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Abstract. The photochemical reflectance index (PRI) has
emerged to be a pre-visual indicator of water stress. How-
ever, whether the varying shaded-leaf fractions, which may
be caused by multiple view angles or the changing crop den-
sity in the field, affect the performance of PRI in detecting
water stress of crops is still uncertain. This study evaluated
the impact of the varying shaded-leaf fractions on estimating
relative water content (RWC) across growth stages of win-
ter wheat using seven formulations of PRI. Results demon-
strated that for the control treatment the mean PRI of sunlit
leaves was slightly higher than those of shaded leaves, but
the difference between PRI of sunlit and shaded leaves in-
creased as water resources became more limiting. Despite the
difference between PRI of sunlit and shaded leaves, the sig-
nificance of the linear relationship between RWC and most
studied formulations of PRI did not show obvious variations
with shadow fractions, except for the 100 % shaded-leaf con-
dition. Among the studied formulations of PRI, PRI3 based
on reflectance at 512 nm as the reference band provided the
most accurate estimates of RWC with varying shaded-leaf
fractions, except for the 100 % shaded-leaf condition. The
slope and the intercept of linear regression models with PRI3
also showed minimized variations with shaded-leaf fractions.
We then applied a uniform RWC prediction model to the data
of varying shaded-leaf fractions and found that the accuracy
of RWC predictions was not significantly affected in the mix-
ture of sunlit and shaded leaves. However, RWC estimated
with PRI of the 100 % shaded-leaf condition had the high-
est root mean square error (RMSE), implying that PRI of the
pure shaded leaves may yield inaccurate estimates of plant
water status.

1 Introduction

Agriculture consumes about 80 %—90 % of freshwater world-
wide (Gonzalez-Dugo et al., 2010). Water stress is one of the
most critical abiotic stressors limiting plant growth and crop
production (Chaves et al., 2003). Climate change, increas-
ing worldwide shortages of water, and frequent droughts are
exacerbating the agricultural water crisis and putting global
food security at risk (Hirich et al., 2016; Lei et al., 2016).
The assessment of water status in crops is critical for preci-
sion irrigation practices, balancing crop production with wa-
ter supply and sustainable farming.

Remote sensing provides a unique tool to unobtrusively,
efficiently, and quantitatively assess water status in crops.
Water stress induces plants’ stomatal closure, leading to the
increasing leaf temperature due to the decreasing evapora-
tive cooling. Remotely monitoring the change in canopy tem-
perature provides information on instantaneous transpiration
status, and hence thermal remote sensing has served as an ef-
fective tool in detecting water stress for decades (Idso et al.,
1981; Sayago et al., 2017). However, thermal remote sens-
ing of water stress has limitations in both physiological and
operational aspects. The physiological relationship between
canopy temperature and stress is not clear for some crops
(Villalobos et al., 2009). Due to the technical reasons, the
spatial resolution of thermal imaging sensors is generally
coarser than the visible and infrared sensors, limiting its ap-
plications at local scales.

In a recent decade, the photochemical reflectance in-
dex (PRI) has emerged to be a pre-visual indicator of wa-
ter stress. PRI is a normalized difference of reflectance at
531 nm and reflectance at a reference band (e.g., 570 nm) in
the visible domain. It was initially proposed as an indicator
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of the de-epoxidation state of xanthophyll pigments, which
is related to photosynthesis (Gamon et al., 1992). When the
light absorbed by the plants exceeds the photosynthetic de-
mand, de-epoxidation of xanthophyll cycle pigments occurs,
leading to the downregulation of photosynthesis (Gamon et
al., 1992). Multiple abiotic stressors, including nutrient de-
ficiency (Shrestha et al., 2012; Magney et al., 2016), exces-
sive heat (Dobrowski et al., 2005), and water deficit (Muller,
2001; Sun et al., 2008; Sarlikioti et al., 2010; Zarco-Tejada
et al., 2013; Magney et al., 2016), have been shown to trig-
ger the xanthophyll cycle, resulting in the apparent drop in
reflectance at 531 nm.

As a promising alternative to thermal remote sensing for
monitoring plant water stress, several previous studies have
investigated the feasibility of assessing plant water status at
leaf level and canopy level using PRI. At leaf level, a num-
ber of studies demonstrate a close relationship between PRI
and physiological indicators of water stress (Thenot et al.,
2002; Shahenshah et al., 2010), but some other studies re-
port a poorer relationship due to the confounding environ-
mental factors (Sarlikioti et al., 2010) or the changes in pig-
ment pools (Sun et al., 2008). At canopy level, studies show
stronger correlations between changes in physiological indi-
cators of water stress and PRI, in comparisons with the other
indices (e.g., normalized difference vegetation index, NDVI)
(Sudrez et al., 2008; Rossini et al., 2013; Zarco-Tejada et al.,
2013). However, the performance of canopy PRI in the water
stress detection is affected by canopy structure, canopy cover,
and viewing geometry (Rossini et al., 2013; Panigada et al.,
2014). Particularly, at seasonal and interannual timescales,
physiological changes, such as relative water content and
pigment pools, concurrently occur with structural changes,
such as leaf area index (LAI). Canopy PRI is sensitive to
the structural changes during the growth season (Gitelson et
al., 2017). To minimize the impact of canopy structures on
PRI, transformations of PRI are developed using the band
insensitive to the canopy structure (Herndndez-Clemente et
al., 2011), the structural vegetation indices for the normal-
ization (Zarco-Tejada et al., 2013; Gitelson et al., 2017), or
the radiative transfer modeling results (Herndndez-Clemente
etal., 2011).

PRI is primarily driven by the xanthophyll cycle at a short
timescale (e.g., a few hours, 2-3 d), but shaded leaves may
not experience de-epoxidation of the xanthophyll cycle as
the sunlit leaves do. As PRI is expected to be applied to
monitoring water stress at a large scale, canopy PRI derived
from satellite data includes contributions from both the sun-
lit leaves and shaded leaves. Hall et al. (2008) and Hilker
et al. (2010) found that canopy PRI was strongly depen-
dent on canopy shadow fractions, because the xanthophyll
cycle status was affected by incident PAR, which was in
turn affected by the level of self-shading within a canopy.
Cheng et al. (2009) examined the contributions of variable
sunlit / shaded canopy ratios to the simulation of canopy
PRI with the two-layer Markov chain analytical canopy re-
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flectance model, confirming the importance of adding shaded
leaves to the simulation. Takala and Mottus (2016) demon-
strated that the illumination-induced shadowing effects ex-
plained the observed dynamic range of apparent canopy PRI
derived from the high-spatial-resolution airborne imaging
spectroscopy data. Zhou et al. (2017) examined PRI of rice
leaves and panicles in sunlit and shaded portions of canopies,
and they found that the correlations between canopy chloro-
phyll content and PRI of shaded leaves were much higher
than those of sunlit leaves.

Previous studies have shown that within-canopy shadow-
ing effects directly affect PRI of a canopy, but whether the
proportion of shaded leaves further influences the perfor-
mance of detecting water stress in the growth season of a
crop using PRI is still uncertain. The objective of this study
is to analyze the impact of varying shaded-leaf fractions on
the performance of canopy PRI in detecting water stress dur-
ing the growth season of winter wheat using a hyperspectral
imager. To accomplish this objective, we conducted water
stress experiments on winter wheat for 2 consecutive years.
Reflectance of shaded and sunlit leaves derived from hyper-
spectral imagery was mixed with varying fractions to quan-
tify the impacts of shaded leaves on different formulations of
PRI in detecting water stress during the growth season.

2 Materials and methods
2.1 Study site and experimental design

During the growth seasons of 2016 and 2017, two wa-
ter stress experiments were conducted in the facilities
at Huazhong Agricultural University, China (30°28'N,
114°22' E). The mean annual temperature is approximately
17.0°C, and the mean annual total precipitation is around
1256 mm. The seeds of cultivar “Zheng 9023”, which is
widely planted in central China, were used in the exper-
iment. Seeds were sown on 2 November 2015 and 26
November 2016, respectively, in a rectangular plastic pot
(L 70cm x W 40 cm x H 35 cm) with the density of approx-
imately 250-300 seeds per pot. The soil was silt loam, with
a volumetric water content of 26 % at the field capacity. Suf-
ficient nitrogen—phosphorus—potassium (NPK) (5 : 4 : 1) fer-
tilizers were applied in the soil before sowing. The exper-
iments consisted of 28 pots in 2015-2016 and 15 pots in
2016-2017. Pest and disease control were conducted in the
same time during the growth period, in order to avoid addi-
tional stress other than different levels of water stress.
Seedlings were grown outdoor under the natural condi-
tion before the water stress experiments started. Soil water
content was measured every 4-5 d using time domain reflec-
tometry (TDR300, Spectrum Technology Inc., USA), and tap
water was supplied if soil water content was 70 % off field
capacity. Water stress treatments started at the end of Febru-
ary, which was during the tiller initiation stage. Pots were
moved to a rain-out shelter to prevent external water sup-
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ply. In 2015-2016, 28 pots were divided into five groups. A
group of four pots was used as the control, which had suf-
ficient water supplies throughout the experiment. The other
four groups (with six pots for each group) stopped watering
on 24 February, 6, 28 March, and 8 April, respectively. In
2016-2017, 15 pots were divided into five groups. A group
of three pots was used as the control, which had sufficient
water supplies throughout the experiment. The other four
groups (with three pots for each group) stopped irrigation
on 15, 22, 29 March, and 12 April, respectively. After ir-
rigation stopped, soils of the treated pots were left to dry
as analogs for the natural drought condition. In 2016, mea-
surements were taken every 2—5 d depending on the weather
conditions until immature senescence occurred. For the wa-
ter treatment group, three pots of winter wheat were used
for capturing hyperspectral images, and the other three pots
were used to collect samples. In 2017, measurements were
taken every 4-6d until immature senescence occurred. For
the water treatment groups, one pot of winter wheat was used
for capturing hyperspectral images, and the other two pots
were used to collect samples. In both years, physiological
and spectral measurements were taken in control groups dur-
ing the whole experiment.

2.2 Physiological measurements

In this study, we used relative water content (RWC) as the
indicator of water stress, because RWC was recommended
by previous studies as an effective physiological indicator
of water status (Hewitt et al., 1985; Siddique et al., 2000).
We randomly chose three plants in the sampled pot, and top
three leaves of the sampled plants were cut from the stem.
Leaves were cut into 10 small round pieces with a puncher
and put into a zip-lock bag. Leaf samples were enclosed in
a cooler and brought to the laboratory to measure RWC. In
the laboratory, fresh weight was measured with an electronic
balance. The leaf samples were immersed in distilled wa-
ter for 16-18 h. We dried the surface moisture and weighed
the turgid weight. Afterward, all samples were put into alu-
minum boxes to dry in the oven at 105 °C for 15-20 min and
then dried at 80 °C for about 10 h when a constant dry weight
was reached. The RWC of leaf samples was calculated as

WF - WD
RWC=———— (%), ey
WT -WD

where WF is the fresh weight, WT is the turgid weight, and
WD is the dry weight.

2.3 Spectral data
2.3.1 Hyperspectral image acquisition
Hyperspectral images were recorded in situ using the

SOCT710VP portable hyperspectral imager (Surface Optics
Corporation, SOC, USA). The imager has 640 x 640 px and
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128 bands in the range of 379-1039 nm, with a spectral reso-
lution of 4.6875nm and a 25° field of view. The transpar-
ent shed was open half an hour before measuring began.
The imager was set up with a nadir view angle and ap-
proximately 1.5m above the canopy, resulting in the spa-
tial resolution of approximately 1 mm. Hyperspectral im-
ages were recorded under sunny and cloudless conditions
around midday (12:00-14:00LT). According to Magney et
al. (2016)’s study on white spring wheat, PRI showed pro-
nounced diurnal variations, but PRI measured during peak
irradiance, which was approximately between 12:00 and
14:00LT, showed minimal variations. A reference spectral
panel was placed on the pot for each measurement. Spec-
tra of the panel were used to correct radiation variations due
to differences in solar illumination. The spectral data were
acquired by LuCam Software camera drivers and the Hy-
perScanner software platform. After image acquisition, ra-
diometric calibration was performed using the SOC’s Spec-
tral Radiance Analysis Toolkit (SRAnal), converting the raw
digital number (DN) values of the hyperspectral image to re-
flectance.

2.3.2 Spectral reflectance extraction and preprocessing

We manually selected regions of interest (ROIs) of the most
deeply shaded leaves and the brightest sunlit leaves in each
image using ENVI 5.1 (the Environment for Visualizing Im-
ages) (Fig. 1). Reflectance within ROIs were averaged and
used as reflectance of sunlit and shaded leaves, respectively.
Based on the assumption of the linear mixture of shadow and
sunlit leaves, we mixed different fractions of shaded-leaf re-
flectance with sunlit-leaf reflectance to evaluate the impact
of shaded leaves on detecting water stress with PRI.

The derived spectral data were interpolated to 1 nm band
width using the cubic spline interpolation function in MAT-
LAB (R2011a) software. Overall, seven formulations of PRI
were calculated for both sunlit leaves and shaded leaves (Ta-
ble 1). In addition, we calculated the difference (APRI) be-
tween PRI of sunlit leaves (PRI_sunlit) and PRI of shaded
leaves (PRI_shaded):

APRI = PRI_sunlit — PRI_shaded. 2)

2.4 Statistical analysis

Measurements taken from pots that had the same water treat-
ments were averaged and used in the analysis. The max-
imum, minimum, coefficient of variation (CV), and stan-
dard deviation were used to describe the range and the
variation of observations. To analyze the variations of PRI
in sunlit and shaded leaves during the water stress treat-
ment, we divided all the data into seven groups according
to RWC values (RWC ranges of 0.2-0.3, 0.3-0.4, 0.4-0.5,
0.5-0.6, 0.6-0.7, 0.7-0.8, and > 0.8). The mean and the stan-
dard deviation were calculated to evaluate the variations of
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Table 1. Seven PRI formulations used in this study. R is the reflectance at the specified wavelength in nanometers. RDVI is the renormalized

difference vegetation index.

X. Yang et al.: Assessing shaded-leaf effects on photochemical reflectance index

Index Equation  Reference

PRI57¢ (R531-R570)/(R5314+R570)  Gamon et al. (1992)

PRIl (R528—R567)/(R5284-R567)  Gamon et al. (1993)

PRI2 (R539—R570)/(R5394+-R570)  Penuelas et al. (1995)

PRI3 (R531—R512)/(R531+R512)  Hernandez-Clemente et al. (2011)
PRI4 (R531-R600)/(R5314+R600)  Gamon et al. (1993)

PRIS (R531-R670)/(R5314+R670)  Gamon et al. (1993)

PRI6 RDVI = (R800—R670)/(R800+R670)0-5  Zarco-Tejada et al. (2013)

PRI570/[RDVI*(R700/R670)]

Figure 1. The original hyperspectral image shown as an RGB im-
age. Region of interest (ROI) A is the sunlit leaves, ROI B is the
shaded leaves, and ROI C is the reference spectral panel.

PRI against RWC. The least-square linear regression model
was established to estimate RWC with PRI of sunlit leaves
and shaded leaves. The quadratic function was used to de-
scribe the relationships between shaded-leaf fractions and the
slope/intercept of the linear regression model between PRI
and RWC. R? was used to evaluate the significance of the
regression model, and the root mean square error (RMSE)
was used to measure the actual average differences between
measurements and predictions. Statistical analyses were per-
formed in MATLAB (R2011a) software.

3 Results

3.1 PRI of sunlit leaves and shaded leaves

The spectra of sunlit leaves and shaded leaves are presented
in Fig. 2. The reflectance of the shaded leaves was lower than
that of the sunlit leaves. Unlike the spectra of sunlit leaves,
the green peak of shaded leaves was not obvious.
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Figure 2. Spectra of sunlit and shaded leaves. The solid lines are the
mean reflectance of the samples and the shadings are the standard
deviation.

We calculated the difference (APRI) between PRI of sun-
lit leaves and shaded leaves for the control treatment and wa-
ter stress treatment separately (Table 2). For both the control
treatment and water stress treatment, the positive mean value
of APRI indicated that PRI of sunlit leaves was higher than
those of shaded leaves, but the mean APRI was much larger
for the water stress treatment. Take PRI570 as an example:
PRI570 of sunlit leaves and shaded leaves declined as water
resources became limiting after irrigation stopped (Fig. 3).
APRIS570 became pronounced at RWC smaller than 0.5, and
APRI570 was minimized at RWC higher than 0.8.

3.2 The impact of shaded leaves on water stress
detection

To assess the impact of shaded leaves on detecting water
stress with PRI, we mixed different fractions of shaded-leaf
reflectance with sunlit-leaf reflectance and analyzed the re-
lationship between RWC and PRI calculated from the mixed
reflectance of shaded and sunlit leaves. Different formula-
tions of PRI were all positively correlated with RWC (Ta-
ble 3). Among the studied formulations, PRI2, PRI3, PRI4,
and PRI6 showed significant correlations with RWC in win-
ter wheat with the varying shaded-leaf fractions, except for
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Table 2. The maximum, minimum, mean, CV and range of the dif-
ference (APRI) between PRI of sunlit leaves and PRI of shaded
leaves for the control treatment (a) and the water stress treat-
ment (b).

(a) Maximum  Minimum Mean CV  Range
APRI570 0.0519 —0.0178 0.0192 1.1877 0.0696
APRI1 0.0425 —0.0287 0.0106 2.1840 0.0713
APRI2 0.0585 —0.0042 0.0227 0.7684 0.0627
APRI3 0.0976 —0.0565 0.0047 0.9691 0.1541
APRI4 0.1413 —0.0041 0.0643 0.6256 0.1454
APRIS 0.3075 0.0327 0.1698 0.5289 0.2748
APRI6 0.1549 —0.0152 0.0515 1.0431 0.1701
(b) Maximum  Minimum Mean CV  Range
APRI570 0.1050 —0.0170  0.0441 0.8095 0.1220
APRI1 0.0835 —0.0172 0.0253 1.1064 0.1007
APRI2 0.1109 —0.0192 0.0519 0.7221 0.1301
APRI3 0.1660 —0.1035 0.0374 1.5302 0.2695
APRI4 0.2608 —0.0398 0.1362 0.6363 0.3006
APRIS 0.6119 —0.0061 0.3084 0.5196 0.6180
APRI6 1.3637 —0.0352 0.2596 1.2326  1.3989
0.04
——Sunlit leaves
0.00 Shaded leaves I T
0.04 [ 'K/I ;6/? /(1 I
E - o//\ J
g \
2 008 | [ J
T
L
-0.12 J J
-0.16
0.00 0.20 0.40 0.60 0.80 1.00

RWC

Figure 3. The mean and the standard deviation of PRI5S70 in sun-
lit leaves and shaded leaves against RWC. Data were divided into
seven groups according to RWC values (RWC ranges of 0.2-0.3,
0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, and >0.8).

the 100 % shaded-leaf condition. R? of the linear regression
models between RWC and PRI2, PRI3, PRI4, and PRI6 did
not show pronounced differences with varying shaded-leaf
fractions. For PRI570, PRI1, and PRI5, R? increased slightly
with the increasing shaded-leaf fraction. Figure 4 illustrated
examples of the significant relationships between RWC and
PRI of sunlit leaves and shaded leaves, respectively.

We further analyzed the impact of shaded-leaf fractions
on the slope and intercept of the linear regression model
between PRI and RWC. The slope and intercept of the lin-
ear regression models between different formulations of PRI
and RWC were strongly correlated with fractions of shaded
leaves (Table 4). The quadratic function was applied to de-
scribe the non-linear relationship between shaded-leaf frac-
tions and the slope/intercept. Examples of non-linear rela-
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tionships for PRI570 and PRI3 are shown in Fig. 5. For all the
studied formulations of PRI, the intercept remained relatively
stable under different shaded-leaf fractions, except for the
100 % shaded-leaf fraction. The slope increased non-linearly
with shaded-leaf fractions for most of the studied PRI, but
PRI3 did not show obvious variations in the slope under the
shaded-leaf fractions below 70 % (Fig. 5d).

To evaluate if these changes in the values of linear regres-
sion parameters affected the accuracy of RWC estimates, we
applied the linear regression model derived from the PRI
of the generally applicable sunlit /shaded leaves ratio of
50/50 to detect water stress using PRI of the varying sun-
lit leaves / shadow ratio. We also evaluated the accuracy of
RWC estimated with the linear regression models geared
towards the known shaded-leaf fractions. Given the known
shaded-leaf fractions, the slope and intercept of the linear
regression models were estimated with the quadratic func-
tions shown in Fig. 5. Results showed that RMSE of RWC
estimates did not vary significantly with shaded-leaf frac-
tions, except for PRI1 (Fig. 6). RMSE in RWC estimated
with PRI1 was decreased with the increased shaded-leaf frac-
tions, probably because the reference band (567 nm) in PRI1
was more sensitive to the change in the chlorophyll content
of shaded leaves. However, for all the studied formulations
of PRI, RWC estimated with PRI of 100 % shaded leaves
had the highest RMSE, implying that PRI of the pure shaded
leaves may yield inaccurate estimates of plant water status.

4 Discussion

Theoretically, sunlit leaves are more likely to experience
high light-induced environmental stress than shaded leaves
(Hilker et al., 2008; Middleton et al., 2009; Cheng et al.,
2012). Data from previous field samplings and model simula-
tions, although limited, confirmed the impact of shaded-leaf
fractions on PRI values (Middleton et al., 2009; Cheng et al.,
2012; Takala and Mattus, 2016). While interests of detect-
ing plant water stress with PRI are increasing, studies rarely
analyzed the impact of shaded leaves on the performance of
PRI in water stress detection. This study quantified the dif-
ferences between PRI of sunlit and shaded leaves in winter
wheat under control and water stress conditions, and inves-
tigated the impact of varying shaded-leaf fractions on water
stress detection during the growth season, using different for-
mulations of PRI derived from hyperspectral images.

Our results showed that for the control treatment the mean
PRI of sunlit leaves was slightly higher than that of shaded
leaves. Take PRI5S70, for example. APRI5S70 ranged from
—0.0178 t0 0.0519 and roughly agreed with results presented
in previous studies. Takala and Mottus (2016) reported the
range of APRI without a shadow correction was —0.01-
0.10 at the boreal forest. Middleton et al. (2009) reported
APRI of —0.035 at a Douglas fir forest in Canada. Cheng
et al. (2012) demonstrated that the average PRI values var-
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Figure 4. Examples of the linear relationship between PRI of sunlit leaves (PRI2, a), PRI3, b) and RWC, and the linear relationship between

PRI of shaded leaves (PRI2, ¢, PRI3, d) and RWC.

Table 3. R2 of the linear relationship between RWC and different formulations of PRI calculated by reflectance of varying the ratio of sunlit

leaves to shaded leaves in winter wheat during the study period.

RWC Shaded Shaded Shaded Shaded Shaded Shaded Shaded Shaded Shaded Shaded Shaded
0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

sunlit sunlit sunlit sunlit sunlit sunlit sunlit sunlit sunlit sunlit sunlit

100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0%

PRI570 0.17* 0.18%  0.19**  0.19*  0.20%*  0.22**  0.23*  0.25% 0.28*  0.31%*  0.31**
PRI1 0.07 0.07 0.07 0.08 0.09 0.10 0.12* 0.14* 0.18%  0.25%*  0.33**
PRI2 031*  0.31*  0.32%*  032*  0.33%*  0.34* 035 036" 036  0.35%*%  0.28**
PRI3 0.61*%  0.62**  0.63** 0.64**  0.66™*  0.67** 0.67**  0.67** 0.62** 049"  0.20**
PRI4 0.29**  0.30*  0.30**  0.31** 032"  0.33%* 034* 035 0.35% 034 027"
PRI5 0.03 0.03 0.04 0.05 0.06 0.07 0.09 0.11 0.13* 0.14* 0.12*
PRI6 0.22%%  0.23*  0.23%  0.23*  0.23**  0.24*% 024  0.23*%*  (0.22** 0.16* 0.04

** Correlation coefficient significant at p <0.01. * Correlation coefficient significant at p <0.05.

ied from —0.008 to 0.005 for sunlit leaves and from 0.002 to
0.022 for shaded leaves measured in the corn field. Mattus et
al. (2015) presented the difference between canopy PRI (in-
cluding PRI of shaded leaves) and PRI of sunlit leaves rang-
ing from —0.025 to 0.073 for pine, spruce, and birch. In sum-
mary, both positive values and negative values of APRI570
can be found in previous studies (Hilker et al., 2008; Mid-
dleton et al., 2009; Cheng et al., 2012), but the difference
between PRI of sunlit leaves and shaded leaves was small for
healthy vegetation.

Interestingly, our results showed that APRI was much
higher for the water stress treatment than the control treat-
ment. APRI increased as water resources became more
limiting, but it then decreased when prolonged drought

Biogeosciences, 16, 2937-2947, 2019

caused premature senescence. The increased APRI might
be due to the more severe chlorophyll degradation on old
leaves, induced by a sustained water stress deficit (Bolhar-
Nordenkampf et al., 1991; Ciganda et al., 2012; Liu et al.,
2015). As several studies proved that PRI was related to the
pigment content (Sudrez et al., 2009; Gitelson et al., 2017),
the early degradation of chlorophyll content in the bottom
shaded leaves may influence their photosynthetic potential
and thus lead to the non-synchronous change in PRI val-
ues between the top sunlit leaves and the bottom shaded
leaves. The weaker correlation between PRI of shaded leaves
and RWC (Fig. 5) also supported the hypothesis of the non-
synchronous change in PRI values between the sunlit and
shaded leaves. Both the sunlit and shaded leaves eventually
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Table 4. R? of the quadratic function between shaded-leaf fractions and the slope and intercept of the linear regression models that are used

to estimate RWC with different formulations of PRI.

PRI570 PRI1 PRI2 PRI3 PRI4 PRIS PRI6
Slope 0.57* 0.53*  0.79**  0.70**  0.81** 0.66* 0.59*
Intercept ~ 0.99**  0.88**  0.94™*  0.74** 0.93** 0.88** (.93**

** Correlation coefficient significant at p <0.01. * Correlation coefficient significant at p <0.05.
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Figure 5. Relationships between shaded-leaf fractions and the slope of the linear regression models of RWC and PRI570 (a) and PRI3 (b);
and relationships between shaded-leaf fractions and the intercept of the linear regression models of RWC and PRI570 (c) and PRI3 (d).

wilted after the prolonged water stress, resulting in the de-
creased range in APRI at the end of the water stress treat-
ment.

Although the PRI of shaded leaves was different from PRI
of sunlit leaves under both control and water stress condi-
tions, the effect of the varying fractions of shaded leaves did
not lead to the substantial change in the significance of the
relationship between PRI and RWC. We hypothesized it was
because the shallow soil in the pot experiment caused the
quick wilting during the water stress treatment, and thus the
changes in leaf area and pigment content intertwined with
physiological responses. Among the studied formulations
of PRI proven to minimize the effect of structural change
in canopies in previous studies (Herndndez-Clemente et al.,
2011; Zarco-Tejada et al., 2013), PRI3 that used reflectance
at 512nm as the reference band provided the most accu-
rate estimates of RWC with varying shaded-leaf fractions,
except for the 100 % shaded-leaf fraction. PRI3 was origi-
nally developed for the needle tree based on the evidence
that reflectance at 512 nm was not responsive to the change
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in xanthophyll epoxidation state (Herndndez-Clemente et
al., 2011). In their study, PRI3 showed the highest corre-
lation with the stomatal conductance and water potential at
the canopy level and the lowest sensitivity to canopy struc-
ture, in comparison with PRI570 and NDVI. Our results also
showed the superior performance of PRI3 to the other formu-
lations of PRI in estimating RWC, implying that for winter
wheat the 512 nm band might be a better reference band that
could maximize the physiological responses of the 531 nm
band. Unfortunately, we could not provide direct evidence
of PRI3’s superior sensitivity to the change in xanthophyll
epoxidation state due to the lack of measurements of the xan-
thophyll epoxidation state and leaf area index.

Magney et al. (2016) used the difference between the mid-
day PRI and early morning PRI (PRIj) to disentangle the fac-
ultative (diurnally changing) and the constitutive (seasonally
changing) components of the PRI signal, based on the as-
sumption that the early morning PRI represented a “steady
state” prior to the xanthophyll cycle de-epoxidation. They
found the stronger seasonal responses of PRI-PRI to vapor

Biogeosciences, 16, 2937-2947, 2019
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Figure 6. RMSE of RWC estimated with PRI570 (a), PRI1 (b), PRI2 (¢), PRI3 (d), PRI4 (e), PRIS5 (f), and PRI6 (g) under different shaded-
leaf fractions. RMSE-1 means RMSE of RWC estimated with the linear regression model derived from the PRI of the sunlit / shaded leaves
ratio of 50/50; RMSE-2 means RMSE of RWC estimated with the linear regression models geared towards the known shaded-leaf fractions.
Given the known shaded-leaf fractions, the slope and intercept of the linear regression models were estimated with the quadratic functions.

pressure deficit, suggesting that PRI-PRIy was mainly facil-
itated by short-term changes in the xanthophyll cycle as op-
posed to longer-term pigment changes. Hwang et al. (2017)
found that the ratio (sPRI) of sunlit canopy PRI (backward
direction images) to shaded canopy PRI (forward direction
images) captured drought signals in a temperate decidu-
ous forest. Inspired by these studies, we tried to use APRI

Biogeosciences, 16, 2937-2947, 2019

and PRI_sunlit/PRI_shaded to disentangle the facultative and
constitutive components. However, the correlation between
RWC and APRI or PRI_sunlit/PRI_ shaded was not signifi-
cant, and thus results were not shown in the paper.
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5 Conclusion

This study evaluated the impact of the varying shaded-leaf
fractions on seasonal water stress detection in winter wheat
using different formulations of PRI. Results demonstrated
that for the control treatment the mean PRI of sunlit leaves
was slightly higher than those of shaded leaves, but the dif-
ference between PRI of sunlit and shaded leaves increased as
water resources became more limiting. Despite the difference
between PRI_shadow and PRI_leaf, the significance of the
linear relationship between RWC and different formulations
of PRI did not show obvious variations with shadow frac-
tions, except for the 100 % shaded-leaf condition. Among
the studied formulations of PRI, PRI3 based on reflectance
at 512nm as the reference band provided the most accurate
estimates of RWC with varying shaded-leaf fractions, except
for the 100 % shaded-leaf condition. Furthermore, we ap-
plied the linear regression model derived from the PRI of the
generally applicable sunlit / shaded leaves ratio of 50/50 to
detect water stress using PRI of the varying shaded-leaf frac-
tions and found that the accuracy of RWC estimates did not
vary significantly with shaded-leaf fractions. However, RWC
estimated with PRI of 100 % shaded leaves had the highest
RMSE, implying that PRI of the pure shaded leaves may
yield inaccurate estimates of plant water status. This study
provides useful information on remote detection of water
stress for accurate irrigation scheduling and yield forecast.
Further research is indeed needed to investigate the shaded-
leaf effect on PRI and water stress detection, especially for
crops with different canopy geometries from winter wheat.
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