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Abstract. Numerous publications propose the deployment of
negative emission technologies, which intend to actively re-
move CO2 from the atmosphere with the goal to reach the
1.5◦ target as discussed by the IPCC. The increasing number
of scientific studies on the individual potential of different
envisaged technologies and methods indicates that no single
method has enough capacities to mitigate the issue by itself.
It is thus expected that technology portfolios are deployed.
As some of them utilize the same environmental compart-
ment, co-deployment effects are expected. Those effects are
particularly important to evaluate with respect to additional
CO2 uptake. Considering soils as one of the main affected
compartments, we see a plethora of processes which can pos-
itively benefit from each other, canceling out negative side
effects or increasing overall CO2 sequestration potentials. To
derive more reliable estimates of negative emission poten-
tials and to evaluate common effects on global carbon pools,
it is now necessary to intensively study interrelated effects of
negative emission technology deployment while minimizing
negative side effects.

1 Introduction

As global mean temperatures are projected to increase fur-
ther, strategies to mitigate climate change in time by de-
creasing CO2 emissions seem to slowly take effect (Jackson
et al., 2015). Some CO2 emission pathways include nega-
tive carbon emission strategies (Fuss et al., 2014, 2016; Ro-
gelj et al., 2018) that essentially capture CO2 from the at-
mosphere in different ways, storing them in the long term
as CO2 molecules, or as organic and inorganic compounds
(Caldeira et al., 2013). All discussed options and technolo-

gies have yet to reach the large-scale deployment stage (Minx
et al., 2018; Nemet et al., 2018). Most technologies are im-
mature, lacking deep research on the global potential, tech-
nical feasibility, economics of deployment, and especially an
assessment of the expected side effects (National Research
Council, 2015; Fuss et al., 2018).

The proposed negative emission technologies (NETs) en-
compass highly technical engineering solutions as well as
methods that rely on natural processes, like growth of
biomass (e.g., bioenergy with carbon capture and storage
(BECCS), and afforestation), soil carbon increase, biochar,
and chemical weathering (e.g., Enhanced Weathering (EW)
and ocean liming). As these methods are aimed to be inte-
grated in global biogeochemical cycles and will redistribute
carbon between reservoirs (Keller et al., 2018), their interac-
tion is inevitable if NETs are deployed at the largest scale. As
such, it must be assessed how the co-deployment of NETs
will affect the individual and overall efficiency since until
now publications have focussed generally on single NETs,
disregarding any effects on concurrent deployment of addi-
tional technologies.

Findings from NET-specific literature suggest that assess-
ing the effects of combined NET rollout is advisable and
future research should include CO2-sequestration-enhancing
side effects that could increase the overall potential of NETs.
However, the principal interaction between proposed meth-
ods needs to be studied in detail beforehand to understand
effects on the carbon pools (Fig. 1).

While biomass-based NETs like afforestation and BECCS
are widely discussed, EW is underrepresented in this discus-
sion (Minx et al., 2018). EW relies on the uptake of CO2
via dissolution of minerals based on the natural process of
chemical weathering. EW is facilitated by the application of

Published by Copernicus Publications on behalf of the European Geosciences Union.



2950 T. Amann and J. Hartmann: Synergies from co-deployment of negative emission technologies

Figure 1. Overview of effects from combining land-based negative emission technologies (bioenergy production coupled with carbon capture
and storage, BECCS; afforestation, AFF; Enhanced Weathering, EW; and biochar). The additional CO2 sequestration is a qualitative estimate
based on the author’s personal assessment. Technology symbols courtesy of William Lamb (MCC Berlin).

finely ground rock on (agricultural) land, preferably in ar-
eas with elevated temperatures and rainfall. The resources for
this NET have to be mined and, depending on the type and
scale of rollout, the extraction of material can result in the
creation of extensive mining areas. However, under a sustain-
able approach, affected environments could later be used to
create biodiversity hotspots (e.g., Tropek et al., 2010; Benes
et al., 2003).

It is unavoidable that the intended CO2 sequestration effect
by weathering is naturally accompanied by the release of el-
ements with consequences for the environment (Kantola et
al., 2017) and consequently the involved carbon pools. The
release of elements that are important plant nutrients (e.g.,
potassium, phosphorus, magnesium) can be beneficial for ad-
ditional CO2 sequestration via organic carbon formation. In
addition, the soil hydrology can be improved, and cation ex-
change capacity increased under optimal grain size distribu-
tion and mineral selection. In contrast, effects of potentially
harmful trace element release (by choosing less suitable ma-
terial) might need to be alleviated. However, an integrated
framework to achieve optimization of interrelated effects be-
tween land-based NETs has yet to be developed, specifically
for the global-scale management of carbon pools.

To tackle the issue of climate change with negative carbon
emission strategies on a global and comprehensive scale, it
seems advisable to consider all proposed terrestrial biomass-
based NETs, like BECSS, afforestation, and biochar, to ex-
plore synergistic effects (Fig. 1). A scenario can be envi-
sioned, in which rock powder and biochar are applied to agri-
cultural land, which is used for bioenergy plant production
(for further use in BECSS technology). Rock material would
release geogenic nutrients and biochar could enhance the re-
lease of nutrients (Atkinson et al., 2010) and the overall crop
productivity (Jeffery et al., 2011).

In combination with envisioned and deployed afforesta-
tion efforts, which often take place in tropical areas with
depleted soils (Nilsson and Schopfhauser, 1995; Grainger,
1988; Zomer et al., 2008), rock powder deployment for EW
could be an added, if not essential, benefit. The low capac-
ity of these soils to retain highly soluble industrial fertilizers
suggests the use of other forms of slow release fertilizer, like
rock dust as a complement (Leonardos et al., 1987; Man-
ning, 2015), or new emerging rock-based fertilizers (Ciceri
and Allanore, 2019), which can, as a side effect, increase the
retention of industrial fertilizers, which may still be needed.
The ultimate need for an intense management and design of
a suitable soil to supply suitable conditions for tree growth
can be deduced from a published extreme scenario, which
envisions large-scale afforestation of deserts (Ornstein et al.,
2009).

It seems advisable to combine proposed NET methods
to achieve an optimal carbon pool management for nega-
tive emissions and ensure food security over centuries at the
global scale. To achieve this, interdisciplinary efforts are nec-
essary (Fig. 1) and some of the key issues are reviewed here
to point out the future research directions.

2 Nutrient pool

Increasing atmospheric CO2 concentrations and an increas-
ing world population will lead to challenges in the nutritional
supply for large parts of Earth’s population (Smith and My-
ers, 2018; Myers et al., 2014). In combination with partly
declining resources of natural mineral fertilizers (Manning,
2015, and Sect. S1 in the Supplement), alternative nutrient
supplies, i.e., from rock products, are of high interest (Ci-
ceri and Allanore, 2019). This idea has been discussed earlier
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Figure 2. The averaged relative K and P contents of igneous rocks (middle point: median; whiskers: 10th and 90th percentiles, some cutoff at
extreme ends for better graphic representation), classified by SiO2 content (ultrabasic: < 45 %; basic: 45 %–52 %; intermediate: 52 %–63 %;
acid: > 63 %). The circles indicate their potential to capture CO2. Statistical data are from the GEOROC database (Sarbas, 2008), details in
Sect. S3. Documentation on CO2 capture potential calculation in Sect. S4. A map with the global distribution of all classes is available in
Sect. S5. Basalt and dunite were added separately as reference for commonly discussed rock types.

(van Straaten, 2006, 2002) and was recently revived in the
context of EW (Beerling et al., 2018; Hartmann et al., 2013).
However, this issue extends further, if biomass-based NETs
are considered for large-scale deployment. While nutrients
like P or K are normally supplied via mineral dissolution
in natural systems, nitrogen is in general supplied via fixa-
tion of N from the atmosphere (Graham and Vance, 2000).
In some ecosystems N supply via rocks might be a relevant
source (Houlton et al., 2018; Holloway and Dahlgren, 2002).
In general, and specifically under intensified demand scenar-
ios created by enhanced biomass growth rock, rock N supply
will not keep up with the demand.

Many options of carbon dioxide removal rely on the pro-
duction of biomass (i.e., biochar, afforestation, carbon cap-
ture and storage from bioenergy (BECCS), biofuels). These
carbon dioxide removal (CDR) methods demand, if driven to
an optimum, more geogenic nutrients than typically available
to plants from the soil–rock systems in the long term, specif-
ically in humid, tropical areas, where soils are deeply weath-
ered and show naturally low nutrient contents (Hamdan and
Bumham, 1996) that could not supply an additional intense
biomass growth. A study on commercially exploited forests
in the US points out that intensive harvest can withdraw more
nutrients from the soils than can naturally be resupplied (de
Oliveira Garcia et al., 2018).

The intensive withdrawal of nutrients should be included
in a framework for biogeochemical cycle management under
NET deployment. The withdrawal of K and P from cropland
amounts globally to more than 8 Mt a−1 each (Fig. S2-2). For

many ecosystems the natural resupply and potentially limit-
ing effects under absence of deliberate fertilization practices
are unknown or merely based on meta-analyses or model
studies.

Due to desired global carbon sequestration goals (as in
models for afforestation), growth rates will likely be driven
to the maximum, which implies an increased demand of nu-
trients. Models show that N and P limit the global carbon
sequestration potential for forests (Goll et al., 2012; Kracher,
2017). Nutrient release by EW can therefore play a relevant
role in supporting the high demand. Particular rock classes
contain, on average, higher K, P (Fig. 3), or micronutrients
like Zn or Se, than others. To ensure a balanced supply of the
needed elements, it is therefore necessary to consider more
than one specific rock type during EW application.

Considering a subtropical weathering scenario in combi-
nation with Miscanthus growth for BECCS, acid igneous
rocks show a high potential to (partly) resupply extracted
potassium, while (ultra-)basic rocks can (partly) resupply
phosphorus (Fig. 3). Many earlier studies on EW focussed
on dunite to maximize inorganic CO2 sequestration, with the
side effect of adding high levels of Ni and Cr to the sys-
tem (e.g., Schuiling and Krijgsman, 2006; Hangx and Spiers,
2009). Later, basalt was added to the discussion (Beerling et
al., 2018; Strefler et al., 2018; Hartmann et al., 2013). It is
characterized by an elevated geogenic nutrient supply com-
pared to ultrabasic rocks like dunite (Fig. 3), but still fea-
tures a sufficiently high inorganic CO2 sequestration poten-
tial (Fig. 2, and Strefler et al., 2018). Future application sce-
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Figure 3. Weathering release rates (circles; bars as variability indicator) of P and K from selected rocks (assuming their full dissolution
under a natural subtropical weathering scenario) and extraction of those nutrients by harvesting Miscanthus energy grass (blue and red areas
indicate range between min. and max. nutrient content of different Miscanthus species multiplied by min. and max. yield reported in Brosse
et al. (2012), Tables S2-1 and S2-2). Details on rock dissolution and nutrient release rates in Sect. S6 and on plant nutrient removal and
additional Miscanthus data on major crops in Sect. S2. Dunite values for the 10th percentile were cut off for better overall visibility.

narios will likely use a mixture of locally available material
to optimize both organic and inorganic carbon storage. Opti-
mizing the nutrient composition may come at the price of re-
ducing the inorganic carbon sequestration potential, as some
rock types with high nutrient content have low sequestration
potentials (Fig. 2). If additional soil properties, like cation
exchange capacity, water content/hydrology, and pH, are op-
timized, this reduction of inorganic carbon sequestration may
be compensated for by elevated biomass uptake and organic
carbon storage.

The introduction of additional nutrients to the soil sys-
tem will not necessarily lead to an additional CO2 uptake
and increased CO2 sequestration potentials of biomass-based
NETs, if enough nutrients are supplied by traditional fertil-
ization. However, forest areas may benefit from slow-release
nutrients available long term as they may be less easy to re-
supply on a regular basis by agrotechnical machinery. Also,
industrial fertilizer may be unaffordable in low-income re-
gions; thus rock products could replace parts of the fertilizer
(Ciceri and Allanore, 2019). A wider adoption of rock prod-
uct utilization may also lead to the development of new and
optimized application techniques.

3 Nutrient retention

Nutrients released from industrial fertilizers or from natural
rock products can be taken up by the plant, washed away,
or retained by the properties of the soil. The latter is called
retention capacity and is important to store nutrients in a
plant-available form. It has been shown that the weather-
ing of basaltic material increases the cation exchange ca-
pacity, leading to an increased retention of nutrients (Anda
et al., 2013, 2015). This is especially important for areas in
which nutrients from industrial fertilizer material are quickly
washed out, e.g., from the deeply weathered soils (e.g., Ox-
isols) in tropical regions (Leonardos et al., 1987; Ciceri et
al., 2017). In such settings, it will be favorable to establish
improved soil conditions with optimized nutrient retention.

Another application case is the fertilization of forests,
specifically in areas which are reforested after agricultural
use. With increasing atmospheric CO2 concentrations, an in-
crease in biomass productivity in nonagricultural areas is ex-
pected through the CO2 fertilization effect (e.g., Ciais et al.,
1995; Körner et al., 2007; Norby and Zak, 2011), especially
with regard to afforestation efforts and general tree growth.
This effect has yet to be clearly shown (Leuzinger et al.,
2011), and is likely limited by soil fertility (Oren et al., 2001;
Bader et al., 2013). It can already be observed that nutrient
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supply by rock weathering, specifically P, K, Mg, and Ca,
can be the limiting factor of tree growth under elevated at-
mospheric CO2 (Jonard et al., 2015). Woodland soils might
be amended with selected minerals or rocks to supply suffi-
cient nutrients to keep up growth under elevated atmospheric
pCO2 conditions and organically bind carbon, a scenario that
should be explored further for its potential to enlarge affected
carbon pools. At some point, depending on the environmen-
tal setting, biomass growth will be limited by nutrient supply
and as such, model outputs for CO2 sequestration potentials
of afforestation are likely to be overestimated, if geogenic
nutrient cycles are not included in the assessment, as Goll
et al. (2012) have shown, for example, for the C, N, and P
cycles using a model.

The CO2 sequestration effect of afforestation is even larger
if soil organic carbon changes are taken into consideration:
depending on the underlying lithology, the organic carbon
pools can be increased (Li et al., 2017), a process that may
be optimized by the spreading of selected rock products.

Overall, specific element deficits in soils need to be
mapped, since they can also affect the plant content of valu-
able, if not essential, elements for human nutrition (Zhang et
al., 2017; Hengl et al., 2017; White and Zasoski, 1999). It is
necessary to be able to predict which application amounts of
elements causes a certain response in the biomass pool above
and below ground. Such data are still scarce and inconclusive
(Manning, 2010) but are needed if EW should be used as a
method to help manage carbon and nutrient pools.

Biochar is another NET that has a beneficial effect on
the retention of nutrients (Fig. 1). Due to its large surface
area and increased cation exchange capacity, nutrients can
be sustainably retained in soils (Lehmann, 2007; Liang et
al., 2006), effectively saving applied fertilizer (Laird et al.,
2010).

Increased nutrient retention may increase the overall CO2
sequestration potential of biomass-based NETs through the
long-term availability of nutrients. However, the order of
magnitude of the effect remains to be shown.

4 Soil hydrology

The availability of water is essential for high crop yields
(Rockstrom et al., 2007), and soil hydraulic properties fun-
damentally steer the availability of water to plants (Bodner et
al., 2015; Pinheiro et al., 2019). The soil hydraulic conduc-
tivity is a measure of how easily water can percolate though
the soil column. It depends largely on the grain size distribu-
tion of the soil. Roughly, coarse (sandy) soils have a higher
hydraulic conductivity than fine (clayey) soils (Rawls et al.,
1982). Spreading large amounts of rock products with very
small grain sizes (silty to clayey) on land potentially leads to
a decrease in soil hydraulic conductivity, which may lead to
decreased weathering speeds due to local pore water oversat-
uration or enhanced surface runoff. However, there are some

indications that the addition of biochar can be used to con-
trol hydraulic conductivity (Masiello et al., 2015; Barnes et
al., 2014), which could enable the use of smaller grain sizes
for EW, enhancing its potential, which strongly depends on
the grain size (Strefler et al., 2018).

As another hydraulic property, the water holding capacity
determines how much water is kept in the soils and poten-
tially is available to plants. This parameter becomes increas-
ingly important with more frequently appearing droughts due
to climate change (Kang et al., 2009). Biochar could be used
to improve the water holding capacities of soils (Omondi et
al., 2016; Liu et al., 2017), and also increase the plant avail-
able water in some cases (Masiello et al., 2015). This may
render dryer regions or areas with unfavorable soil physical
properties (Basso et al., 2013) usable for bioenergy plants
and/or afforestation. There are also indications that improve-
ment of soil hydrology by biochar may increase yield poten-
tials (Akhtar et al., 2014; Xu et al., 2015; Al-Wabel et al.,
2018).

It is important to point out that all potential changes in
soil physical properties due to biochar application strongly
depend on its type, more specifically the feedstock and pro-
duction temperature (Gul et al., 2015). The combination of
rock product and biochar application, however, was not ad-
dressed in previous research at all but may provide relevant
potential to increase and maintain soil carbon.

5 Soil pH

Soil pH steers the availability of elements to plants (Kabata-
Pendias, 2010; Loomis and Morris, 1983). At pH values well
below 7, nutrients become less available to plants and po-
tentially harmful trace metals are successively mobilized.
Nitrogen-fixing bacteria are also depending on a specific
pH (Graham and Vance, 2000). Soil acidification on heavily
used cropland is a problem (Helyar and Porter, 1989), which
may lead to a decrease in crop yields. The main reason is
the higher mobility of most exchangeable metals at low pH,
which decreases logarithmically with increasing pH (Kabata-
Pendias, 2010; Robinson et al., 1996; Tack et al., 1996; Har-
ter, 1983). Levels of pH 6 and higher generally ensure very
low levels of exchangeable harmful metals, with the excep-
tion of arsenic, depending on the oxidation state (Dixit and
Hering, 2003). The release of base cations from rock flour
leads to a soil pH increase. Studies have demonstrated the
effectiveness of basalt powder application in raising the soil
pH up to 8 and higher (e.g., Gillman et al., 2001; Nunes et
al., 2014). The effect is similar to agricultural liming, which
is a common practice to counteract soil acidification on crop-
land (West and McBride, 2005). Despite the fast dissolution
rate of carbonate minerals, they have in general, until today,
not been considered for EW scenarios, because of possible
carbonate precipitation and subsequent CO2 release in the
ocean (Hartmann et al., 2013) or due to the potential release
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of CO2 by excess fertilizer application (Semhi et al., 2000;
Perrin et al., 2008). The potential of carbonates in EW strate-
gies remains to be studied, while silicate application is the
focus of recent research (Taylor et al., 2015). It could be a
potential economic benefit to replace agricultural lime with
silicate rock flour, bearing in mind that silicate dissolution
rates are in general several orders of magnitude lower, with
strong variability between different minerals (Lasaga, 1995;
Brantley et al., 2008). Thus, the efficacy is decreased due to
the slower release rate of cations, but other properties like
nutrient retention or soil hydrology might be improved (see
Sect. 4). It remains to be investigated how (fast) the termina-
tion of pH-stabilizing silicate rock powder application will
affect the soils. If relatively immobile potentially harmful
metals accumulate at elevated pH values over the application
period, an excessive and harmful release of toxic substances
might occur in case of a future drop of pH due to changes in
pH-controlling minerals, land use, or general environmental
conditions. Once the deployment of material rich in trace el-
ements of concern is started, it is obligatory to maintain a sta-
bilized pH environment, strengthening the need for material
with low harmful trace element concentrations (requirements
may differ depending on ecosystem type).

Assuming that pH stabilization and beneficial changes in
soil hydrology (see previous section) are achievable with
biochar and EW, a significant additional CO2 uptake can
be expected, based on the fact that soils that could not sup-
port sustainable biomass growth before are made usable for
biomass-based NETs.

6 Soil biota

Chemical weathering of rocks can be significantly mediated
by macro- and microbiota (Schwartzman and Volk, 1989;
Uroz et al., 2009; Hoffland et al., 2004; Blouin et al., 2013),
although the order of magnitude is a matter of debate (Drever,
1994). This is specifically the case for mycorrhizal fungi and
microbes, which create physicochemical conditions that ac-
celerate the dissolution of minerals (Taylor et al., 2015). The
weatherability of minerals depends on the type of bioinoc-
ulant (Nishanth and Biswas, 2008; Benzerara et al., 2005;
Cuadros, 2018), implicating that a supervision and manage-
ment of the soil microbiota is necessary to optimize both crop
yields and rock weathering. Microbial populations in soils
respond to the addition of biochar (Warnock et al., 2007)
by providing a refuge for bacteria and fungi (Pietikainen et
al., 2000; Saito, 1990), increasing nutrient availability, creat-
ing favorable pH conditions, and other processes discussed
in Lehmann et al. (2011).

Earthworms have been observed to thrive in biochar-
amended soils (Topoliantz and Ponge, 2005). Increased
abundance of earthworms will likely increase bioturbation
effects (Carcaillet, 2001; Major et al., 2010), leading to a
better distribution of biochar and rock flour in deeper lay-

ers of the amended soils, increasing reactive surfaces of
mineral grains. Bioturbation might also be a key process
to achieve high CO2 sequestration rates by weathering, as
earthworms can enhance mineral weathering (Carpenter et
al., 2007, 2008) and contribute to the downward transport
of added rock products into deeper soil layers (Taylor et al.,
2015).

7 Trace metals

Soils are an important sink in the environmental cycling of
trace metals (Kabata-Pendias, 1993). In addition to natu-
rally occurring concentrations, depending on the underlying
lithology, the major source of trace metals to soils is agricul-
tural practice, leading to an enrichment due to the application
of manure, sewage sludge, fertilizers, and pesticides, which
all contain metals to a certain extent (Gonnelli and Renella,
2013). Field studies using sewage sludge as fertilizer have
shown a marked uptake by the crops and increased mobi-
lization of trace metals in the runoff water (Alloway, 2013).
Adding to the anthropogenic input, the introduction of ad-
ditional rock products with elevated levels of trace metals
(Fig. 4) could lead to a critical exceedance of environmental
thresholds if improper rock material is used due to inconsid-
erate management. This, however, relates to the solubility of
minerals within the used rock type and the redox and pH con-
ditions. An EW soil incubation experiment using an olivine-
rich rock product, with elevated Ni and Cr concentrations in
the source material (Fig. 4), showed only a few occurrences
of elevated Cr levels but no Ni increase in the aquatic solu-
tion compared to a blank treatment, leading to the conclusion
that the soil solid phase will be successively enriched in those
elements (Renforth et al., 2015).

The availability of heavy metals to biota remains an issue
of ongoing discussion (Nagajyoti et al., 2010). The main ele-
ments of concern in source rocks with the highest sequestra-
tion potential (ultramafic rocks) are Ni and Cr. In particular
the earlier discussed dunite application for EW must trigger
discussion about its high Cr and Ni contents (Fig. 4) and is
therefore ruled out for large-scale application on cropland.

If an application with rocks of high trace metal concen-
trations of concern is considered, it is necessary to stabilize
the soil pH even after cessation of such actions in order to
maintain the fixation of toxic elements because of the strong
pH control on metal mobility. A study of long-term sewage
sludge application has shown that the pH had to be stabi-
lized by liming in order to prevent phytotoxicity of Cu and
Zn (McBride et al., 2004). Additionally, the metal availabil-
ity to plants has been shown to be influenced by the soil tex-
ture, with marked differences for different elements (Qian et
al., 1996). This underlines the necessity to control or specif-
ically design the grain size distribution of the soil to control
water content, pH, and oxygen content. To further amelio-
rate the issue, biochar, which has been shown to immobilize
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Figure 4. Contents of Ni and Cr in igneous rocks, classified by SiO2 content (see Fig. 2). Circles indicate median values; whiskers are the
10th and 90th percentiles. Extreme values of percentiles were cut off for better visibility of data. The inset shows a visualization of dunite as
it features extremely high values. For detailed statistics, see Sect. S7.

heavy metals in soils, depending on feedstock and produc-
tion conditions (Ahmad et al., 2014; Beesley et al., 2011),
could be jointly applied with rock powder. This would mean
that potential limitations of fertilizer or rock spreading due
to thresholds put in place for environmental protection could
be overcome by a sensible management of biochar utiliza-
tion. Applying biochar products does not remove elements
of concern, but the problem of heavy metal accumulation
could be dampened by bioremediation through heavy-metal-
accumulating plants (Rajkumar et al., 2012). This in turn
could be a potential new source of raw material for indus-
trial use (Schuiling, 2013), though it is likely not applicable
on a global scale since this would compete against food and
energy plant production, which is already an issue (Tilman et
al., 2009).

The alleviation of trace metal effects does not directly af-
fect CO2 sequestration rates but could overall increase po-
tential deployment areas for EW.

8 Conclusion

Looking forward it is likely that a portfolio of options will
be established to optimize the sequestration effect and mini-
mize negative impacts. The combination of previously sepa-
rately studied NETs to increase the sequestered carbon pool
should consider the management of biogeochemical cycles
and optimize the combined application of Enhanced Weath-
ering and biochar in the context of biomass-based methods
like BECCS and afforestation to maximize carbon capture as
well as food production. It is therefore essential to address
combined effects of NET co-deployment in future research
projects.

As all presented interactions take place in the soil, future
research should put a focus on creating an optimized soil
product for optimal long-term sustainable carbon manage-
ment. We propose that research around biomass-based NET
interactions becomes the science of artificial soil products,
which are most likely created on depleted and degraded soils,
especially in the (sub)tropics. It may consist of the locally
available “base soil” mixed with biochar products to enhance
hydraulic properties and nutrient retention, as well as rock
powder, which raises the soil pH, provides nutrients, and se-
questers CO2 at the same time. This engineered and man-
aged soil could increase carbon pools and crop production,
while contributing to tackle the issue of climate change. It
remains to be studied where suitable material is available at
the regional scale (Sect. S5). The parameterization of ele-
ment release rates permitting a sustainable management is
still subject to large uncertainties and the effects of massive
rock product spreading will change the soil structure to an
extent that remains to be explored.

The introduction of non-authigenic material into the en-
vironment, even if of bio- or geogenic origin, will increase
the entropy of the system, making it difficult and expensive
(from the viewpoint of energy and economics) to quickly re-
vert back into the “undisturbed” state once large-scale de-
ployment has started. Thus, the continuous deployment of
NETs at the global scale at an order of magnitude that would
measurably impact atmospheric CO2 levels must be seriously
weighed. However, the high probability of NET adoption in
the near future makes it imperative to create efficient coop-
eration networks across all involved disciplines in order to
conceive the necessary knowledge on actual CO2 sequestra-
tion potentials and century-scale global carbon pool changes.
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