
Biogeosciences, 16, 255–274, 2019
https://doi.org/10.5194/bg-16-255-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interpreting eddy covariance data from heterogeneous Siberian
tundra: land-cover-specific methane fluxes and
spatial representativeness
Juha-Pekka Tuovinen1, Mika Aurela1, Juha Hatakka1, Aleksi Räsänen2,3, Tarmo Virtanen2, Juha Mikola4,
Viktor Ivakhov5, Vladimir Kondratyev6, and Tuomas Laurila1

1Finnish Meteorological Institute, Climate System Research, P.O. Box 503, Helsinki, Finland
2Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences and Helsinki
Institute of Sustainability Science (HELSUS), P.O. Box 65, Helsinki, Finland
3Department of Geography, Norwegian University of Science and Technology, Trondheim, Norway
4Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences,
University of Helsinki, Niemenkatu 73, Lahti, Finland
5Voeikov Main Geophysical Observatory, St. Petersburg, Russia
6Yakutian Service for Hydrometeorology and Environmental Monitoring, Tiksi, Russia

Correspondence: Juha-Pekka Tuovinen (juha-pekka.tuovinen@fmi.fi)

Received: 29 March 2018 – Discussion started: 10 April 2018
Revised: 22 November 2018 – Accepted: 8 December 2018 – Published: 22 January 2019

Abstract. The non-uniform spatial integration, an inherent
feature of the eddy covariance (EC) method, creates a chal-
lenge for flux data interpretation in a heterogeneous en-
vironment, where the contribution of different land cover
types varies with flow conditions, potentially resulting in bi-
ased estimates in comparison to the areally averaged fluxes
and land cover attributes. We modelled flux footprints and
characterized the spatial scale of our EC measurements in
Tiksi, a tundra site in northern Siberia. We used leaf area
index (LAI) and land cover class (LCC) data, derived from
very-high-spatial-resolution satellite imagery and field sur-
veys, and quantified the sensor location bias. We found
that methane (CH4) fluxes varied strongly with wind di-
rection (−0.09 to 0.59 µgCH4 m−2 s−1 on average) dur-
ing summer 2014, reflecting the distribution of different
LCCs. Other environmental factors had only a minor ef-
fect on short-term flux variations but influenced the seasonal
trend. Using footprint weights of grouped LCCs as explana-
tory variables for the measured CH4 flux, we developed a
multiple regression model to estimate LCC group-specific
fluxes. This model showed that wet fen and graminoid tun-
dra patches in locations with topography-enhanced wetness
acted as strong sources (1.0 µgCH4 m−2 s−1 during the peak
emission period), while mineral soils were significant sinks

(−0.13 µgCH4 m−2 s−1). To assess the representativeness of
measurements, we upscaled the LCC group-specific fluxes to
different spatial scales. Despite the landscape heterogeneity
and rather poor representativeness of EC data with respect
to the areally averaged LAI and coverage of some LCCs,
the mean flux was close to the CH4 balance upscaled to an
area of 6.3 km2, with a location bias of 14 %. We recom-
mend that EC site descriptions in a heterogeneous environ-
ment should be complemented with footprint-weighted high-
resolution data on vegetation and other site characteristics.

1 Introduction

Biosphere–atmosphere exchange of greenhouse gases
(GHGs) is commonly measured using the micrometeorolog-
ical eddy covariance (EC) method (Aubinet et al., 2012).
This tower-based, non-intrusive technique provides spatially
integrated flux data at the ecosystem scale with a typical
integration domain of a few hectares. This is in stark contrast
to flux chamber measurements that can be focused on homo-
geneous small-scale (< 1 m2) patches of an ecosystem or on
individual plant communities (Livingston and Hutchinson,
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1995; Virkkala et al., 2017). The spatial aggregation inherent
in the EC data is a strong asset if one’s objective is to study
functioning or GHG exchange of an extensive, relatively
homogeneous ecosystem. Heterogeneous landscapes con-
sisting of a mosaic of differing vegetation and land cover
patches, however, may entail issues on the interpretation
of the spatial representativeness of measurements. This
stems from the fact that the EC integration process is
equivalent to non-uniform weighting of the upwind surface
elements that influence the measured flux, thus potentially
resulting in an unequal and temporally varying contribution
from different land cover types (Schmid, 2002). Especially
isolated zones of high source–sink density may bias the
estimated average flux of the area surrounding the EC tower.
The spatial distribution of relative weights, a function that
Leclerc and Thurtell (1990) coined “footprint”, depends on
the measurement height and strongly on wind direction.
As the flux footprint is also affected by other properties of
the atmospheric flow, e.g. hydrostatic stability, directional
averaging does not guarantee an unbiased flux estimate
either.

Arctic tundra serves as a prime example of a surface
that is heterogeneous with respect to biogeochemical pro-
cesses. The vegetation, soil and land cover structure of tun-
dra areas are fragmented, the landscape typically compris-
ing patches of different plant communities, water bodies
and other land cover types (Stow et al., 2004; Virtanen and
Ek, 2014; Mikola et al., 2018). Such heterogeneity concerns
both the composition and configuration of land cover proper-
ties. This is clearly manifested by the leaf area index (LAI),
which shows a higher relative variation among sites in tundra
than in any other biome (Asner et al., 2003), and there are
pronounced spatial and temporal LAI patterns at the land-
scape scale (Marushchak et al., 2013; Juutinen et al., 2017).
Surface heterogeneity also generates high variability in the
ecosystem–atmosphere fluxes of GHGs, including methane
(CH4) (Olefeldt et al., 2013). Tundra biomes are responsi-
ble for approximately 3 % of the total CH4 emissions esti-
mated at 560 Tg yr−1, 40 % of which is biogenic (McGuire
et al., 2012; Saunois et al., 2016). The emissions from tun-
dra are predicted to increase substantially, as a fraction of
the vast reservoir of organic carbon in permafrost soils may
be released into the atmosphere as a result of warming-
induced thawing, creating a positive feedback to climate
change (Schuur et al., 2015).

The heterogeneity in the ecosystem–atmosphere CH4 flux
originates from the multitude of biochemical and physical
controls of the anaerobic production, bacterial oxidation and
transport of CH4 (Whalen and Reeburgh, 1990; Lai, 2009;
Bridgham et al., 2013). Methane can be released into the
atmosphere through gradual diffusion in soil and water, in
ebullition (bubbling) events and via plant-mediated advec-
tive transport. These processes involve different residence
times and thus expose the produced CH4 to different degree
of oxidation. As a result of this complexity, field studies have

identified a wide range of factors that are associated with the
level and variation of observed fluxes. Of these, soil temper-
ature and moisture (or water table level) typically constitute
the key environmental controls (Olefeldt et al., 2013). As a
general rule, wet carbon-rich soils emit substantial amounts
of CH4, while dry tundra soils act as small net sinks (Lau
et al., 2015). Even if lesser in magnitude, the uptake flux in
dry areas may dominate the regional CH4 balance (Jørgensen
et al., 2015; D’Imperio et al., 2017). Methane flux strongly
depends on vegetation and soil characteristics, such as the
abundance of vascular plants with aerenchyma tissue facil-
itating gas transport; other important variables include sub-
strate availability, and soil acidity and redox potential (Lai,
2009; Bridgham et al., 2013; Olefeldt et al., 2013).

Landscape heterogeneity not only calls for further mea-
surements of fluxes and their controls on multiple spatial
scales, preferably including multiple EC towers for spatial
replication (Hill et al., 2017), but also necessitates develop-
ment of techniques for data interpretation, including down-
and upscaling methods for generalization of observations.
Micrometeorological models are available for estimating the
flux footprint (Leclerc and Foken, 2014) and have been uti-
lized in various ways when dealing with the representative-
ness of flux measurements. In its simplest form, such an
analysis involves determination of footprint dimensions for
typical flow conditions, to ensure that the expected “field of
view” of EC measurements is sufficiently confined to the area
of interest (e.g. Aurela et al., 2009). Averaged footprints, or
footprint “climatologies”, can be calculated from time series
of actual short-term (typically 30 min) meteorological data,
thus providing a fuller view of the spatial extent of EC ag-
gregation (e.g. Amiro, 1998). When combined with a land
cover map, footprint time series can be used for data qual-
ity control by quantifying the contribution of different land
cover types or, specifically, that of a certain ecosystem in-
tended to be observed (Tuovinen et al., 1998; Rebmann et
al., 2005; Göckede et al., 2008). The footprint function can
also be used for a formal expression of the spatial, or more
precisely the point-to-area (Nappo et al., 1982), representa-
tiveness of the EC measurements performed at a certain lo-
cation. A suitable metric for this, termed the “sensor location
bias” by Schmid and Lloyd (1999), can be defined by com-
paring the footprint-weighted average of a surface-related
quantity, mapped across the study area, to the corresponding
arithmetic average.

While EC data from a heterogeneous environment are still
commonly compared with plot-scale data without consid-
ering the differential weighting of the plots in the EC sig-
nal (e.g. Heikkinen et al., 2002; Sachs et al., 2010; Yu et
al., 2013), footprint modelling has been successfully com-
bined with land cover information in various studies for
a representative upscaling of chamber-based fluxes (e.g.
Marushchak et al., 2016), plot-scale model results (e.g. Bud-
ishchev et al., 2014), remotely sensed fluxes (e.g. Chen et
al., 2009) and vegetation data for model input (e.g. Stoy et
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al., 2013). The temporally varying footprint weights of dif-
ferent land cover types can also be taken as a basis for con-
structing statistical models that unravel land-cover-specific
fluxes from the spatially aggregated EC data, but this depends
on the quality of land cover data (Fan et al., 1992; Forbrich
et al., 2011). The very-high-spatial-resolution (VHSR) satel-
lite imagery makes it possible to derive reliable land cover
maps with as high as a ∼ 1 m resolution. By utilizing such
a detailed vegetation map, Budishchev et al. (2014) showed
that footprint-weighting of modelled plot-scale CH4 emis-
sions from permafrost tundra resulted in a good agreement
with EC measurements, while areally averaged fluxes failed
to reproduce the heterogeneity-induced temporal variability.
A similar conclusion was reached by Davidson et al. (2017),
who upscaled chamber-based CH4 fluxes for four sites in
Alaska by means of VHSR vegetation maps.

The aims of the present study are threefold. First, we char-
acterize the dimensions of the field of view and the point-to-
area representativeness of the EC measurements carried out
at a micrometeorological measurement station, located on
permafrost tundra in Tiksi in northern Siberia, during sum-
mer 2014. We demonstrate and quantify the heterogeneity of
this site, producing information that is essential for any fur-
ther study exploiting these flux data. For this, we combine
a micrometeorological footprint model and detailed maps
of ecosystem characteristics, including land cover classes
(LCCs), LAI and topographic wetness index (TWI). These
are based on VHSR satellite imagery and extensive field sur-
veys, which still are scant for Siberian tundra. Second, we hy-
pothesize that distinguishable mean fluxes can be determined
for LCC groups that represent different CH4 source–sink ca-
pacities; this can be accomplished by developing a multiple
regression model that links these fluxes to the EC measure-
ments via footprint weighting. This approach was motivated
by the findings of Davidson et al. (2016), who demonstrated
that a simple vegetation classification could explain the vari-
ation in CH4 emissions from Arctic tundra as accurately as a
set of key environmental drivers. Furthermore, the flux cham-
ber measurements made in Tiksi showed that the effect of
LCC was much larger than that of environmental controls
(Vähä, 2016). Because of this objective, we limit our data to
the growing season. Finally, the LCC group-specific fluxes
obtained in this way offer us an opportunity to upscale the
CH4 balance to the landscape scale and thus to evaluate the
representativeness of EC measurements also with respect to
CH4 exchange. We emphasize that the scope of this study is
focused on the ramifications of the unavoidable non-uniform
spatial sampling involved in EC measurements rather than on
ecosystem processes.

2 Material and methods

2.1 Site and data

2.1.1 Site description and meteorological conditions

The study area covers the surroundings of the micromete-
orological GHG flux measurement station in Tiksi in north-
eastern Russia, near the Tiksi Observatory operated by Yaku-
tian Service for Hydrometeorology and Environmental Mon-
itoring. The EC tower of the station is located at 71.5943◦ N,
128.8878◦ E, 7 m above sea level, approximately 500 m from
the shoreline of the Laptev Sea and 50 km from the Lena
River delta. The flux measurements are run by the Finnish
Meteorological Institute and constitute part of the Interna-
tional Arctic Systems for Observing the Atmosphere (IA-
SOA) activities (Uttal et al., 2016).

Tiksi is located within the continuous permafrost zone, and
the climate is arctic: the winters are long and cold, while the
summers are cool. The mean annual temperature and precipi-
tation in Tiksi in 1981–2010 were−12.7 ◦C and 323 mm, re-
spectively; the year 2014 was somewhat warmer (−10.9 ◦C)
and drier (249 mm) (AARI, 2018). Air temperature typically
falls below 0 ◦C in the end of September, and the soil tem-
peratures reach the freezing point at approximately the same
time. During the winter, air temperatures are typically be-
low −20 ◦C, and the soil temperatures are reduced to lev-
els below −10 ◦C. Snow appears typically in October and
melts in early June. After the snowmelt, the top (a few cen-
timetres) layer of soil warms quickly, but the thawing rate of
deeper layers varies depending on the soil type and vegeta-
tion (Mikola et al., 2018).

The soil type ranges from mineral soil to peatlands with
a high organic content (> 60 % of dry soil mass) (Mikola et
al., 2018). The landscape around the EC tower represents the
coastal tundra zone of eastern Siberia with a high diversity
of plant species and community types, including fens, bogs,
tundra heaths and meadows, but there are also areas of bare
ground (Juutinen et al., 2017; Mikola et al., 2018). The ter-
rain is relatively flat, sloping gently (2–3◦) towards the south.
This generates a hydrological gradient, and a small brook
runs through the site; there are also ponds and small lakes
within the study area. Further details of vegetation and soil
characteristics are presented in Sect. 2.1.3 and 2.1.4.

The data analysed in this study cover the period of 5 July
to 29 August 2014, which represents the thermal growing
season of that year, using the daily mean air temperature of
5 ◦C as the threshold (Fig. S1 in the Supplement). During
this period, the mean air temperature was higher (10.2 ◦C)
than the corresponding 1981–2010 mean (7.8 ◦C), which was
also the case for the precipitation sum (116 mm vs. the long-
term mean 86 mm). In 2014, the soil temperature at 10 cm
depth, measured with a Pt100 sensor in dry fen soil, varied
within the typical summertime range of 5± 2 ◦ C from early
July to the end of August (Fig. S1). The depth of the active
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soil layer mostly varied within 0.2–0.4 m in early July–mid-
August 2014 (Mikola et al., 2018).

2.1.2 Flux measurements

The CH4 and energy fluxes used in the present study were
measured continuously with the micrometeorological eddy
covariance method (Aubinet et al., 2012). The EC instru-
mentation consisted of a USA-1 (METEK GmbH, Elmshorn,
Germany) sonic anemometer/thermometer, an LI-7000 (LI-
COR, Inc., Lincoln, NE, USA) CO2 /H2O analyser and an
RMT-200 (Los Gatos Research, Inc., San Jose, CA, USA)
CH4 analyser. The measurement height was 3 m. The sam-
pling frequency was 10 Hz, and the turbulent fluxes were cal-
culated with the in-house PyBARFluxCalc programme with
30 min block averaging according to standard procedures,
including double coordinate rotation, lag determination and
wet-to-dry mole fraction conversion where necessary (Aubi-
net et al., 2012). The high-frequency CH4 flux loss was cor-
rected for using an empirical approach described by Laurila
et al. (2005); for this, a half-power frequency of 1.1 Hz was
estimated from the data. The CH4 flux data were screened for
instationarity by removing cases in which the relative non-
stationarity of either momentum or CH4 flux exceeded 30 %
(Foken and Wichura, 1996). In addition, periods of weak tur-
bulence (friction velocity < 0.12 m s−1) were discarded. In
total, 911 half-hourly observations were included in the anal-
ysis. No gap-filling of the time series was necessary for the
purposes of the present study.

In addition to the EC technique, CH4 exchange was mea-
sured with a static flux chamber (Vähä, 2016). The surface
area of this chamber was 0.25 m2 and its height 0.3 m. The
sample air from the chamber was directed to a DLT-100 (Los
Gatos Research, Inc., San Jose, CA, USA) CH4 analyser. The
chamber closure time was either 4 or 10 min, depending on
the LCC and the expected magnitude of CH4 flux. The mea-
surements were carried out between 15 July and 16 August
2014. However, the number of chamber plots was modest
and the reach of these measurements from the EC mast was
limited due to the use of an online gas analyser; moreover,
the measurement plots do not fully correspond to the land
cover classification that was developed subsequently (Mikola
et al., 2018) and used in the present study. Therefore, instead
of aiming at a full analysis of the chamber data, we utilized
them for a partial validation of the estimated LCC-specific
fluxes, using four plots on dry fen, two plots on wet fen and
one plot on bare soil, with 31 or 32 measurements taken on
each plot.

2.1.3 Mapping of landscape characteristics

The land cover classification consists of nine classes visually
distinguished according to their key characteristics (Table 1).
The LCCs were identified within an area of 1 km2 around
the EC tower on the basis of a vegetation and soil survey

and verified using statistical ordination of the 92 established
study plots according to plant species composition and func-
tional plant and soil attributes (Mikola et al., 2018). To ex-
trapolate the LCCs to the landscape scale (Figs. 1a and S2), a
supervised object-based classification with the random forest
method was carried out using two VHSR multispectral satel-
lite images (12 August 2012 and 11 July 2015; WorldView-2,
DigitalGlobe, Inc., Westminster, CO, USA) and a digital ele-
vation model (DEM) constructed from the 2015 WorldView-
2 stereo pair (Fig. 1b). The internal (cross-validation of train-
ing data) and external (validation data) classification accu-
racies of the land cover classification were 80 % and 49 %,
respectively. For details, see Mikola et al. (2018).

Using non-linear regression, the LAI of vascular plants
was estimated from the normalized difference vegetation in-
dex (NDVI) calculated from the reflectance data of the 2012
WorldView-2 image (Fig. 1c). This map represents the pe-
riod of maximum LAI in 2012; for the estimated develop-
ment of the LAI of different LCCs in 2014, see Juutinen et
al. (2017) and Fig. S1. The topographic wetness index (TWI)
was calculated from the DEM using the method of Böhner
and Selige (2006) (Fig. 1d). TWI is defined as a function of
the upslope contributing area and the local terrain slope and
thus serves as a proxy for potential soil moisture. For de-
tails of the DEM and TWI data, see Mikola et al. (2018). All
maps have a 2 m pixel size, and in this study they were lim-
ited to a circle with a radius of 1.4 km from the EC tower,
which defines the domain of the present study. For upscaling
to a regional scale, we also considered the LCCs determined
within a larger area of 35.8 km2 (Fig. S2).

2.1.4 Main features of the land cover classes

The LCCs employed in the present study are described by
Juutinen et al. (2017) and in greater detail by Mikola et
al. (2018); a summary of observed vegetation characteris-
tics is provided in Table 1. Briefly, the dry fen, wet fen and
bog classes represent peat-forming environments, while the
other LCCs refer to environments with no discernible peat
layer. The vascular plant vegetation of fens, i.e. the wetter
peatlands, is characterized by sedges (Carex spp.). In 2014,
the LAI of this vegetation reached its maximum in early Au-
gust, estimated at 1.1 and 0.5 for wet and dry fens, respec-
tively (Fig. S1; Juutinen et al., 2017). Sphagnum mosses are
abundant in the dry fens, while in the wet fens the moss
cover is sparse and water pools are common. The bogs are
drier and show microtopographic variation; their vegetation
consists mainly of dwarf shrubs, dwarf birch (Betula nana)
and Sphagnum and other mosses. The vegetation of flood
meadows and graminoid tundra is dominated by graminoids
(sedges and grasses), which yield a relatively high maximum
vascular-plant LAI of 0.9 and 0.7, respectively, for these
LCCs during the study period (Juutinen et al., 2017). The
areas defined as shrub tundra have an abundant coverage of
feather mosses and dwarf shrubs. In addition, lichen tundra
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Table 1. Land cover classes and their dominating vegetation and other characteristics, derived from Juutinen et al. (2017) and Mikola et
al. (2018).

Class Peat Mosses and lichens Vascular plants Other
layer

Wet fen yes sparse wet brown moss cover sedge-dominated high water table, water pools
Dry fen yes dense Sphagnum cover, some wet brown mosses some sedges and dwarf shrubs water table below moss layer
Bog yes Sphagnum-dominated dwarf shrubs, Betula nana hummock–hollow surface pattern
Graminoid no some feather mosses graminoid-dominated;
tundra other vascular plants may occur
Flood meadow no some wet brown mosses, no Sphagnum graminoid-dominated; herbs, willows brookside spring flooding area
Shrub tundra no feather moss cover, no Sphagnum; some lichens dwarf shrubs, Betula nana
Lichen tundra no lichen-dominated; some feather mosses some herbs and dwarf shrubs alternates with bare ground
Bare ground no non-vegetated
Water no sea, freshwater bodies

Figure 1. Land cover classes and the mean cumulative footprint during the growing season of 2014 (a), terrain elevation (b), maximum leaf
area index (on 12 August 2012) (c) and topographic wetness index for terrestrial surfaces (d). The isopleths in panel (a) indicate the areas
with a 25 %, 50 %, 75 % and 90 % contribution to the measured flux (only the further distance visible). The plus sign indicates the location
of the EC tower.

patches with lesser biomass alternate with stony bare-ground
areas.

In terms of soil properties of the vegetated areas, the dry
fen, wet fen, bog and graminoid tundra LCCs stand out with

their high organic matter (on average 38 % of soil dry mass)
and water concentration (on average 73 % of fresh mass) in
the top 10 cm soil layer, while the lowest concentrations (4 %
and 22 %, respectively) were found in the soils of the lichen
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tundra LCC, as measured on 9–14 August 2014 (Mikola et
al., 2018). The soil temperature at a depth of 15 cm was
clearly highest in the lichen tundra sampling plots, and flood
meadow and wet fen soils mostly had a higher temperature
than those of the other remaining LCCs. The depth of the bi-
ologically active soil layer approximately doubled from early
July to mid-August 2014 (the period when weekly measure-
ments were taken). In mid-August, the active layer depth
was highest, approximately 40 cm, at the wet fen and flood
meadow plots and lowest, 25 cm, at the shrub tundra and
lichen tundra plots (Mikola et al., 2018).

2.2 Application of footprints

2.2.1 Footprint-weighted averaging and sensor location
bias

In this section, we first present an exposition of the footprint-
weighting of continuous variables and LCC maps and then
define the sensor location bias, which are needed for the het-
erogeneity assessment and regression modelling. The foot-
print function (Horst and Weil, 1992) specific to a certain
measurement configuration (f ) is expressed here in polar co-
ordinates as

〈F 〉 =

∫
∞

0

∫ 2π

0
f (θ, r)F (θ, r)dθdr, (1)

where F is the surface flux density distribution, 〈F 〉 is the
vertical flux density at the measurement point above the sur-
face, and θ and r are the horizontal direction and distance
with respect to this location. Equation (1) postulates that the
flux at a certain location above the ground represents a spatial
weighting of the surface flux distribution, where the weight-
ing is defined by the footprint function f , f ∈ [0,1) , ∀θ , r
and

∫
∞

0

∫ 2π
0 f dθdr = 1, which describes the turbulent trans-

port between each surface element and the reference point. In
the context of EC measurements, f can be estimated by mi-
crometeorological modelling, and 〈F 〉 denotes the measured
flux, while F (θ, r) is unknown.

Based on f (θ, r), we define, analogously to Eq. (1),
footprint-weighted averages of other quantities. For a contin-
uous variable X, such as LAI and terrain elevation, we write
this average, or the “effective” value of X related to a certain
footprint f , as

〈X〉 =

∫
∞

0

∫ 2π

0
f (θ, r)X(θ, r)dθdr. (2)

We apply a similar averaging operation to an LCC map, in
which each location (in practice, a pixel) is allocated to a
single LCC. We denote the LCC map by3(θ, r)= j , where
the integer j = 1 . . .N specifies the LCC at (θ, r), and define
the weighted LCC corresponding to f as

〈3〉j =

∫
∞

0

∫ 2π

0
f (θ, r)δ (3, j)dθdr, (3)

where

δ (3, j)=

{
0, 3(θ, r) 6= j

1, 3(θ, r)= j
. (4)

This provides the proportion of each LCC within the foot-
print, which can be calculated for a footprint climatology as
well as a single footprint distribution. If the variable X in
Eq. (2) is LCC-specific but otherwise does not depend on lo-
cation, i.e. we can specify constants Xj , j = 1. . .N , then we
combine Eqs. (2) and (3) to obtain the footprint-weighted X
as

〈X〉 =
∑N

j=1

∫
∞

0

∫ 2π

0
f (θ, r)δ (3, j)Xjdθdr. (5)

To describe the point-to-area representativeness of the flux
measurements with respect to a variable related to a surface
property or exchange, we follow Schmid and Lloyd (1999)
and define a metric that quantifies how well the measurement
at a certain location reflects the actual conditions averaged
over the area of interest. The sensor location bias for X is
calculated here as

1X =
〈X〉−X

X
, (6)

whereX denotes the meanX within the study area. This def-
inition differs from the one introduced by Schmid and Lloyd
(1999), who expressed the sensor location bias as 12

X. As
〈X〉 depends on the footprint and thus varies with time, 1X
is not temporally invariant either.

We calculated the sensor location bias with Eqs. (2) and (6)
for terrain elevation, the maximum LAI and TWI that were
mapped across the study area (Fig. 1). In addition, to in-
vestigate the effect of landscape heterogeneity, this bias was
calculated for the mean CH4 flux, for which the areal ref-
erence was obtained from LCC group-specific fluxes. These
fluxes were estimated with a multiple regression model de-
rived from Eq. (5) (to be described in Sect. 2.3), in which the
LCC group proportions calculated with Eq. (3) were used as
explanatory variables.

2.2.2 Footprint modelling

We calculated the flux footprints f for each 30 min flux aver-
aging period in a horizontal 2 m× 2 m grid by using the ana-
lytical footprint model developed by Kormann and Meixner
(2001) (here “KM model”). The KM model is based on a sta-
tionary gradient diffusion formulation, building on the clas-
sical solution of the two-dimensional advection–diffusion
equation with vertical power law profiles assumed for the
mean wind speed and eddy diffusivity (Pasquill and Smith,
1983). As a novel feature, these profiles are related to the cor-
responding Monin–Obukhov similarity (MOS) profiles. The
crosswind diffusion is assumed to be Gaussian and height-
independent.
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Our EC measurements provide the necessary input data
for the KM model, including mean wind direction (θ ), mean
horizontal wind speed at anemometer height (U ), friction ve-
locity (u∗), hydrostatic stability (L−1) and the standard devi-
ation of lateral wind velocity (σv). When matching the wind
and diffusivity power laws to the MOS profiles at the mea-
surement height, the KM model does not require an explicit
definition of roughness length (z0), since the input data (i.e.
U , u∗, L−1) implicitly specify z0 according to the MOS pro-
file of the horizontal wind speed. In the case of a heteroge-
neous surface, this simplifies the computations significantly
as compared to models that require additional flux aggrega-
tion procedures for estimating the effective z0 (Göckede et
al., 2006).

Independent of the flow conditions, a part of each foot-
print distribution formally extends beyond any finite target
area. Therefore, in those footprint calculations that involve a
surface property distribution such as the LCC map, we nor-
malize the footprint integrated over the map area to 1, unless
indicated otherwise. This means that the upper distance of
radial integration in Eqs. (2), (3) and (5) is set to a finite limit
of rm and the footprint-weighted averages are scaled by di-
viding by

∫ rm
0

∫ 2π
0 f dθdr , where rm (≈ 1.4 km) is the radius

of the present land cover maps.

2.2.3 Examples of flow conditions

To demonstrate how the EC flux measurement in Tiksi is af-
fected by surface heterogeneity, we calculated the footprint-
weighted averages of the surface attributes LAI, terrain el-
evation and TWI using Eq. (2) and the data illustrated in
Fig. 1b–d as the continuous variable X, while Eq. (5) was
used for the footprint-weighted LCC areas of the nine classes
shown in Fig. 1a. For this demonstration, we defined three
flow situations in terms of the variables that affect the foot-
print in a given θ , i.e. U , u∗, L−1 and σv (Table 2). These
cases represent differing stability conditions, for which typi-
cal parameter combinations were derived from the measure-
ment data employed in this study. The U–u∗–L−1 combi-
nation was constrained by z0 = 0.01 m as calculated from
the MOS profile of the horizontal wind speed (Pasquill and
Smith, 1983). For lateral wind velocity fluctuations, which
only affect turbulent diffusion in the crosswind direction, we
used the scaling σv

/
u∗ = 2.3 . This corresponds to the me-

dian of our data and, for simplicity, was adopted here for all
stabilities.

2.3 Statistical model

2.3.1 Land cover class aggregation and upscaling of
CH4 fluxes

We hypothesize that mean CH4 fluxes can be determined for
LCC groups, each composed of LCCs of similar expected
source–sink capacity. This grouping was based on the docu-

Table 2. Flow conditions assumed for the example calculations.

Case L−1 u∗ σv U

(m−1) (m s−1)

Unstable −0.2 0.15 0.35 1.8
Neutral 0 0.40 0.92 5.7
Stable 0.1 0.10 0.23 1.8

Table 3. Aggregated land cover classes for the regression model.

LCC group description LCCs included

Strong source Wet fen, TWI> 4
Graminoid tundra, TWI> 4

Moderate source Wet fen, TWI≤ 4
Dry fen
Water, above sea level

Sink Bare ground
Lichen tundra

Neutral Other

mented vegetation and soil characteristics, reported in detail
by Mikola et al. (2018) and Nyman (2015), and summarized
here in Sect. 2.1.4. In addition, we utilized the TWI map and
defined areas of potentially wet soils as those with TWI> 4
(Fig. 1d). Using these data and syntheses of CH4 production
and fluxes in similar ecosystems (Olefeldt et al., 2013; Nicol-
ini et al., 2013; Turetsky et al., 2014; Lau et al., 2015; Pe-
trescu et al., 2015; Treat et al., 2015) as background informa-
tion, we defined four aggregated classes (Table 3, Fig. 2), for
which the LCC group-specific fluxes were determined with
the statistical model described below (Sect. 2.3.2).

The data sources listed above suggest that wet fens typi-
cally are strong CH4 emitters, and thus the pixels of the wet
fen LCC with TWI> 4 were selected for the first LCC group
(“strong source”; Table 3). We also assumed that the pixels
of the graminoid tundra LCC in the potentially wet locations
should be included in this category as the graminoids at the
site are dominated by aerenchymatous Carex spp. and Erio-
phorum spp. (e.g. E. vaginatum), i.e. plants known to be asso-
ciated with substantial CH4 emissions. The drier fens within
the study area likely act as weaker emitters, so these were
combined into another LCC group (“moderate source”), to-
gether with the bodies of freshwater (water LCC above the
sea level). The syntheses cited above also justify an assump-
tion that mineral soils, i.e. here the bare ground and lichen
tundra LCCs, act as weak CH4 sinks (“sink”). The propor-
tional areas of these three LCC groups were used as the ex-
planatory variables in the regression model. The remaining
pixels were allocated to the fourth group consisting of the
LCCs that either are expected to have a very small CH4 flux
on average or cover only a limited area in flux footprints
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Figure 2. Distribution of the aggregated land cover classes (exclud-
ing marine areas).

(“neutral”). This group is included as an intercept in the re-
gression model, and we hypothesize that its estimated value
is not statistically different from zero.

The CH4 fluxes determined for the aggregated LCCs de-
fined above were upscaled by a simple mosaic approach, i.e.
by areal weighting of the group-specific fluxes. To illustrate
how the upscaled flux depends on land cover heterogeneity
at different spatial scales, the upscaling was performed for
different subdomains as a function of the distance from the
EC tower, and also for a larger area of 35.8 km2 (Fig. S2).

2.3.2 Model formulation and validation

Assuming that the CH4 flux does not vary among the LCC-
map pixels attributed to a certain LCC, we applied Eq. (5)
and expressed each flux measurement as a weighted arith-
metic mean of the LCC-specific fluxes Fj , j = 1 . . .N (num-
ber of LCCs),

〈F 〉 =
∑N

j=1
〈3〉jFj , (7)

where these fluxes are unknown, and the weights 〈3〉j
(Eq. 3) are the fractional areas of the corresponding LCCs.
Assuming further that the LCC-specific fluxes remain con-
stant within a data set ofM observations but the proportional
LCC areas vary with the temporally changing footprint, we
obtained a set of linear algebraic equations, from which a so-
lution could be sought for Fj . We applied this idea by first
defining aggregated LCC groups according to the expected
CH4 source–sink capacity of each LCC (Sect. 2.3.1) and for-
mulated a linear regression problem as

Aq =m+ e, (8)

where the matrix A [M × (NA+ 1)] contains the propor-
tional LCC areas of the aggregated LCCs for each observa-
tion, q [(NA+ 1)× 1] is a vector of the unknown parameters,

m [M × 1] denotes the measurement vector, and e [M × 1]
is the error term. NA (equal to 3 here) denotes the number
of those aggregated LCCs whose proportional area was in-
cluded as an explanatory variable. This does not cover all the
LCCs, and we included an intercept term in this regression
equation so as to represent the remaining LCCs and the pro-
portion of footprint extending beyond the study area; i.e. we
did not scale the sum of 〈3〉j to 100 %.

We estimated q with the ordinary least square (OLS) es-
timator. Before calculating the standard errors of these es-
timates, we tested the model residuals for heteroskedastic-
ity and serial correlation. Heteroskedasticity was tested with
the White test that is based on an auxiliary regression, where
squared residuals are regressed on original explanatory vari-
ables and their squares and cross products, and the infer-
ence is based on a Lagrange multiplier (LM) test statis-
tic (Greene, 2012). Serial correlation was tested with the
Breusch–Godfrey test, which is based on a similar LM prin-
ciple where the OLS residuals are regressed on the original
explanatory variables augmented by lagged residuals. If het-
eroskedasticity and serial correlation could not be ruled out,
the standard errors for the model parameters were calculated
with the Newey–West estimator, which is a robust estimator
for the asymptotic covariance matrix of the OLS estimator
(Greene, 2012). This would result in wider confidence in-
tervals than the traditional OLS-based standard errors. We
assume that these confidence intervals reflect the overall un-
certainty emerging from measurement data, LCC classifica-
tion and footprint modelling; therefore, no “bottom-up” error
analysis addressing individual error sources was attempted.

The agreement between the model and the observations
was evaluated on the basis of the coefficient of determina-
tion (R2), root mean squared error (RMSE) and mean ab-
solute error (MAE). The agreement was also examined as
a function of wind direction, to verify that we can replicate
the pronounced directional dependency of the observed CH4
fluxes (Aurela et al., 2015). The performance of the statistical
model against independent data was assessed with 10-fold
cross-validation (James et al., 2013).

The random error of the measured mean CH4 flux was es-
timated as σ

/√
M , where σ is the standard deviation of flux

andM = 911. To minimize the wind direction dependency of
fluxes, σ was calculated relative to a varying mean obtained
from the data binned as a function of wind direction into 50
groups of similar size.

To investigate the temporal trend of the fluxes, we per-
formed the statistical modelling and upscaling separately for
weekly periods in addition to the full 8-week data set. These
results also shed light on the performance of the statistical
method when the number of input data is limited and the cov-
erage of different wind directions may be incomplete.
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3 Results and discussion

3.1 Demonstrating surface heterogeneity

Our footprint analysis shows that those surface elements that
had the greatest influence on the EC measurements in Tiksi
were typically located within a distance of 10–200 m (Ta-
ble S1 in the Supplement). However, the actual range de-
pended strongly on atmospheric stability, as expected (Horst
and Weil, 1992). The distance of maximal influence in a sin-
gle footprint varied from 18 to 35 m depending on stability,
and the estimated far end of the source area ranged from 200
to 3500 m for the 90 % flux contribution, for instance. The
1.4 km radius of the circle centred at the EC tower, which de-
fines our primary study area, was selected to result in a 95 %
footprint coverage within this area in the neutral case. About
15 % of the footprint calculated for the stable flow example
extended beyond the limits of this area, while in the unstable
case 99.7 % of the footprint was confined to the target circle
(Fig. 3).

The variation of the footprint-weighted LCC contribu-
tions, calculated with Eq. (5), as a function of wind direction
demonstrates how the heterogeneity inherent in tundra land-
scape manifests itself in the EC measurement data (Fig. 3;
see also Fig. S3). As is obvious from the LCC map (Fig. 1a),
the distribution of contributing LCCs varied a lot among dif-
ferent wind directions (Fig. 3). In the neutral case, for exam-
ple, there were seven different LCCs dominating at least in
one sector. Turbulent mixing also played a substantial role in
the magnitude of relative LCC contributions, as the weight-
ing of longer distances increased with increasing stability. In
some directions, the contribution of the most common LCCs
was highly sensitive to atmospheric stability. In the north-
east-to-east sector, for example, the relatively small dry fen
patch located within a few tens of metres from the EC tower
(Fig. 1a) contributed 45 % in the unstable case but only 13 %
in the stable case (Fig. 3). Similarly, the relative importance
of the extensive bare-ground area between the west and the
north-east strongly depended on atmospheric stability.

The footprint-weighted surface characteristics, calculated
with Eq. (2) for the cases detailed in Table 2, further demon-
strate the landscape heterogeneity-induced variations. The
effective LAI originating from the footprint-weighting of
the LAI map showed a strong dependency on wind direc-
tion: in the neutral case, for example, 〈LAI〉 ranged from
0.19 to 0.64 m2 m−2 (Fig. 4a). In the unstable case, the di-
rection dependency was similar; however, 〈LAI〉 was up to
0.12 m2 m−2 lower than in neutral conditions due to the dom-
inance of bare ground in the vicinity of the EC tower in the
north-western sector (Fig. 1a). As averaged over all direc-
tions, here assumed equally frequent, 〈LAI〉 was in all stabil-
ity cases somewhat higher than the arithmetic areal average
(Fig. 4a). Due to the directional variations in 〈LAI〉, the max-
imum sensor location bias (1LAI, Eq. 6) may exceed 90 % in
the direction of the maximum 〈LAI〉.

Figure 3. Proportion of different land cover classes in the flux foot-
print as a function of wind direction for the three flow condition
cases specified in Table 2. The rightmost panel shows the relative
coverage of these classes within the study area.

Based on a corresponding footprint-weighting, an effec-
tive mean value could also be determined for terrain eleva-
tion (Fig. 4b). This shows that, even though the topographic
variability within the flux footprint was small, slightly dif-
ferent terrain elevation patterns are associated with each flux
measurement depending on both wind direction and stabil-
ity. The sensor location bias for elevation was negative in al-
most all flow conditions, as the elevation is on average lower
within the area that typically dominates the flux footprint
(Figs. 1b and 4b). The area of predominantly bare ground
was also apparent in the effective TWI (Fig. 4c). In the east-
to-south sector, the differences between the stability classes
are due to the higher TWI values determined along the coast
(Fig. 1d) that gain in importance in stable conditions. Be-
tween the south-west and the north-west, in contrast, 〈TWI〉
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Figure 4. The footprint-weighted and areally averaged leaf area index (a), terrain elevation (b) and topographic wetness index (c) as a
function of wind direction for the three flow condition cases specified in Table 2. The right-hand ordinate indicates the corresponding sensor
location bias.

was higher in unstable conditions, which results from the
more pronounced influence of the brook running near the EC
tower. The footprint-weighted TWI averaged over all direc-
tions was, in all cases, close to the arithmetic area average,
with the magnitude of the corresponding 1TWI being lower
than 30 % (Fig. 4c).

In addition to the examples presented above, we demon-
strated the heterogeneity of the Tiksi landscape by calculat-
ing the mean LAI and LCC contributions from the time se-
ries of EC measurements adopted for the present analysis.
Figure 1a shows the footprint climatology for the growing
season of 2014, depicted as the smallest bounded region con-
taining the surface elements that contribute to EC measure-
ments by a certain fraction (Eq. S1 in the Supplement). This
source area is clearly asymmetric, and comparison with the
data in Table S1 indicates that the source area is more lim-
ited than the corresponding area in typical neutral conditions;
i.e. it effectively reflects slightly unstable conditions. Weight-
ing the LAI distribution by the mean footprint resulted in a
bias of 1LAI = 20.2 %. For comparison, this is much larger
than the bias in the NDVI estimated for EC sites in north-
ern China: at the 1 km2 scale, 1NDVI ranged from −6.9 % to
4.2 % at eight sites with low vegetation, and even at a land

model scale of ∼ 300 km2 the mean absolute 1NDVI was not
more than 6.5 % (Wang et al., 2016). Notwithstanding such
a high degree of agreement, one of the sites was considered
“disturbed”. In another study, the EC measurements at two
sites with a 1NDVI of less than 4 % reported for the 1 km2

scale were considered unbiased, while a 1NDVI of 28 % de-
termined for a grassland site was judged as problematic; the
mean NDVI, and hence 1NDVI, was very similar up to the
maximum scale of 4 km2 investigated (Kim et al., 2006).

For most of the LCCs in Tiksi, the field of view of the
EC sensors averaged over the growing season clearly dif-
fered from the areal coverage of the LCCs within the study
area (Table 4; see also Fig. S4 for the effect of wind direc-
tion and stability). Here, we have excluded the large marine
areas, which have a minor weight in the EC data. The dif-
ference is still largest for the water LCC, as the freshwater
bodies are concentrated on the fringes of the study area, and
for the flood meadow category with a limited coverage. How-
ever, there were also major differences among the dominat-
ing terrestrial classes, such as shrub tundra and wet fen: the
surface elements attributed to these LCCs contributed to the
EC observations less (by 40 %) than their total areal coverage
would suggest.
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Table 4. Proportions (%) of different land cover classes as
weighted by the mean footprint function during the growing sea-
son (“weighted”) and their areal coverages within the study area
(“area”), within the source area defined by the 90 % cumulative
footprint (“area, 90 %”, Fig. 1a) and within a 35.8 km2 region (“re-
gion”, Fig. S2). The marine areas are excluded, and the integrated
footprint within the study area is scaled to 100 %.

Land cover class Weighted Area Area, Region
90 %

Wet fen 9.0 17.7 15.1 16.4
Dry fen 17.0 12.8 10.3 11.6
Bog 17.8 12.8 23.0 9.1
Graminoid tundra 11.7 6.6 11.6 3.4
Flood meadow 3.3 0.7 1.4 0.4
Shrub tundra 12.8 21.1 18.2 27.4
Lichen tundra 15.1 12.4 10.9 11.1
Bare ground 13.0 13.6 8.0 15.3
Water 0.2 2.3 1.4 5.3

Total 100.0 100.0 100.0 100.0

If the areal LCC proportions were calculated within the
non-circular area defined by the 90 % cumulative footprint
(Fig. 1a), some of these proportions changed dramatically
(Table 4). We also included in the comparison the LCC dis-
tributions for a 35.8 km2 area (Fig. S2). Compared to this,
the study area has a similar coverage of fens, bare ground
and lichen tundra, whereas the water and shrub tundra LCCs
are under-represented and bogs and graminoid tundra over-
represented. Overall, these results demonstrate the multiscale
heterogeneity of the site and indicate that here the represen-
tativeness cannot be described as a proportional coverage of
a single target LCC in the footprint climatology, as is the case
for most EC sites (Göckede et al., 2008).

3.2 Land cover group-specific CH4 fluxes

The parameters of the regression model introduced in
Sect. 2.3.2 were estimated with OLS for the LCC aggrega-
tion presented in Sect. 2.3.1. As this produced model resid-
uals that exhibited both heteroscedasticity and autocorrela-
tion (White LM test statisticMR2

= 92> χ2
0.99(9), Breusch–

Godfrey LM test statistic (M − 1)R2
= 117> χ2

0.99(1)), the
confidence intervals were based on the Newey–West esti-
mator. Even when these (larger) confidence intervals were
introduced, all the estimated parameters except for the con-
stant, i.e. those representing aggregated LCCs with expected
CH4 exchange, proved to be statistically different from zero
(p < 0.05; Table 5). The results were also in perfect ac-
cord with our qualitative hypothesis on CH4 flux variability
among the LCCs: the model could differentiate between the
high emitters, moderate emitters and sinks without any ex-
plicit prior information on this pattern. Concerning the quan-
titative differences, Treat et al. (2018) reported the same de-

Table 5. Estimated CH4 fluxes for the aggregated land cover
classes.

LCC group CH4 95 % confidence
description flux interval

(µgCH4 m−2 s−1)

Strong source 0.949 [0.871, 1.028]
Moderate source 0.264 [0.180, 0.348]
Sink −0.131 [−0.172, −0.089]
Neutral −0.007 [−0.035, 0.021]

gree of spatial variation (standard deviation/mean of 155 %)
in the modelled annual CH4 fluxes on low Arctic tundra,
highly heterogeneous similarly to Tiksi, and showed that the
differences among LCCs clearly dominate over the interan-
nual variation in the regional CH4 fluxes.

The temporal variation of the estimated 30 min ecosystem-
scale CH4 fluxes was consistent with observations, even
though it is obvious that the full range of variability,
most notably the peak values, could not be reproduced
(R2
= 0.797, RMSE of 0.0994 µgCH4 m−2 s−1, MAE of

0.0686 µgCH4 m−2 s−1; Fig. S5). However, part of this vari-
ation arose from measurement noise, and in this context it is
crucial that the mean fluxes were modelled accurately also
when considering the strong wind direction dependence of
observations (Fig. 5). Estimated from the mean fluxes of
binned data shown in Fig. 5, the variance related to wind di-
rection accounted for up to 80 % of the total variance of mea-
sured fluxes. This dependence, obviously generated by the
systematic LCC variations within the flux footprint (Fig. 3),
is a key pattern in this data set and must be taken into
consideration when calculating representative CH4 balances
(Aurela et al., 2015). The model residuals differed signifi-
cantly (p < 0.05) from zero only in a narrow south-eastern
wind sector, where the model slightly overestimated the
fluxes. The 10-fold cross-validation statistics show that the
model performed against independent data only marginally
worse than the fit to the full data set (R2

= 0.794, RMSE of
0.1000 µgCH4 m−2 s−1, MAE of 0.0691 µgCH4 m−2 s−1).

Forbrich et al. (2011) have shown that the footprint vari-
ations dominate the short-term (hourly to daily) variations
in the CH4 flux on a boreal fen with a pronounced flark–
lawn–hummock structure, while soil temperature only ex-
plains the seasonal trend. As 80 % of the CH4 flux variance
in Tiksi was explained by the variation in the proportions of
the LCCs contributing to the measurement, we can expect a
similar pattern, i.e. a limited role of other environmental con-
trols in the short-term variability (30 min data). The linear
correlation between CH4 flux and soil temperature (at 10 cm
depth) was indeed weak (R2

= 0.101) and did not get any
stronger for an exponential fit or if one considered the model
residual, i.e. the unexplained part of observation. For u∗, this
correlation was even weaker (R2

= 0.053); u∗ acts as a mea-
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Figure 5. Measured and modelled CH4 fluxes as a function of wind direction (left axis). The averaged data were calculated in 50 direction
classes. The right axis indicates the sensor location bias of the measured data shown (both individual points and the mean) with respect to
the mean upscaled flux within the study area (0.183 µgCH4 m−2 s−1).

sure of turbulence that affects surface diffusion and ebullition
and has been found to explain a major part of the CH4 flux
variance observed on polygonal tundra (Sachs et al., 2008).
Our results also contrasted with the findings of Parmentier et
al. (2011), who, similarly to our study, observed a major ef-
fect of wind direction on the CH4 flux measured on Siberian
tundra but were also able to relate the short-term flux vari-
ation to environmental variables, including atmospheric sta-
bility. In that study, however, the LCC proportions were not
used as an explanatory factor, but the data were grouped ac-
cording to the wind sector characterized by qualitative soil
wetness (“wet”, “dry” and “mixed”), and environmental re-
sponses were determined separately for these groups. On the
other hand, Tagesson et al. (2012) found that the only signif-
icant factor controlling the CH4 flux on a wet tundra ecosys-
tem in north-east Greenland was the relative contribution of
fen areas, indicating that the controls are site-specific and that
any turbulence-related dependency may partly reflect foot-
print variations, in addition to the actual control of surface
exchange processes.

Chamber-based CH4 flux measurements would constitute
the most logical means for validating the estimated LCC-
specific fluxes. As explained in Sect. 2.1.2, some cham-
ber data were available for the period of the EC data but
their temporal and spatial coverage was limited. Despite
the limitations, these measurements lend support to our
EC-based results shown in Table 5: the two wet fen plots
were strong CH4 emitters with observed fluxes of 0.56 and
3.8 µgCH4 m−2 s−1, while the mean CH4 emission from dry
fen plots ranged from 0.06 to 0.67 µgCH4 m−2 s−1 (mean
0.25 µgCH4 m−2 s−1) (Vähä, 2016). The LCC group-specific
fluxes (Table 5) were also in accordance with the extensive
synthesis of chamber-based CH4 flux measurements across

permafrost zones conducted by Olefeldt et al. (2013). Their
database indicates that the mean flux at peatland sites dur-
ing the growing season ranges from 0.03 µgCH4 m−2 s−1 on
dry tundra to 0.75 µgCH4 m−2 s−1 on wet tundra (medians
of site-specific fluxes), while the mean flux at the sites clas-
sified as permafrost fen is within 0.48–1.70 µgCH4 m−2 s−1

at 50 % of the sites. The micrometeorological measurements
that integrate over the heterogeneity of tundra landscape
typically show lower CH4 fluxes. For example, Sachs et
al. (2008) and Wille et al. (2008) measured a mean emis-
sion of 0.22 µgCH4 m−2 s−1 from polygonal tundra in the
Lena River delta in July–August (in 2004 and 2006), which is
close to our mean flux (0.21 µgCH4 m−2 s−1 in July–August
2014). Seven other comparable Arctic tundra sites in Siberia,
Alaska and Greenland had a mean summer flux within the
range of 0.13–1.05 µgCH4 m−2 s−1 (Fan et al., 1992; Friborg
et al., 2000; Zona et al., 2009; Parmentier et al., 2011; Tages-
son et al., 2012; Castro-Morales et al., 2018). These data also
show that variation among sites can be much larger than the
interannual variation at a site.

The sink efficiency estimated for the mineral soil LCCs
in Tiksi (−0.131± 0.042 µgCH4 m−2 s−1, 95 % confidence
interval) seems high in comparison to previous data (Turet-
sky et al., 2014; Lau et al., 2015; Jørgensen et al., 2015;
D’Imperio et al., 2017). However, this estimate is consis-
tent with the measured EC fluxes and thus not an arte-
fact of the modelling procedure. This can be observed by
inspecting the cases in which the proportion of the as-
sumed sink LCCs in the flux footprint exceeds 80 % (within
the wind direction sector of 330–360◦). By ignoring the
other LCCs, we obtained an apparent mean CH4 flux of
−0.109 µgCH4 m−2 s−1 for these cases, while the corre-
sponding modelled (for all LCCs) and measured fluxes were
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−0.093 and −0.094 µgCH4 m−2 s−1, respectively. Further-
more, the chamber measurements conducted on bare ground
at the site in summer 2014 yielded a consistent mean of
−0.12 µgCH4 m−2 s−1 (Vähä, 2016).

So far, our discussion has been based on fluxes aver-
aged over the whole study period of 8 weeks. The weekly
resolved LCC group-specific fluxes, however, indicate that
there was temporal variation in CH4 emissions that was not
generated by footprint dynamics (Fig. 6). Most notably, the
drier fens (dry fen LCC, and wet fen LCC with a low TWI)
showed only weak emissions in the beginning of the pe-
riod. The maximum emissions occurred during the 2-week
period around mid-August (9–22 August); these emissions
were on average 0.44± 0.14 µgCH4 m−2 s−1 for the “mod-
erate source” LCC group and 1.00± 0.10 µgCH4 m−2 s−1

for the “strong source” LCC group. The weekly averages of
model residuals during the whole study period were posi-
tively correlated with the corresponding soil temperatures,
but the correlation was not statistically significant (R2

=

0.444, p = 0.102). However, the maximum emissions oc-
curred when soil temperatures were highest, approximately
5 ◦C (at 10 cm depth), on 9–22 August. During this period,
the LAI of vascular plants on the fens and graminoid tun-
dra was still high, even though it was already declining on
the fens (Juutinen et al., 2017). The positive correlation be-
tween the vascular LAI of graminoid tundra and the weekly
model residuals (R2

= 0.556, p = 0.054) points to the role
of both primary production and plant-mediated CH4 trans-
port, associated with the close relationship between LAI and
the maximum photosynthesis rate (Laurila et al., 2001; Street
et al., 2007) and the dominance of aerenchymatous plants
(Bridgham et al., 2013). However, the depth of the active
layer also increased during the study period in some soils,
especially in dry fens, but the data are too limited for statis-
tical analysis of this effect (Mikola et al., 2018).

3.3 Upscaled CH4 fluxes

By upscaling the mean CH4 fluxes estimated for the LCC
groups, we estimated the effect of the EC tower location on
the spatial representativeness of the mean CH4 flux observed
during the growing season of 2014 (0.208 µgCH4 m−2 s−1).
In other words, adopting the data shown in Table 5 as a refer-
ence for the CH4 flux averaged over the study area, we could
calculate the sensor location bias for CH4 flux (Fig. 5) sim-
ilarly to the results shown in Sect. 3.1 for LAI, terrain el-
evation, TWI and LCC proportions. As the relative area of
the coastal waters is significant within the study area but mi-
nor in the average flux footprint (Fig. 1, Table 4), these areas
were excluded from the upscaling domain.

Calculating the sensor location bias for CH4 flux is equiv-
alent to a linear transformation of the observed fluxes. Thus,
the pronounced directional dependence of CH4 fluxes trans-
lates into an equally pronounced variation in this bias esti-
mate, which ranged approximately from −200 % to 400 %

for individual data points and from −170 % to 230 % on av-
erage (Fig. 5). The bias was smallest in eastern and western
wind directions. However, the effective LCC composition is
very different in these directions, with a much smaller cover-
age of fens in the west (Fig. 3).

The areally averaged CH4 flux depended on the upscal-
ing domain in a non-monotonous manner (Fig. 7). The un-
certainty of the mean measured CH4 flux (Sect. 2.3.2) was
small (0.007 µgCH4 m−2 s−1) due to a large number of ob-
servations and was ignored in Fig. 7b. Defining the reference
area as a function of the radius of a circular area centred
at the EC tower, the magnitude of sensor location bias was
less than 10 % for the distances of 640–1350 m. Acknowl-
edging the statistical uncertainty in the upscaled fluxes, de-
termined from the LCC group-specific uncertainty estimates
(Table 5), the measured mean flux was within the 95 % confi-
dence interval for distances larger than approximately 600 m.
For the primary study area, the mean bias during the grow-
ing season was 13.9 % and the corresponding 95 % confi-
dence interval was [−0.3 %, 32.9 %] (Table 6). While for-
mally the overestimation of EC measurements of the CH4
flux averaged over the study area was not statistically signifi-
cant (p > 0.05), the estimated sensor location bias would be
lower if the study area were originally defined by a radius of
800–1000 m (Fig. 7). Here, we do not suggest that the study
area should be defined post hoc but advocate a footprint-
based analysis to assess the representativeness of measure-
ments at different spatial scales. Adopting the regional up-
scaling area of 35.8 km2 as the reference results in a sensor
bias of 30 % [12 %, 55 %] for the CH4 flux (Table 6).

Even though the coverage of our nine basic LCCs clearly
differed from their footprint-weighted contributions (Ta-
ble 4), the four LCC groups, aggregated according to the as-
sumed CH4 emission potential of LCCs, covered areas rather
similar to those within the original study domain (Table 6).
Within the regional upscaling area of 35.8 km2, the strong
emitters were less common, but the total flux was only 13 %
lower than within the original study area. On the other hand,
freshwater bodies occupy a larger relative area (Table 4).
These were included here in the “moderate source” LCC
group, but the actual emissions from these ecosystems could
not be estimated as their total area within the flux footprint is
minute. Nevertheless, there is increasing evidence that Arc-
tic lakes and ponds emit significant amounts of CH4 (Wik et
al., 2016). At all scales, it was necessary to allow for the
sink areas that play a significant role in the upscaled bal-
ance. However, the agreement of CH4 fluxes between differ-
ent scales may be considered somewhat fortuitous and im-
plies little about carbon dioxide and other scalar fluxes that
have different spatial patterns.

3.4 Methodological issues

Our results obviously depend on the quality of the land
cover classification. The LCC accuracy assessment indicates
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Figure 6. Estimates of the LCC group-specific fluxes calculated from weekly data (1 indicates 5–11 July; 2 indicates 12–18 July; 3 indicates
19–25 July, data missing; 4 indicates 26 July–1 August; 5 indicates 2–8 August; 6 indicates 9–15 August; 7 indicates 16–22 August; 8
indicates 23–29 August). The vertical bars indicate the 95 % confidence intervals.

Figure 7. Upscaled CH4 flux within a circular area as a function of the distance from the EC tower (a) and the corresponding sensor location
bias according to Eq. (6) (b). The red line indicates the mean measured flux. The shaded areas represent the 95 % confidence intervals.

that especially the flood meadow LCC is poorly classified
(Mikola et al., 2018); however, this LCC only appears along
the brook and has a very limited coverage. More importantly,
the dry fen, wet fen and graminoid tundra pixels may be
partly mixed up. The field data and multivariate data analysis
of Mikola et al. (2018) indicate that the variations in plant
functional type composition within these LCCs indeed over-
lap, which impairs the classification of the “strong source”
and “moderate source” LCC groups and effectively precludes
modelling that resolves individual LCCs. On the other hand,
the large areas of bare ground and lichen tundra with low or-
ganic soil content, i.e. the assumed CH4 sink areas, can be
identified reliably (Mikola et al., 2018).

Despite the uncertainties, the land cover classification al-
lowed us to meaningfully group the surface elements ac-
cording to their CH4 exchange potential. This relationship
shows that the LCC reflects the integrated effect of a range
of processes that control net production and efflux of CH4,
such as the availability of substrates and gas transport routes
(Davidson et al., 2016, 2017). Thus, a vegetation classifica-
tion based on VHSR satellite imagery provided us with a
straightforward means of upscaling the average LCC group-
specific fluxes. As the predominant part of CH4 flux variance
resulted from the varying contributions of different LCCs,
we did not consider additional environmental controls. Such
simplicity is welcome since statistically robust EC-based flux
estimates for scales exceeding the flux footprint would re-
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Table 6. Upscaling of CH4 fluxes (µgCH4 m−2 s−1) based on the LCC group-specific flux data shown in Table 5.

LCC group Study areaa Regiona

(6.3 km2) (35.8 km2)

Coverageb Fluxc Coverage Flux
(%) (%)

Strong source 17.7 0.168 15.1 0.144
(91.8 %) (89.8 %)

Moderate source 19.5 0.052 20.3 0.054
(28.3 %) (33.5 %)

Sink 26.0 −0.034 26.4 −0.035
(−18.6 %) (−21.6 %)

Neutral 36.8 −0.003 38.1 −0.003
(−1.4 %) (−1.7 %)

Upscaled fluxd 0.183 0.160
[0.156, 0.209] [0.134, 0.186]

a “Study area” refers to the circle with a radius of 1.4 km centred at the EC mast. “Region” is
shown in Fig. S2. b Marine areas are excluded from upscaling. c Calculated as LCC
group-specific flux multiplied by the relative coverage. The value in parentheses is equivalent to
this flux divided by the upscaled flux. d The values in square brackets indicate the 95 %
confidence interval.

quire spatial replication with multiple EC towers (Hill et
al., 2017). Our approach serves as an alternative to a com-
mon method of deriving LCC-specific data from (a typically
more limited set of) flux chamber measurements and upscal-
ing these either directly (e.g. Schneider et al., 2009; David-
son et al., 2017) or by first modelling their temporal vari-
ation (e.g. Marushchak et al., 2016). Matthes et al. (2014)
showed that more nuanced insights into the spatial drivers
can be achieved by the use of multiple EC towers and peri-
odic remote sensing images and by examination of both the
abundance and spatial fractal structure of vegetation.

Even though the KM model constitutes an appropriate tool
for describing turbulent transport over an aerodynamically
smooth surface such as tundra, any footprint estimate in-
volves both structural and input-related modelling uncertain-
ties. The KM model has been tested by Kljun et al. (2003),
Marcolla and Cescatti (2005), Neftel et al. (2008) and Ar-
riga et al. (2017) against experimental data and more com-
plex footprint models. All these studies conclude that the KM
model performs well, but we note here that there may be a
tendency for too-smooth footprint distributions in the along-
wind direction. As pointed out in Sect. 2.3.2, we did not try
to explicitly estimate the errors related to the flux footprints
but assumed that the confidence intervals determined for the
LCC group-specific fluxes reflect the overall uncertainty con-
tained in any data employed in the statistical model. Be-
cause of this approach, the uncertainty of the results shown
in Figs. 3 and 4 could not be quantified. Overestimation of
footprint distribution in larger distances would mean that the
contribution of graminoid tundra might be slightly underes-

timated and that of shrub tundra overestimated as the pro-
portions of these LCCs have a rather systematic dependency
on the distance from the EC mast. If the overall LCC het-
erogeneity of a site became more apparent when viewing it
as a function of distance rather than direction, our statistical
method would be more dependent on the footprint model and
the results would probably be more uncertain.

We obtained statistically significant estimates for the LCC
group-specific fluxes when employing the whole data set of
8 weeks, but the performance of the model was observed to
deteriorate as the number of data was reduced. This can be
observed from the weekly results (Fig. 6), in which the confi-
dence intervals are temporally varying and larger than those
for the whole data set; in some cases, the results were not
consistent with the original flux hypotheses (at the chosen
significance level). As wind direction is the primary control
of the flux footprint, and consequently the LCC proportions
associated with EC measurements (Fig. 3), it is necessary
that the variation in wind directions during each period suffi-
ciently covers all the relevant LCCs. This obviously depends
on the degree and nature of LCC heterogeneity at the site
in question. In our weekly results for Tiksi, the directional
coverage was clearly incomplete during 16–22 August 2014,
when there were few observations for the sector extending
from the north-west to the south-east, leading to uncertain
flux estimates for that particular period (Fig. 6). Neverthe-
less, the LCC group-specific fluxes estimated on a weekly ba-
sis improved the overall model performance during the whole
study period (R2

= 0.836, RMSE of 0.0894 µgCH4 m−2 s−1,
MAE of 0.0619 µgCH4 m−2 s−1).
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While the weekly results indicated that there is temporal
variation in the LCC group-specific fluxes, the longer-term
upscaling was rather insensitive to temporal resolution of
these data. The weekly values produced an upscaled flux of
0.162±0.063 µgCH4 m−2 s−1 for the original study area, i.e.
only slightly lower (by 11 %) but a much more uncertain es-
timate than the one obtained for the whole data set (Table 6).

We suggest that estimation of LCC-specific fluxes, accom-
plished here with a regression model, provides a new avenue
to filling the inevitable gaps in the measurement data time se-
ries. This proposition is supported by the good out-of-sample
validation statistics obtained (Sect. 3.2), as holding the vali-
dation data out during parameter estimation is equivalent to
generating missing data that need to be gap-filled. This kind
of an approach is potentially applicable to those data gaps
that are related to the gas concentration measurement, for
example due to malfunctioning of the gas analyser, i.e. gaps
that appear in the CH4 flux data but not in the momentum
and sensible heat fluxes.

Another methodological implication of our results con-
cerns the definition of a study area. It is customary to re-
port a “site description” that documents the key ecological
characteristics of the area of interest. Within a homogeneous
environment, collating the necessary site data is straightfor-
ward in terms of statistical representativeness because the
outcome is insensitive to the spatial sampling design. Fur-
thermore, the representativeness of EC measurements can
be simply assessed by considering the coverage of a single
target LCC within the flux footprints. In heterogeneous en-
vironments, however, there is a risk for a serious mismatch
between the EC flux measurements and the site data, even in
cases of an unbiased description of the study area. Our results
show that the land cover type composition sampled by the EC
measurement was significantly different from the actual LCC
coverage within our study area, which as such was originally
chosen to be consistent with the dimensions of a typical flux
footprint and considered characteristic of the landscape.

4 Conclusions

The eddy covariance flux measurement technique is com-
monly considered to have an advantageous spatial averag-
ing property, sometimes to the extent that it is assumed to
“provide an accurate integration of the overall flux from the
[heterogeneous] ecosystem” (Turner and Chapin III, 2006).
However, this notion is limited and potentially misleading
as a universal premise, since this integration process in-
volves differential weighting within a temporally varying
flux footprint, a well-known but frequently overlooked fea-
ture of EC measurements, which we in the present study
demonstrated and quantified for a heterogeneous tundra site
in north-eastern Russia. The CH4 fluxes measured in Tiksi
were highly variable due to the variation in vegetation com-
position and soil wetness within the landscape around the EC

tower. During summer 2014, the bias of observations with re-
spect to the upscaled flux varied strongly with wind direction,
ranging from −170 % to 230 % on average.

By combining VHSR satellite imagery and footprint mod-
elling, we could statistically estimate the contribution of
the main land cover types to EC measurements. Methane
emissions mainly originated from wet fen and graminoid
tundra patches in locations with topography-enhanced soil
wetness, where conditions are favourable for CH4 produc-
tion and efflux (mean flux 1.0 µgCH4 m−2 s−1 during the 2-
week peak period). Another noteworthy feature is that the
areas of bare soil and lichen tundra acted as strong CH4
sinks (−0.13 µgCH4 m−2 s−1 during the summer). Despite
the ecosystem heterogeneity and directional variations in the
point-to-area representativeness of EC measurements, the
mean CH4 flux measured during this season can be consid-
ered unbiased, and even more so if the present area of interest
were halved, i.e. considered to extend up to 1 km from the EC
tower. On the other hand, the measured fluxes overestimate
the regional (35.8 km2) balance by 30 %.

Even though the EC-sampled LCC distribution proved to
be representative in terms of the mean CH4 flux during a
growing season, the small-scale heterogeneity at the site was
so high as to result in rather unfavourable representativeness
metrics for key land cover features such as LAI and LCC
fractions. This suggests that it would generally be beneficial
to present a more integrated site and flux data description
than what has been considered standard, i.e. to also include
data on footprint-weighted surface attributes and point-to-
area representativeness.

In a follow-up study, we will investigate longer-term CH4
flux data from Tiksi to better understand the seasonal and in-
terannual variations and their environmental controls. These
data will also make it possible to further assess the statisti-
cal method suggested here, including its use as a gap-filling
tool. Furthermore, we anticipate that flux sites with more
than one EC tower provide new opportunities for the esti-
mation of LCC-specific fluxes (e.g. Matthes et al., 2014; Hill
et al., 2017); more advanced inverse modelling techniques
should be explored for this.
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