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Abstract. Surface soils interact strongly with both climate
and biota and provide fundamental ecosystem services that
maintain food, climate and human security. However, the
quantitative linkages between soil properties, climate and
biota remain unclear at the global scale. By compiling a
comprehensive global soil database, we mapped eight ma-
jor soil properties (bulk density; clay, silt, and sand fractions;
soil pH; soil organic carbon, SOC, density; soil total nitro-
gen, STN, density; and soil C : N mass ratios) in the surface
soil layer (0–30 cm), based on machine learning algorithms,
and demonstrated the quantitative linkages between surface
soil properties, climate and biota at the global scale, which
we call the global soil–climate–biome diagram. In the dia-
gram, bulk density increased significantly with higher mean
annual temperature (MAT) and lower mean annual precipi-
tation (MAP); soil clay fraction increased significantly with
higher MAT and MAP; soil pH decreased with higher MAP
and lower MAT and the “critical MAP”, which means the
corresponding MAP at a soil pH of = 7.0 (a shift from al-
kaline to acidic soil), decreased with lower MAT. SOC den-
sity and STN density were both jointly affected by MAT and
MAP, showing an increase at lower MAT and a saturation to-
wards higher MAP. Surface soil physical and chemical prop-
erties also showed remarkable variation across biomes. The
soil–climate–biome diagram suggests shifts in soil properties
under global climate and land cover change.

1 Introduction

As a critical component of the Earth system, soils influence
many ecological processes that provide fundamental ecosys-
tem services (Amundson et al., 2015; Milne et al., 2015; Ad-
hikari and Hartemink, 2016). Soil physical properties, such
as bulk density and soil texture, are important for water re-
tention and the preservation of carbon (C) and nutrients (Has-
sink, 1997; Sposito et al., 1999; Castellano and Kaye, 2009;
Stockmann et al., 2013; Jilling et al., 2018), whereas soil
chemical properties, such as soil acidity (pH), organic C and
nutrient contents, are essential regulators of nutrient avail-
ability and plant growth, further affecting C and nutrient cy-
cling as well as vegetation–climate feedbacks (Davidson and
Janssens, 2006; Chapin III et al., 2009; Milne et al., 2015).
As the most biogeochemically active soil layer, surface soil
dominates the soil function and interacts strongly with cli-
mate and vegetation (Jenny, 1941; Alexander, 2013; Weil and
Brady, 2016). Therefore, assessing the physical and chemical
properties in surface soil could provide insights into global
soil functions and support soil stewardship for securing sus-
tainable ecosystem services (Batjes, 2009; Sanchez et al.,
2009; Koch et al., 2013).

In the context of rapid environmental change, there is an
increasing need for timely updated, high-quality and high-
resolution global mapping of soil properties (Grunwald et
al., 2011). Based on the global database of soil properties
(e.g., the Harmonized World Soil Database, HWSD), multi-
ple linear regression models have been widely used for soil
mapping (Batjes, 2009; Hengl et al., 2014). Although re-
cent progress has been made by compiling larger numbers
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of soil profiles and performing accuracy assessments, the
maps of global soil properties are subject to weak relation-
ships between soil properties and the corresponding predic-
tors (Hengl et al., 2014). Moreover, some attempts have been
made to predict global soil properties based on Earth sys-
tem models, but these predictions frequently showed a large
variation among different models and agreed poorly with ob-
servational data (Todd-Brown et al., 2013; Tian et al., 2015).
Recently, machine learning algorithms, such as random for-
est (RF) analyses have been successfully applied to develop
spatially explicit estimates of soil organic C (SOC) (Grimm
et al., 2008; Wiesmeier et al., 2011; Ding et al., 2016; Hengl
et al., 2017). Compared with multiple linear regression mod-
els, RF analysis has several advantages, such as the ability to
model nonlinear relationships, handle both categorical and
continuous predictors, and resist overfitting and noise fea-
tures (Breiman, 2001).

The underlying stability of soil systems is controlled by
their inherent balance between mass inputs and losses, which
strongly feeds back on climate and biota (Amundson et al.,
2015; Weil and Brady, 2016). By overlapping the spatial dis-
tribution of climate types, biome types and soil orders, Rohli
et al. (2015) first quantified the percentage of global land sur-
face that is covered by the combinations of climate types,
biomes and soil orders. However, quantitative linkages of soil
properties, climate and biota have not yet been developed
in a common diagram. Encouragingly, significant progress
in digital soil mapping techniques and the rapidly growing
quantity of recorded soil information (Sanchez et al., 2009;
Grunwald et al., 2011; Arrouays et al., 2014; Hengl et al.,
2014; Shangguan et al., 2014), provide a great opportunity to
assess the quantitative linkages between soil properties, cli-
mate and biota at the global scale.

In this study, we first compiled a global soil database
(GSD; see Sect. 2) that contains more than 28 000 soil
profiles for seven physical and chemical soil properties
in the surface soil layer (0–30 cm), including bulk den-
sity (g cm−3); sand, silt, and clay fractions (%); soil pH;
SOC density (kg m−2); and soil total nitrogen (STN) den-
sity (kg m−2). Using regional RF algorithms, we then estab-
lished global soil maps for eight soil properties (the above-
mentioned seven soil properties plus C : N ratios, being es-
timated based on SOC density and STN density) at a 1 km
resolution and evaluated their corresponding uncertainties.
On the basis of the Whittaker biome diagram, which illus-
trates the essential role of climate in shaping the spatial pat-
tern of global biomes (Whittaker, 1962), we further devel-
oped a global soil–climate–biome diagram by plotting each
soil property on a climate basis, as climate and vegetation are
two key soil-forming factors (Jenny, 1941). Although parent
material (e.g., bedrock) also plays an important role in af-
fecting soil properties, it affects soil formation on a relatively
long timescale (Chesworth, 1973), particularly in the subsoil
(Gentsch et al., 2018). In addition, our soil–climate–biome
diagram thus focuses on soil properties in the surface layer,

given that surface soils are dynamic in time and likely inter-
acting instantly with climate and vegetation than deeper soils
(Weil et al., 2016). Overall, our objectives were to (i) map the
physical and chemical properties of global surface soils and
(ii) determine the linkages between surface soil properties,
climate and biota at the global scale.

2 Materials and methods

2.1 Dataset

We compiled ground-truth soil property data to establish a
comprehensive database of worldwide soil profile informa-
tion (global soil database, GSD). Our GSD includes existing
sources of soil profile data from the International Soil Refer-
ence and Information Centre World Inventory of Soil Emis-
sion (ISRIC-WISE) Potential database (version 3.2; Batjes,
2009), soil reference profiles of Canada (Pan et al., 2011),
land resources of Russia from the International Institute
for Applied Systems Analysis (IIASA) (http://nsidc.org/data/
ggd601.html, last access: 18 July 2019), the International
Soil Carbon Network (ISCN 2012, https://iscn.fluxdata.org/
data/dataset-information/data-documentation/, last access:
2 February 2017), the Soil Profile Analytical Database of
Europe (SPADE), the Northern Circumpolar Soil Carbon
Database (NCSCD, Tarnocai et al., 2009), the Second State
Soil Survey of China (National Soil Survey Office, 1995,
1998), literature-retrieved soil data on the forests of China
(Yang et al., 2014), field campaign data on the grasslands of
northern China (from our research team; Yang et al., 2008,
2010) and field survey data of Australia (Wynn et al., 2006)
(see Table S1 in the Supplement for more detailed informa-
tion on these data sources). Overall, the GSD includes more
than 28 000 soil profiles (Fig. 1; Table S1). Although the total
sample number and spatial distribution of the profile data are
similar to those of the WISE30sec (Batjes, 2016), the GSD
includes more specific soil data from China. Nonetheless,
both databases include limited profiles for some regions of
the world, notably Australia, Sahara, and the northern terri-
tories of both Canada and Russia (Fig. 1).

The GSD includes field-measured data of four physical
soil properties (bulk density [g cm−3] and sand, silt and clay
fractions [%]), three chemical soil properties (soil pH, SOC
density [kg C m−2] and STN density [kg N m−2]) in the sur-
face soil layer (see Table S2 and Fig. S1 in the Supplement
for more details) and general information on soil sampling
(site location, sampling time and data source). Data harmo-
nization was conducted in three steps. First, we screened
sampling and measurement approaches of each soil property
and excluded those data that were not comparable to others in
methodology. For instance, geographic-coordinate data were
included only when World Geodetic System, 1984 (WGS84),
or a geographic-coordinate system that could be converted to
WGS84 projection was used; soil texture data were included
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Figure 1. Global distribution of 28 222 soil profiles included in the global soil database (GSD).

only when the internationally accepted particle size class was
used (clay < 2 µm < silt < 50 µm < sand < 2000 µm). This
allowed us to construct a database of soil properties with
comparable methodology. Second, we excluded records with
no information on the target soil depth (0–30 cm). In the case
that soil organic matter was measured instead of SOC, we
used a Bemmelen index (0.58) to convert soil organic matter
into SOC. If data of bulk density were not provided, we esti-
mated them based on region-specific pedotransfer functions
(Schaap and Leij, 1998; Yang et al., 2007; Abdelbaki, 2018)
(Table S3). Specifically, we established an empirical relation-
ship between bulk density and SOC content to estimate bulk
density based on measured SOC for those cases with miss-
ing data of bulk density. There was a total of 42 % of profiles
with measured data of bulk density and 58 % of profiles with
estimated data of bulk density. It is true that the correction for
rock fragment is important for the estimation of soil C stocks,
but it remains a global challenge because existing databases
usually contain limited information on gravel fractions (Jandl
et al., 2014). Nevertheless, the inclusion of gravel has been
shown to exert a relatively low impact on the calculation of
SOC stocks in the surface soil layer (0–30 cm), mainly due
to the fact that surface soil usually contains a low propor-
tion of gravels (Saiz et al., 2012). Therefore, we assumed no
rock fragment or the rock issue had been handled once it was
not reported. Finally, we extracted data on soil properties of
the 0–30 cm soil depth and calculated the means of each soil
property. SOC (STN) density was calculated based on bulk
density and SOC (STN) content.

The GSD also contains pedologic information on soil or-
ders and the horizons of the sampled soil profiles, mean an-
nual temperature (MAT), mean annual precipitation (MAP),
seasonality of air temperature (TS, calculated as 100×
SDmonthly/Meanmonthly) (Xu and Hutchinson, 2011), sea-
sonality of precipitation (PS), mean annual normalized dif-
ference vegetation index (NDVI), elevation (global digital
elevation map, DEM), slope, and land use type for each

recorded site (see Table S4 for more details). Notably, it
was difficult to harmonize data of soil orders and further
quantify their roles because data on soil orders were orig-
inally reported based on several different soil classification
systems with different standards (Carter and Bentley, 2016).
It was the same case for soil horizon. Additionally, horizon
information was not reported in some cases (accounting for
15 % profile), while soil depth was well-documented in our
database. Therefore, we were not able to consider the role
of soil horizons and instead we simply estimated the mean
soil properties by a fixed depth of 30 cm. Nevertheless, the
depth of 0–30 cm has been frequently used in the mapping
and modeling of surface soil properties at regional and global
scales (e.g., Batjes, 1997; Yang et al., 2010; Saiz et al., 2012;
Wieder et al., 2013; Shangguan et al., 2014). As 96 % of soil
profiles in GSD were sampled from 1950 to 2000, we thus
used multiple-year (1950–2010) averages of climatic vari-
ables from the WorldClim database. For sites with missing
reports on climate or topographical data, profile coordinates
were used to derive data at each site using a selection of GIS
layers from the WorldClim database for MAT and MAP and
GTOP30 DEM-derived surfaces.

2.2 Region-specific random forest model

The random forest (RF) model is a data-mining algorithm
for making predictions based on an ensemble of random-
ized classification and regression trees (Breiman, 2001). We
mapped soil properties based on a region-specific RF ap-
proach that yields spatially explicit estimates of each pixel
(see Fig. S2 for more details on the workflow of this ap-
proach). To overcome spatial biases of the database (for ex-
ample, heavy sampling in the USA), we divided the global
land into 11 regions: Africa, Australia, Canada and Alaska,
East Asia, Europe, Mexico, Russia, South America, tropi-
cal Asia, the USA and West Asia (Table S2). In each re-
gion, we first constructed a RF model using the regional
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datasets and then used the model to estimate the spatial dis-
tribution of each soil property at a resolution of 1 km. Predic-
tions were based on eight environmental variables, including
MAT, MAP, TS, PS, vegetation cover conditions (NDVI), el-
evation, slope and land use type (see Table S4 for more de-
tails on the data sources of each variable). To obtain a ro-
bust variogram, soil property data below the 2.5 % quantile
and above the 97.5 % quantile were excluded as outliers and
were not used for modeling in each region (Pleijsier, 1989;
Jiménez-Muñoz et al., 2015). Notably, these excluded sam-
ples were distributed relatively randomly in space (Fig. S3).
By conducting an analysis using all data samples and com-
paring the results with those excluding outliers, we found
similar spatial patterns and means of global surface soil prop-
erties (Figs. 2 and S4) but lower cross-validated R2 when
including all samples (Tables S5 and S6). This implies an
improvement of prediction by excluding outlier samples.

Because a large number of regression trees are con-
structed, one major advantage of RF model is that the risk
of overfitting can be reduced. Another advantage is that the
prediction depends on only three user-defined parameters:
the number of trees (ntree), the minimum number of data
points at each terminal node (nodesize) and the number of
features sampled for splitting at each node (mtry). We used
ntree= 1000 (default ntree= 500) in order to achieve more
stable results (Grimm et al., 2008). For nodesize and mtry, we
used the default set for RF regression. Also called a “black
box” approach, one major disadvantage of RF model is that
the relationships between the response and predictor vari-
ables cannot be interpreted individually for every RF tree.
The relative importance of variables, denoted by the percent
increase in mean-square error (%IncMSE), was estimated
based on a permuting out-of-bag (OOB) method (Strobl et
al., 2009a, b). For each tree of the random forest, we com-
pared the prediction error on the OOB portion of the data
(MSE for regression) with that after permuting each pre-
dictor variable. The differences were then averaged over all
trees and normalized by the standard deviation of the dif-
ferences. The relative percent (mean / SD) increase in MSE
as compared to the out-of-bag rate (with all variables intact)
was used to indicate the relative importance of each variable
(Breiman, 2001).

2.3 Uncertainty analysis

In each region, we used 10-fold cross-validation to estimate
the average mapping accuracy for each target soil property.
The modeling accuracy for each bootstrap sample was evalu-
ated by the amount of variation explained by the models (R2)
and by the root-mean-square error (RMSE), calculated based
on the observational and predicted soil property in the in-
dependent validation dataset (Table S5). Model uncertainties
were assessed based on the bootstrap method. A robust esti-
mate was derived by averaging the 10-fold cross-validation
samples, and the uncertainty of the estimates was calculated

as the standard deviation (SD) of the 10-fold cross-validation
(Fig. S4).

2.4 Statistical analysis

Based on the results of the ensemble models, we mapped
each soil property (bulk density, sand, silt, clay, pH, SOC
density and STN density) and their uncertainty at a resolu-
tion of 1 km. Soil C : N ratios were mapped based on values
of SOCD and STND, and its uncertainty could be jointly in-
dicated by the uncertainties of SOCD and STND. We also
plotted each soil property on a modified Whittaker biome di-
agram. To explore the roles of MAT and MAP, as well as
their interactions, we averaged soil property values for each
MAT×MAP combination by a division of 1 ◦C× 100 mm
and explored quantitative linkages between soil properties
and climate variables (MAT and MAP) for different climate
types (humid vs. arid; warm vs. cold). Specifically, we used
a MAP threshold of 500 mm to differentiate relatively humid
vs. arid climates (Holdridge, 1967), while a MAT threshold
of 10 ◦C was used to separate relatively warm and cold cli-
mates (Trewartha and Horn, 1980). To explore the role of
MAT in regulating the critical MAP for a shift from alkaline
to acidic soil, we further plotted the critical levels of MAP
(100 mm division) at soil pH= 7.0 with MAT. We then com-
pared the soil properties across the main biomes, including
tropical forest, temperate forest, boreal forest, tropical savan-
nahs and grasslands, temperate grasslands and shrublands,
tundra, permanent wetlands, deserts and croplands. All sta-
tistical analyses were performed using MATLAB 2015a (The
MathWorks Inc., Natick, MA, USA). Values were presented
as mean± standard deviations if not specially noted.

3 Results

3.1 Global mapping of soil properties

Our results agreed well with the observed data across most
regions (Fig. S5), and the ensemble models generally ex-
plained 30 %–60 % of the variation in soil properties (Ta-
ble S5). The eight soil properties showed great spatial het-
erogeneity across the globe in the upper 30 cm layer (Fig. 2).
For instance, bulk density showed low values in the north-
ern latitudes of the Eurasian continent, whereas high val-
ues occurred in the USA, North Africa, West Asia and In-
dia (Fig. 2a). The clay fraction exhibited lower values at
higher latitudes, whereas higher levels of sand fraction oc-
curred at lower latitudes (Fig. 2b, c). The pH value of the
surface soil was high (generally > 7.0) in arid regions and
it was relatively low (generally < 6.0) in most forested re-
gions (Fig. 2e). The spatial patterns of SOC density and STN
density were generally similar, both showing greater val-
ues at higher latitudes in the Northern Hemisphere and no
consistent change with latitude in the Southern Hemisphere
(Fig. 2f, g). Specifically, SOCD and STND both showed the
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Figure 2. Maps of surface (0–30 cm) soil properties. (a) BD (bulk density, g m−3), (b) sand fraction (%), (c) silt fraction (%), (d) clay
fraction (%), (e) pH, (f) SOCD (soil organic carbon density, kg m−2), (g) STND (soil total nitrogen density, kg m−2) and (h) C : N ratio.

highest values in the northern high latitudes, while low val-
ues occurred in semiarid and desert regions. Soil C : N ratio
showed the highest values at high latitudes in the Northern
Hemisphere, while the lowest values occurred in arid regions
in Northern Africa, West Asia and Southern Europe (Fig. 2h).

3.2 Global soil–climate–biome diagram

By placing data of surface soil properties on the Whittaker
climate–biome diagram (Whittaker, 1962), we then docu-
mented the linkages between soil properties and climate
across global biomes. We call this the global soil–climate–
biome diagram (Fig. 3). Specifically, bulk density decreased

with lower MAT and higher MAP (Figs. 3a, 4a, b); sand
fraction was inversely related to MAP and MAT (Figs. 3b,
4c, d), whereas the clay fraction showed an opposite pat-
tern (Figs. 3c, 4e, f); and soil pH increased with higher MAT
in arid climate (MAT≤ 500 mm) (Figs. 3e, 5a), while it de-
creased significantly with higher MAP both in cold climates
(MAT≤ 10 ◦C) and warm (MAT > 10 ◦C) climates (Figs. 3e,
5b). The critical MAP for the transition from alkaline to
acidic soil (pH= 7.0) showed a nonlinear increase with MAT
and reached a maximum of 400–500 mm when MAT ex-
ceeded 10 ◦C (Fig. 5c).
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Figure 3. Changes in surface (0–30 m) soil properties on the Whittaker biome diagram. (a) BD (bulk density, g m−3), (b) sand fraction (%),
(c) silt fraction (%), (d) clay fraction (%), (e) pH, (f) SOCD (soil organic carbon density, kg m−2), (g) STND (soil total nitrogen density,
kg m−2) and (h) C : N ratio. Each square shows the average value of soil properties within each 1 ◦C of MAT and 100 mm of MAP. Each
biome type in the modified Whittaker biome diagram is indicated by a capital letter. A: Tropical rainforest; B: Tropical seasonal forest; C:
Tropical thorn scrub and woodland; D: Desert; E: Temperate rainforest; F: Temperate forest; G: Savanna; H: Boreal forest; I: Grassland; J:
Tundra.

SOC density in the upper 30 cm soil layer decreased
significantly with MAT in both arid (MAT≤ 500 mm) and
humid climates (MAT > 500 mm) (Fig. 3f), whereas it in-
creased with MAP in accordance with a saturation curve
(cold climate: MAT≤ 10 ◦C: SOCD= 0.0737×MAP/(1+
0.0049×MAP); warm climate: MAT > 10 ◦C: SOCD=
0.0144×MAP/(1+0.0016×MAP)), showing a higher sat-
uration threshold in cold climates (14.5 kg C m−2) com-
pared to warm climates (8.0 kg C m−2) (Fig. 6b). Similarly,
STN density decreased significantly with MAT (Fig. 6c)
and increased with MAP in accordance with a saturation

curve (cold climate: STN= 0.0401×MAP/(1+ 0.0502×
MAP); warm climate: STN= 0.0015×MAP/(1+0.0021×
MAP)), showing a higher saturation threshold in cold cli-
mates (0.80 kg N m−2) than warm climates (0.65 kg N m−2)
(Fig. 6d). Combining the trends of SOC density and STN
density, the C : N ratio of the upper 30 cm layer increased
with MAT in a climate of MAT < 0 ◦C and then decreased
(Fig. 6e). In contrast, the C : N ratio increased with MAP
in accordance with a saturation curve (cold climate: C : N=
0.1450×MAP/(1+0.0080×MAP); warm climate: C : N=
0.3781×MAP/(1+0.0308×MAP)), showing a higher sat-
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Figure 4. Changes in surface (0–30 cm) soil bulk density (BD,
g m−3), sand fraction (%), clay fraction (%) and silt fraction (%)
with mean annual precipitation (MAP) and mean annual tempera-
ture (MAT). We used 500 mm of MAP as a threshold of transition
from arid to humid climate and 10 ◦C of MAT as a threshold of tran-
sition from cool to warm climate. (a, b) BD, (c, d) sand fraction, (e,
f) clay fraction, and (g, h) silt fraction. Each dot shows the average
value within each 1 ◦C MAT and 100 mm MAP.

uration threshold in cold climates (18 : 1) compared with
warm climates (12 : 1) (Fig. 6f).

Soil properties showed varied values across and within
biomes throughout the world (Table 1; Fig. 3). Mean bulk
density was lowest in tundra and boreal forest and was high-
est in the desert and tropical thorn scrub and woodland (Ta-
ble 1). Mean sand fraction was highest in boreal forest,
whereas mean clay fraction was highest in tropical rainfor-
est (Table 1). Soil pH was generally lower than 5.5 in trop-
ical forest, boreal forest and tundra, but mean pH values
could approach and even exceed 7.0 in dry biomes, such
as the desert, grassland and savanna (Table 1). Moreover,
means of SOC and STN densities both showed high val-
ues in boreal forest and tundra, but they were extremely
low in the desert and tropical thorn scrub and woodland

Figure 5. Changes in surface (0–30 cm) soil pH with climate.
(a) Mean annual temperature (MAT); (b) mean annual precipitation
(MAP), and (c) changes in “critical MAP” at soil pH= 7.0 with
MAT. Here critical MAP means the corresponding MAP at a soil
pH of= 7.0, which indicates a shift from alkaline to acidic soil. We
used MAP of 500 mm as a threshold of transition from arid to humid
climate and MAT of 10 ◦C as a threshold of transition from cool to
warm climate.

(Table 1). Mean soil C : N ratio showed the highest values
in tundra and boreal forest (> 15 : 1), while it was lowest
in desert, temperate shrubs and grasslands (≤ 10 : 1) (Ta-
ble 1; Fig. 3h). On average, the global means of SOC den-
sity and STN density were 6.94 (SD= 4.42) kg C m−2 and
0.53 (SD= 0.23) kg N m−2 in surface soils, summing up to a
global total storage of 797±4.1 Pg C (1015 g or billion metric
tons) and 64± 0.4 Pg N, respectively (Table 1).

4 Discussion

4.1 Linkages between climate and surface soil physical
properties

The soil–climate–biome diagram demonstrated the quanti-
tative linkages between surface soil physical properties and
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Figure 6. Changes in surface (0–30 cm) soil organic carbon den-
sity (SOCD), soil total nitrogen density (STND) and C : N ratios
with mean annual precipitation (MAP) and mean annual tempera-
ture (MAT). We used MAP of 500 mm as a threshold of transition
from arid to humid climate and MAT of 10 ◦C as a threshold of tran-
sition from cool to warm climate. (a, b) SOCD, (c, d) STND and (e,
f) C : N ratios. Each dot shows the average value within each 1 ◦C
MAT and 100 mm MAP.

climate variables at the global scale. Compared with vari-
ables associated with topography (e.g., elevation and slope),
vegetation activity (i.e., NDVI) and land cover (i.e., land
use type), climate variables (such as MAT, MAP, TS and
PS) were stronger predictors of bulk density and soil tex-
ture (Fig. 7a–c). This was likely due to the essential role of
temperature and precipitation in physical, chemical and bi-
ological processes during soil formation (Weil and Brady,
2016). Specifically, bulk density showed an increase with
higher MAT and lower MAP, likely due to an accompany-
ing decrease in SOCD (Ruehlmann and Körschens, 2009),
which was driven by stronger microbial decomposition under
warmer and wetter conditions (Fig. 6; see more discussion on
the effect of climate on SOCD in Sect. 4.3; Wiesmeier et al.,
2019). In addition, higher MAT and MAP can accelerate the
rate of weathering (Jenny, 1941; Lal and Stewart, 2018), thus
resulting in lower sand fraction and higher soil clay fraction
(Fig. 4). Along with topographical variables, climate may
also affect soil physical properties via erosion processes. For
example, soil erosion is highly selective to silt, while sand is
less mobile due to high weight and clay is protected by soil
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Figure 7. Importance of variables, denoted by the percent increase
in mean-square error (%IncMSE) for each soil property estimation:
(a) BD (bulk density, g m−3), (b) sand fraction (%), (c) clay frac-
tion (%), (d) pH, (e) SOCD (soil organic carbon density, kg m−2)
and (f) STND (soil total nitrogen density, kg m−2). MAT, MAP, TS,
PS, Elev. and LU indicate mean annual temperature, mean annual
precipitation, annual temperature seasonality, annual precipitation
seasonality, elevation and land use type, respectively.

aggregates (Wischmeier and Mannering, 1969; Torri et al.,
1997; Wang et al., 2013).

Other factors, such as historical tectonics, glaciations and
soil ages, could also affect soil physical properties (Jenny,
1941; Weil and Brady, 2016), but they are often spatially cor-
related with climate variables, making it difficult to separate
their role from the latter. For instance, the effect of glacia-
tions is stronger, the soil age is younger and air temperature is
lower towards higher latitudes. Likewise, the role of tectonics
in rejuvenating younger soils might also be mixed by corre-
sponding climatic conditions across altitudinal gradients. In
tropical regions, we found a significant decrease in bulk den-
sity and clay fraction with higher elevation (Fig. S6a, d). This
decrease in bulk density along the altitude gradient was likely
due to an increase in SOC retention (Fig. S6f), resulting from
low rates of soil organic matter decomposition along with
lower temperature (Grieve et al., 1990; Kramer and Chad-
wick, 2016). Meanwhile, the decrease in clay fraction with
higher altitude was likely due to a younger soil age (Waite
and Sack, 2011), lower weathering rate under lower temper-
ature (Grieve et al., 1990; Kramer and Chadwick, 2016) and
a downslope translocation of surface soil to lower altitudes.
Interestingly, these altitudinal gradients were consistent with
the results of field studies (Dieleman et al., 2013) and also
mirrored a similar trend across latitudes.

4.2 The key role of climate in determining global
patterns of surface soil chemical properties

Our results indicated that MAP was the most important sur-
rogate for soil pH prediction (Fig. 7d). Such a pattern might
be due to the increased leaching of exchangeable base cations

across large-scale precipitation gradients (Jenny, 1941). In-
terestingly, further analysis showed that the critical levels
of MAP for the transition from alkaline to acidic soil de-
creased nonlinearly with lower MAT, owing to changing wa-
ter balance (Fig. 5). Specifically, the critical MAP ranged
from 400 to 500 mm when the MAT exceeded 10 ◦C and
could decrease to 50–100 mm when MAT was close to 0 ◦C,
highlighting significant interactions between MAP and MAT.
Such a pattern was supported by a recent study, which re-
vealed that the transition from alkaline to acidic soil occurred
when the MAP began to exceed the mean annual potential
evapotranspiration (Slessarev et al., 2016). It should be noted
that, other factors besides climate variables, such as acid de-
position, may also contribute to regional-scale patterns of soil
pH, especially in Europe, eastern North America and south-
ern China, which have received high-level acid deposition
(Bouwman et al., 2002; Vet et al., 2014).

Our analysis also indicated that climate variables (e.g.,
MAT, MAP) were the strongest predictors of SOC density
(Fig. 7e), in agreement with the findings of previous studies
(Post et al., 1982; Gray et al., 2009). Such a pattern reflects
the fact that soil C stock depends on the balance between
plant inputs (i.e., litterfall and other plant debris) and mi-
crobially mediated metabolic losses of CO2 to atmosphere
(Stockmann et al., 2013), which are strongly controlled by
climate (Davidson and Janssens, 2006; Bond-Lamberty and
Thomson, 2010). In general, precipitation favors net primary
productivity (Del Grosso et al., 2008) and the consequent C
inputs into the soil, while it intensifies weathering of the par-
ent material and soil acidification, thus increasing formation
of SOC-stabilizing minerals (Chaplot et al., 2010; Doetterl
et al., 2015) and reducing decomposition of soil organic mat-
ter (Meier and Leuschner, 2010). These processes could then
explain the increase in SOCD with MAP (Fig. 6), while it
did not exceed a certain threshold because of a constraint of
C inputs (Del Grosso et al., 2008). Compared with precipi-
tation, temperature largely affects the rate and degree of mi-
crobial decomposition of soil organic matter (Wiesmeier et
al., 2019). Consequently, SOCD increased with lower MAT
(Fig. 6), while it reached saturation due to a threshold of SOC
stabilization (Doetterl et al., 2015).

Further analysis also revealed an interaction between MAT
and MAP in shaping the patterns of SOC density. For in-
stance, SOC density showed a tendency of saturation with
higher MAP, while the saturation thresholds were higher
under MAT≤ 10 ◦C compared to MAT > 10 ◦C (Fig. 6).
Specifically, the saturation threshold for SOC density un-
der MAT≤ 10 ◦C (14.5 kg C m−2) were nearly twice of that
under MAT > 10 ◦C (8.0 kg C m−2) (Fig. 6b). These critical
levels of SOCD imply a saturation threshold of SOC stocks
under certain climate regime (Stewart et al., 2007). Soil C
saturation has also been evidenced by experimental studies,
which indicate that SOC pool has an upper limit with respect
to C input levels because of a threshold of SOM stabilization
efficiency (Stewart et al., 2008; Kimetu et al., 2009). These
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Figure 8. Correlation between surface (0–30 cm) soil properties. R2

between each two soil properties is shown in the upper plots with
red color indicating R2 > 0.1. BD, SOCD and STND indicate bulk
density, soil organic carbon density and soil total nitrogen density,
respectively.

thresholds of soil C saturation can help to estimate soil C
sequestration potential and provide important guidelines for
regional soil steward and ecosystem management.

Previous meta-analyses indicated that C : N ratio in the
soil was well-constrained at the global scale (Cleveland and
Liptzin, 2007). Accordingly, our results indicated a strong
correlation between STN density and SOC density (Fig. 8)
and demonstrated a similar pattern of STN density as SOC
density across biome and climate regimes (Figs. 3 and 6).
Based on a synthesis of long-term experimental results, Man-
zoni et al. (2008) demonstrated that the C : N ratio of the
litter decreased throughout decomposition. Because soil or-
ganic matter is a result of long-term decomposition, surface
soil C : N ratio is thus negatively correlated with decompo-
sition degree while positively correlated with SOC content
and turnover time (Carvalhais et al., 2014). Our analysis also
indicated that higher soil C : N ratios were associated with
higher SOC density (Figs. 2, 3).

4.3 Shifts in soil properties across biomes and land use
types

Our analysis indicated that soil properties varied significantly
across global biomes (Table 1). For example, SOC density
showed high values in boreal forests and tundra due to the
slower microbial decomposition compared with biomass in-
puts (Hobbie et al., 2000; Hashimoto et al., 2015; Bloom et
al., 2016), but these values were extremely low in drylands
due to low plant cover and productivity (Delgado-Baquerizo
et al., 2013). Due to fast turnover with rapid decomposition

of organic matter, SOC content is relatively poor in tropi-
cal forests (e.g., the Congo and Amazon tropical forests in
Fig. 2f) (Carvalhais et al., 2014; Wang et al., 2018). Accord-
ingly, previous mappings of SOC density have also shown
relatively low values in tropical forests (Köchy et al., 2015;
Jackson et al., 2017). In view of a strong and negative cor-
relation between SOC and bulk density, bulk density showed
an opposite shift across biomes (Table 1). Moreover, we also
found an increase in SOC density and a decrease in soil bulk
density with elevation (Fig. S6a and f), likely due to a shift
in climate regime and vegetation type.

The effect of land use is important for the SOC stock
at a regional to local scale. A change of forest or grass-
land to croplands can significantly decrease SOC density
and thus decrease soil bulk density, while reforestation gen-
erally increases SOC density and decreases soil bulk den-
sity (DeGryze et al., 2004; Machmuller et al., 2015). When
comparing values in the same region (e.g., Southeast Asia),
SOC density is obviously lower in croplands than in forests
(Fig. S7a and b). This difference has been also evidenced by
meta-analysis based on field observations (Don et al., 2011).
In the Mediterranean region, an increase in the area of olive
plantations and vineyard in last few decades have likely con-
tributed to a consequent increase in SOC density (Parras-
Alcántara et al., 2013). Moreover, a recent assessment indi-
cates that ecological restoration projects (e.g., Three-North
Shelter Forest Program, Natural Forest Protection Project,
Grain for Green Program, Returning Grazing Land to Grass-
land Project) in China have substantially increased soil and
biomass C storage in the corresponding regions (Lu et al.,
2018). However, our static mapping of global soil proper-
ties is not able to account for the effect of temporal land use
change on SOC density.

4.4 Global carbon and nitrogen stocks in surface soils

Earlier estimates of global SOC and STN stocks were based
on either an area-weighted extrapolation or an empirical
model of the soil profile data according to climate, vegeta-
tion type or soil order (Post et al., 1982; Batjes, 1996, 2009;
Hengl et al., 2014; Scharlemann et al., 2014). In the range of
these estimates, our results based on RF modeling indicated
that the global stocks of SOC were 788±39.4 Pg in the upper
30 cm soil layer. Reports of global STN stocks are relatively
rare compared with those of SOC stocks. Based on informa-
tion on measured soil profiles, Batjes (1996) estimated global
STN stocks to be 63–67 Pg N in the upper 30 cm layers. Sim-
ilar to the estimates by Batjes (1996), our results indicate
that global STN stocks were 63± 3.3 Pg in the upper 30 cm
soil layer (Table 1). Despite similar estimation of global total
SOC and STN stocks, our regional RF analysis has several
advantages, such as the ability to model nonlinear relation-
ships, handle both categorical and continuous predictors, and
resist overfitting and noise features (Breiman, 2001). By us-
ing climate, vegetation, topography and land use variables as
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predictors, our region-specific RF approach likely produces
more robust global maps of soil properties at a finer spatial
resolution.

4.5 Uncertainties in mapping surface soil properties at
the global scale

In this study, we used machine learning algorithms to map
global surface soil properties at a 1 km resolution. Although
this approach could overcome uncertainties derived from
large variations in mapping units, several limitations still ex-
ist in our analysis. First, the limited sample size in certain
areas may lead to estimation uncertainties. Particularly, the
accuracy of the region-specific RF model partially depends
on the number of sampling sites and the evenness of the spa-
tial pattern. The limited number and uneven distribution of
the soil profile may thus constrain the accuracy of region-
specified RF models, especially in regions such as Russia and
South America (Table S5).

Second, soil properties have been measured using various
approaches and compiled for several decades, while there are
no straightforward solutions to accurately harmonize the data
at the global level (Maire et al., 2015; Batjes, 2016). The er-
rors due to varied sampling and measurement methods over
time may lead to uncertainties in our analysis. Moreover, our
database includes pedologic information on soil orders and
soil horizons of sampled soil profiles and these data were
originally reported based on several different soil classifica-
tion systems using different standards (Batjes et al., 2007;
Carter and Bentley, 2016). It is thus a challenge for us to har-
monize the data on soil orders and soil horizons and quan-
tify their impacts on surface soil properties. Nevertheless,
the depth of 0–30 cm has been frequently used in the map-
ping and modeling of surface soil properties at regional and
global scales (e.g., Batjes, 1997; Yang et al., 2010; Saiz et
al., 2012; Wieder et al., 2013; Shangguan et al., 2014). By
considering essential climatic variables (MAT, MAP, season-
ality of air temperature, seasonality of precipitation), vegeta-
tion parameters (mean annual NDVI and land use type) and
topographic factors (elevation, slope) that are key to soil for-
mation (Jenny, 1941), our random forest analysis may have
partially constrained the uncertainties due to the lack of in-
formation on soil orders and associated soil horizons.

Finally, uncertainties may also arise from the limited inde-
pendent variables used in this study. Although essential sur-
rogate variables of climate, topography, vegetation activity
and land cover were incorporated in our analysis, we still
could not account for the role of soil horizons, soil ages and
parental material characteristics due to the lack of global-
scale dataset. For instance, surface soil (top 30 cm) can con-
tain either a single horizon or several very different horizons
with very different physical and chemical properties. Soil
mineralogy, being a function of parent material, climate and
soil age (Jenny, 1941), has been demonstrated to be important
in determining the quantity of SOC storage and its turnover

time during long-term soil development (Torn et al., 1997).
Soil age may also play an important role in forming soil prop-
erties (Jenny, 1941), but it is hard to evaluate its individual
role in regulating spatial patterns of soil properties due to its
strong interactions with climate variables. Therefore, future
studies should make more efforts to consider these variables
when predicting spatial patterns of soil physical and chemi-
cal properties at the global scale.

5 Conclusion

By compiling a comprehensive global soil database, we
mapped eight surface soil properties based on machine
learning algorithms and assessed the quantitative linkages
between soil properties, climate and biota at the global
scale. Our region-specific random forest model generated
high-resolution (1 km) predictions of surface soil proper-
ties, which can be potentially used as inputs for regional
and global biogeochemical models. Our results also pro-
duced a global soil–climate–biome diagram, which indicates
the quantitative linkages between soil, climate and biomes.
Given that significant changes in major soil properties may
occur in view of global environmental change (Trumbore and
Czimczik, 2008; Chapin III et al., 2009; Todd-Brown et al.,
2013; Luo et al., 2016, 2017), more efforts should be made in
future to understand the dynamics of the global soil–climate–
biome diagram.
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