RND−SO
and RCO2-assim. in the redoxcline can be converted to calcite
growth rates from 0.27 to 1.46 µm a−1 m−2, taking a calcite
density of 2.7 g cm−3 into account. Calcite growth, however,
is likely to be concentrated on a much smaller area, i.e., the
crystal or substrate surfaces of Hells Bells hanging in the re-
doxcline, the cenote walls and the tree stem within the re-
doxcline (Figs. 2 and 3). This would result in a higher actual
calcite growth rate; for example if the calcite growth is con-
centrated to 1 % of the redoxcline area, this would result in
actual growth rates of 27–146 µm a−1.

These growth rates are close to the reported net growth
rates of 12–90 µm a−1 for a U-series dated Hells Bells speci-
men from the tree (Stinnesbeck et al., 2017b) demonstrating
the plausibility of Hells Bells formation by the biogeochem-
ical mechanisms proposed in this study. However, the actual
calcite growth rates must be significantly higher than the re-
ported net growth rates as these rates also comprise repeated
phases of calcite dissolution (see Sect. 3.1.1 and 3.2; Stin-
nesbeck et al., 2017b).

Eventually, the comparison of the estimated actual cal-
cite precipitation rates in the redoxcline and the reported net
growth rates is hindered by a lack of data of both the actual

area of calcite precipitation and the time and intensity of cal-
cite dissolution.

4.3.2 The role of halocline elevation in Hells Bells
formation

Hells Bells formed in modern to at least historic times and
occur in a relatively thick vertical zone of about 10 m at 28 to
38 m water depth (Stinnesbeck et al., 2017b). This indicates
that their underwater growth occurred under environmental
conditions similar to the ones detected by us, as modern sea
levels were already reached at about 4.5 ka (Hengstum et al.,
2010) and thus significantly earlier. Hells Bells therefore pre-
cipitate either permanently in the entire depth zone reaching
from 28 to 38 m, or in the narrow 1–2 m thick redoxcline or
turbid layer above the halocline (Fig. 9). According to the
data presented here the latter hypothesis appears much more
likely to us. Therefore, we propose that growth of Hells Bells
is a non-permanent episodic process which majorly depends
on the halocline elevation in the cenote (Fig. 10). The depth
of the halocline generally increases with increasing distance
to the coast (Fig. 10a) (e.g., Bauer-Gottwein et al., 2011). The
halocline depth position is a function of the hydrostatic pres-
sure of the overlying freshwater layer, i.e., its thickness and
the sea level. Therefore, the halocline elevation can vary on
multiple timescales in response to droughts, recharge events
and annual tidal fluctuations that are superimposed upon on
a longer-term sea level change. Extensive droughts occurred
repeatedly in the Holocene (Hodell et al., 2001) and could
have led to a prolonged elevation of the halocline as the
freshwater layer was thinner as a consequence of decreased
precipitation (Evans et al., 2018). Although on much shorter
timescales, extraordinary recharge events (e.g., hurricanes)
must have an effect on the depth position of the halocline
(Fig. 10b). Generally, during these events of enormous pre-
cipitation, the halocline is temporarily pushed downwards
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Figure 10. Sketch of dynamic halocline elevation within the Yu-
catán karst aquifer. Halocline depth increases with increasing dis-
tance from the coast in a steady-state condition (a). Recharge events
result in a lower halocline beneath areas of high vertical transmis-
sivities and an elevated halocline in areas of low hydraulic transmis-
sivity, e.g., El Zapote cenote (b).

by the amount of the freshwater infiltrating into the Yucatán
karst aquifer. However, it has been reported that the halocline
can also be elevated as a response to precipitation events (Es-
colero et al., 2007).

Regionally and locally, vertical and lateral hydraulic trans-
missivities of both the epikarst and the phreatic karst can
result in spatially variable hydraulic pressure of the fresh-
water lens (Williams, 1983), thus leading to a lowered halo-
cline beneath areas of higher, and an elevated halocline be-
neath areas of less vertical hydraulic transmissivity. El Za-
pote cenote is located in the Holbox fracture zone that in the
area is characterized by north-to-south trending lineaments
of increased permeability (Bauer-Gottwein et al., 2011, and
references therein). Hurricanes that pass the area frequently
(Farfán et al., 2014) could therefore lead to episodic elevation
of the halocline (Fig. 10).

Both a prolonged halocline elevation during droughts and
short-term but frequent recharge-driven halocline elevations
could result in the presence of Hells Bells in a zone of 28–
38 m water depth. Furthermore, repeated phases of precipi-
tation and dissolution indicated by the alternating layers of
dogtooth calcite and microcrystalline calcite of Hells Bells
thin sections (Stinnesbeck et al., 2017b) suggest an episodic
halocline elevation. During episodes of an elevated halocline,
precipitation or dissolution of Hells Bells may occur in lower
depths due to the concurrent elevation of the calcite precipi-
tating redoxcline and the underlying sulfide-rich and carbon-
ate undersaturated water.

A variable halocline depth position at El Zapote cenote is
also supported by the positive correlation with water depth
of Sr/Ca and a negative correlation of δ13Ccalcite of the Hells
Bells calcite (Fig. 6). Hells Bells formed in lower water
depths show slightly higher contents of the trace elements Sr,
Mg and Ba, and slightly lower δ13Ccalcite values than Hells
Bells formed in greater water depths (Table 1 and Fig. 6).
The higher incorporation of the trace elements Sr, Mg and
Ba is either obtained by faster growth rates (Tesoriero and
Pankow, 1996) or by elevated concentrations in the solu-
tion from which the calcite precipitated. The latter process
is more likely, as the amount of saltwater increases in the tur-
bid layer when the halocline is located at lower water depths.
Lower δ13Ccalcite values support this assumption, as lowest
δ13C-HCO−3 values are detected in the halocline of the mod-
ern El Zapote cenote (Fig. 4).

The increase in saltwater in the lowermost freshwater and
the turbid layer could result from increased salinity of the
freshwater body during droughts. Furthermore, turbulences
induced by a halocline elevation as a reaction to recharge
events could increase the salinity of the lowermost freshwa-
ter body (Kovacs et al., 2017b). Minor mixing of the water
bodies would be sufficient to increase the concentrations of
Sr, Mg, Ba and decrease δ13C-HCO−3 in the turbid layer, as
seen at El Zapote.

Following the model of an episodic halocline elevation,
the question remains why Hells Bells are restricted to a zone
of 28–38 m water depth. This range could solely depend on
the hydraulic conditions, e.g., Hells Bells formation reflect-
ing maximum and minimum elevations of the halocline as
a result of droughts, recharge events and long-term sea level
changes. The lower (38 m) level of Hells Bells formation may
represent the stable environmental conditions in the modern
El Zapote cave, influenced only by the thickness of the fresh-
water body and the mean sea level. The upper range bound-
ary, on the other hand, could well be given by the shape
of the sinkhole and limnological conditions in the narrow
cenote shaft reaching from 0 to 30 m water depth. In this
latter unit, the water body is mixing-dominated rather than
diffusion-dominated (Fig. 3, Sect. 4.1). A rise of the halo-
cline to about 28 m water depth would therefore lead to an ex-
posure to fast and convective oxygen supply from the mixed
freshwater body above, and consequently to aerobic micro-
bial sulfide oxidation, which is an acid-producing reaction
(e.g., Jones et al., 2015). Hells Bells formation would then
stop as it is tied to anaerobic ND-SO. The occurrence of a
zone of brown-colored manganese oxide coatings on Hells
Bells and the cave wall at and above 30 m water depth indi-
cates that the redoxcline must temporarily have reached up
to this level (Figs. 2c, d and S6). Manganese dissolved in the
halocline and turbid layer was then oxidized to manganese
oxide precipitates (Fig. S6).

The dynamic history of halocline elevation at El Zapote
cenote cannot be resolved to date but raises an interesting is-
sue of further research on the dynamic hydraulic response of
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the Yucatán aquifer to extraordinary recharge events, espe-
cially as this process could be a key factor for the formation
of Hells Bells. We are currently addressing this issue by log-
ging the hydraulic head of the freshwater body and the elec-
trical conductivity at a fixed position in the halocline of El
Zapote cenote.

4.3.3 Shape of Hells Bells

Previously, we attributed the growth of Hells Bells to micro-
bial mediation (Stinnesbeck et al., 2017b). We hypothesized
that autotrophy (ammonia oxidation) and denitrification are
the main factors that trigger calcite precipitation at the sur-
face of the Hells Bells and that calcite precipitation could
further be supported by the presence of negatively charged
extracellular polymeric substances (EPS), leading to the ac-
cumulation of Ca2+ ions and to supersaturation of calcite
within biofilms (e.g., Dupraz et al., 2009). However, the large
size and form of the dogtooth calcite crystals of Hells Bells
resemble slow-growing inorganic calcite crystals rather than
biologically mediated precipitates (Figs. 2e and 5). This hy-
pothesis is supported by Bosak and Newman (2005), who
investigated microbial kinetic controls on calcite morphol-
ogy and found that microbially mediated calcite precipitated
at low calcite supersaturation shows more anhedral crystal
morphologies, compared to the more euhedral abiotic ones.
Although the microbial activity in the redoxcline induces cal-
cite oversaturation, the hypothesis presented in this study
is compatible with an inorganic calcite precipitation of the
Hells Bells from a biologically mediated water layer.

Ultimately, the hypothesis of a dynamic halocline eleva-
tion and biogeochemically induced calcite precipitation in
the redoxcline can be integrated to explain some morpho-
logical features of the Hells Bells. They grow downward
and are conically divergent, with a strict horizontally lower
margin and a hollow interior. Specimens also tend to be ori-
ented towards the cenote center (Stinnesbeck et al., 2017b).
The horizontal downward growth is indicative of a precip-
itation from a defined layer within the water column (i.e.,
the redoxcline). Also, an abrupt elevation of the redoxcline
as a response to recharge events and a subsequent deceler-
ated drop towards its original position serves to explain the
downward growth of Hells Bells. This is indicated by the ten-
dency towards downward orientation of the calcite crystal
growth axis (Fig. 2e). The fact that Hells Bells specimens
growing on the inclined cave wall are always oriented to-
wards the cenote center could result from a lateral gradient
in the chemolithoautotrophic intensity. The “energy sources”
used by the chemolithotrophic microbial community in the
redoxcline are the released reduced carbon, sulfur and ni-
trogen species from anaerobic organic matter decay in the
organic-rich sediments on the debris mound. Both the mor-
phology of the cenote and the diffusive mass transport likely
result in radial concentration gradients of upwards diffus-
ing reduced species from the sediment of the debris mound.

These conditions limit the availability of reduced species in
locations of the redoxcline distal to the debris mound and
vice versa. Consequently, the intensity of chemolithoautotro-
phy, and hence calcite oversaturation, is preferentially higher
in the center proximal to the debris mound and decreases to-
wards the cenote walls. This accounts for both the inclined
bells as well as for horseshoe-like horizontal openings of
Hells Bells which always face towards the wall. Furthermore,
the often observed hollow interior of Hells Bells could be due
to preferential growth of the outer edges of Hells Bells, espe-
cially the parts facing towards the cenote center. Once such
parts of Hells Bells grow slightly more, hence into deeper
water depth, this will result in a higher net growth as these
parts are likely to be reached more frequently by the nar-
row zone of calcite precipitation (redoxcline). The conical
shape and downward divergence of Hells Bells could be a
continuation from the microscopic to the macroscopic level
as the angles of the botryoidal calcite phases in the thin sec-
tion (Fig. S5) strongly resemble those of the large specimens
of Hells Bells (Fig. 2d).

Nevertheless, we can also not exclude the potential influ-
ence of microorganisms forming a biofilm community on the
surface of Hells Bells. Stinnesbeck et al. (2017b) showed that
this community does not resemble the planktonically grow-
ing microbial biocenosis but forms a distinct community that
seems to thrive catalyzing the reduction and oxidation of dif-
ferent nitrogen species. However, to date it is not known what
percentage the activity of these organisms contributes to the
shape of the speleothems.

4.4 Prerequisites for the formation of Hells Bells

Hells Bells have so far been identified in a few cenotes only
within a restricted area of the northeastern YP (Stinnesbeck
et al., 2017b), although the peninsula hosts many thousands
of sinkholes (Bauer-Gottwein et al., 2011). Thus, the follow-
ing question arises: which factors are needed for the genera-
tion of these underwater speleothems? The following appar-
ent prerequisites for Hells Bells formation appear likely to
us:

– The cenote or sinkhole must be deep enough to reach
the halocline in order to have a density stratified water
column (meromixis).

– Sufficient input of organic material to the cenote bot-
tom is required to create anoxia in the halocline with a
release of reduced sulfur, carbon and nitrogen species.

– A meromictic stagnant water body indicated by a thick
halocline is needed that allows for the formation of a re-
doxcline in which anaerobic chemolithoautotrophy pre-
vails. This leads to a narrow zone of calcite oversatura-
tion in the water body.
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– Special hydraulic conditions are needed which allow the
halocline to rise and fall in order to form subaqueous
speleothems.

5 Conclusion

The unique underwater speleothems termed Hells Bells re-
cently described from El Zapote west of Puerto Morelos
on the northern Yucatán Peninsula, Mexico, are most likely
formed in the redoxcline, a narrow layer in the lowermost
freshwater body immediately overlying the halocline. We
propose a biogeochemical mechanism for the formation of
these structures that induces calcite oversaturation favoring
calcite precipitation within the redoxcline. The upward dif-
fusion of reduced sulfur, carbon and nitrogen stimulates a
chemolithoautotrophic microbial community thriving above
the halocline at El Zapote cenote. Chemolithoautotrophy and
proton-consuming nitrate-driven anaerobic sulfide oxidation
(ND-SO) lead to calcite precipitation, and hence Hells Bells
formation, in a narrow depth zone confined to the redox-
cline, or turbid layer. We further postulate a dynamic ele-
vation of the halocline as an episodic hydraulic response to
both droughts and recharge events that may account for Hells
Bells occurrence over a vertical range of 10 m water depth.
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