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Abstract. During the last decade, carbon cycle data assim-
ilation systems (CCDAS) have focused on improving the
simulation of seasonal and mean global carbon fluxes over
a few years by simultaneous assimilation of multiple data
streams. However, the ability of a CCDAS to predict longer-
term trends and variability of the global carbon cycle and the
constraint provided by the observations have not yet been as-
sessed. Here, we evaluate two near-decade-long assimilation
experiments of the Max Planck Institute – Carbon Cycle Data
Assimilation System (MPI-CCDAS v1) using spaceborne es-
timates of the fraction of absorbed photosynthetic active ra-
diation (FAPAR) and atmospheric CO2 concentrations from
the global network of flask measurement sites from either
1982 to 1990 or 1990 to 2000. We contrast these simulations
with independent observations from the period 1982–2010,
as well as a third MPI-CCDAS assimilation run using data
from the full 1982–2010 period, and an atmospheric inver-
sion covering the same data and time. With 30 years of data,
MPI-CCDAS is capable of representing land uptake to a suf-
ficient degree to make it compatible with the atmospheric
CO2 record. The long-term trend and seasonal amplitude of
atmospheric CO2 concentrations at station level over the pe-
riod 1982 to 2010 is considerably improved after assimilating
only the first decade (1982–1990) of observations. After 15–
19 years of prognostic simulation, the simulated CO2 mix-
ing ratio in 2007–2010 diverges by only 2± 1.3 ppm from
the observations, the atmospheric inversion, and the MPI-
CCDAS assimilation run using observations from the full pe-

riod. The long-term trend, phenological seasonality, and in-
terannual variability (IAV) of FAPAR in the Northern Hemi-
sphere over the last 1 to 2 decades after the assimilation were
also improved. Despite imperfections in the representation of
the IAV in atmospheric CO2, model–data fusion for a decade
of data can already contribute to the prognostic capacity of
land carbon cycle models at relevant timescales.

1 Introduction

The observed contemporary increase in atmospheric CO2 is
driven by anthropogenic emissions from fossil fuels, land use
change (2007–2016 average: 11.1± 0.6 GtC yr−1), and the
concurrent net carbon uptake of the ocean and land from the
atmosphere, which take up approximately 22.4 % and 28 %
of the anthropogenic flux, respectively. Despite recent ad-
vances in atmospheric observations and ocean and land mod-
eling, there is an imbalance of 5.6 % (0.6 GtC yr−1) between
the ocean and land sinks, carbon emissions, and changes in
the atmospheric CO2 concentration (Le Quéré et al., 2018).
Throughout past decades, notable progress has been made to
improve the performance of terrestrial biosphere models, but
the simulated global terrestrial carbon fluxes and the net land
carbon balance still have the highest uncertainties from all of
the components of the global carbon cycle (Friedlingstein et
al., 2014; Le Quéré et al., 2018). Quantifying the magnitude
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and dynamics of the global terrestrial carbon cycle across dif-
ferent temporal scales, and their contribution to the global
carbon cycle, is challenging because the substantial hetero-
geneity and complexity in land ecosystems and challenges
in the quantification of contemporary effects and response of
these ecosystems to increasing postindustrial CO2 concentra-
tions (Lienert and Joos, 2018; Stocker et al., 2014; Wang et
al., 2017).

One strategy to reduce the mismatch between carbon
flux predictions from land surface models and measured at-
mospheric CO2 concentrations is through data assimilation
(DA) techniques, meaning to “train” the land models by con-
fronting them systematically with observations of carbon-
related variables (Raupach et al., 2005). During DA, pro-
cess parameters of land surface models are adjusted through
numerical minimization techniques to reduce the misfit be-
tween model results and actual observations under consid-
eration of the statistical properties of both data sets. While
atmospheric transport inversions are a method used to in-
fer the sinks and sources of CO2 between the atmosphere
and land, or ocean, from atmospheric CO2 measurements
(Newsam and Enting, 1988; Peylin et al., 2013; Rayner et
al., 1999; Rödenbeck et al., 2003), the application of car-
bon cycle data assimilation systems (CCDASs) provides ad-
ditional opportunities. In CCDAS, the process-based carbon
cycle mechanisms in land surface models are informed with
measurements to support a better estimate of the terrestrial
carbon cycle, and improve the capacity to project its dynam-
ics. With this purpose, several CCDASs have been devel-
oped in the past (e.g., Kaminski et al., 2012, 2013; Lienert
and Joos, 2018; Peylin et al., 2016; Scholze et al., 2016).
The difference among some of these models is the varia-
tional or sequential statistical approach they follow during
the data assimilation process (Montzka et al., 2012). A com-
mon characteristic in these models is their capacity for inte-
grating long-term and time-consistent globally available ob-
servational records related to the carbon cycle such as atmo-
spheric CO2 measurements from flask and in situ networks
(Conway et al., 1994), as well as remote-sensing products of
canopy phenology properties such as MODIS NDVI (Mod-
erate Resolution Imaging Spectroradiometer – Normalized
Difference Vegetation Index) (Rouse et al., 1974) and FA-
PAR (Disney et al., 2016; Pinty et al., 2011a).

Previous studies have analyzed the prognostic capability
of the data assimilation systems (e.g., Rayner et al., 2011,
2005; Scholze et al., 2007; Schürmann et al., 2016), but only
for a few years of prognosis after the assimilation. Scholze et
al. (2007) concluded that the CCDAS built around BETHY
(Biosphere Energy Transfer Hydrology) is capable of pro-
viding a prognostic period of 4 years (2000–2003) of at-
mospheric CO2 after data assimilation of 21 years (1979 to
1999) of CO2 concentrations. Schürmann et al. (2016) dis-
cussed the prognosis capability of the Max Planck Institute –
Carbon Cycle Data Assimilation System (MPI-CCDAS v1)
for 2 years after a short assimilation period of 5 years. Rayner

et al. (2011) showed that the uncertainty related to model pa-
rameters during the prediction of CO2 fluxes with a CCDAS
is considerably reduced when the model parameters are con-
strained with 2 decades of atmospheric measurements; how-
ever, these results were obtained with a model that ignores
the interacting effects of water, energy, and phenology on the
carbon cycle predictions.

The overarching aim of this work is to understand the abil-
ity of the MPI-CCDAS v1 to make decadal projections of the
land C cycle when the assimilation is confronted with dif-
ferent temporal windows from two observational constraints:
FAPAR from remote-sensing data and atmospheric CO2 con-
centrations from the global flask measurement network. For
this, we present 3 decades of modeled land carbon fluxes
with the MPI-CCDAS and investigate the effect of withhold-
ing information from recent decades in the projected carbon
fluxes and the ability of the model to reproduce the observa-
tions during the period of data assimilation. We also analyze
trends and seasonal variations in the simulated signals during
the periods of the assimilation and compare to independent
results to evaluate the model performance. With these results,
we gain insights into the number of observations (in terms of
decadal scale) necessary in data assimilation systems to im-
prove the representation of the global terrestrial carbon cycle
components. These results open the possibility of including
newly measured data in CCDAS that are only available for
periods of less than a decade.

2 Methods

2.1 MPI-CCDAS

The MPI-CCDAS was built around the Jena Scheme
Biosphere-Atmosphere Coupling in Hamburg (JSBACH)
land surface model (Dalmonech and Zaehle, 2013; Raddatz
et al., 2007; Reick et al., 2013) and follows a variational ap-
proach that simultaneously reduces the model–data misfit for
multiple independent carbon cycle data sets (Kaminski et al.,
2013). Since its first development based on the BETHY –
CCDAS, the MPI-CCDAS has undergone several code mod-
ifications and improvements, as well as tests of the assimi-
lation of new observational data sets (e.g., Kaminski et al.,
2012, 2013; Rayner et al., 2005; Scholze et al., 2016; Schür-
mann et al., 2016), with the aim of further improving the
representation of land carbon fluxes. The history of the MPI-
CCDAS and other current CCDASs is extensively discussed
in Scholze et al. (2017).

The code of the MPI-CCDAS version in this work is iden-
tical to the one used in Schürmann et al. (2016). The model
calculates the half-hourly storage and surface fluxes of en-
ergy, water, and carbon in terrestrial ecosystems at coarse
spatial resolution (8◦× 10◦ grid) (Fig. 1). This horizontal
resolution allows computational feasibility and a realistic
computational cost for the set of experiments presented in
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this work. Furthermore, previous evidence has shown that a
higher spatial resolution in global vegetation models does not
exert a considerable influence in the simulated carbon fluxes
at global or regional scales when compared to results ob-
tained with a coarse grid (Müller and Lucht, 2007). The lack
of influence to improve the simulated global C fluxes due to
changes in the model spatial resolution might also apply to
CCDAS (Peylin et al., 2016).

The spatial distribution of the different plant functional
types (PFTs) in JSBACH is shown in Fig. S1 (Supplement).
The selected parameters for the assimilation procedure and
their prior and range of values were based on Schürmann et
al. (2016), where an extensive sensitivity study led to retain-
ing those parameters with a substantial effect on the sim-
ulated carbon and water fluxes, as well as on phenology.
The majority of the selected parameters for the optimiza-
tion are linked to phenology, but there are also parameters
related to photosynthesis and global parameters that control
the land carbon turnover during the assimilation. The final
list of parameters together with their initial value obtained
from an independent forward simulation of JSBACH 3.0 (see
Sect. 2.3.1) are shown in Table 1.

The MPI-CCDAS starts with an initial guess for the model
control vector (ppr) of carbon cycle properties, model states,
and their Gaussian uncertainty (“prior”) with covariance Cpr.
The model control vector p is iteratively updated to minimize
a joint cost function J (Eq. 1) describing the misfit between
observational data streams (d; FAPAR and atmospheric CO2,
both with covariance Cd ) and the corresponding simulated
observation operators of the MPI-CCDAS M(p), taking into
account the uncertainties in the observational data assuming
a Gaussian distribution and the information from the prior.

J (p)=
1
2
(M (p)− d)TC−1

d (M (p)− d)

+
(
p−ppr

)T
C−1

pr
(
p−ppr

)
(1)

During the optimization procedure, a new model trajectory
is determined in each iteration (i.e., in every cycle when
the model recalculates the cost function for the difference
between the model parameters and the observational con-
straint), such that energy and mass are conserved through the
entire assimilation window (Kaminski and Mathieu, 2017).
The gradient of the cost function with respect to the model
control vector ( ∂J

∂p
) is evaluated with a tangent-linear ver-

sion of JSBACH 3.0, which was generated through automatic
differentiation using a TAF (transformation of algorithms in
Fortran) compiler tool (Giering and Kaminski, 1998). With
this tangent-linear version of the model code, the derivatives
for the parts of the model code where J (p) is evaluated (i.e.,
code parts that depend on the control variables) are accu-
rately calculated following the chain rule of calculus. Thus,
the mathematical formulation of the code involved in the cost
function must be differentiable. Since this was not the case
for the phenological code of JSBACH 3.0, the phenology Ta
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Figure 1. Global distribution of the temporal mean (1982–2006) of the merged satellite FAPAR product used in the assimilation procedure.
It also shows the spatial coverage of eight regions globally distributed: boreal west and east (BW and BE, for latitudes north of 60◦ N),
temperate northwest and northeast (TNW and TNE, between latitudes 20 and 60◦ N); tropical west and east (TW and TE, between latitudes
20◦ N and 20◦ S); temperate southwest and southeast (TSW and TSE, for latitudes south of 20◦ S). Also shown are the six selected pixels:
P1, for the coniferous deciduous (CD) phenotype in the East Siberian Taiga; P2, for the C4 pastures, and grasses (TrH) of central Brazil;
P3, for the C3 and C4 crops, pastures and grasses (TeCr and TeH) of the northern USA; P4 and P5, for tropical evergreen trees (TrBe)
situated in northwestern Brazil and central Africa; and P6, for coniferous evergreen (CE) located in Canada. The location of 28 stations of
the CO2 network measurements (filled triangles, stations only included in DEC1; empty triangles, stations included also in ALL and DEC2)
for analysis of the assimilation results are also included.

scheme was updated following Knorr et al. (2010), where the
minimum and maximum calculations in the entire code were
replaced by smoothing functions to avoid abrupt transitions
(Schürmann et al., 2016).

2.2 Observational data sets

2.2.1 FAPAR

The fraction of the radiation that is absorbed by plants dur-
ing photosynthesis (FAPAR) is a component of the land sur-
face radiation budget that dynamically indicates the status of
the vegetation canopy over space and time (Gobron et al.,
2006). In a previous study, MPI-CCDAS was constrained by
MODIS TIP (Two-Stream Inversion Package) FAPAR (here-
after TIP-FAPAR) generated from the inversion of a 1-D ra-
diation transfer model (Pinty et al., 2006, 2007) using the
MODIS broadband visible and near-infrared spectral white
sky surface albedo as input (Clerici et al., 2010; Pinty et al.,
2011a, b). For this study, the TIP-FAPAR product was avail-
able only from 2003 to 2011, making it unsuitable for the
indented longer assimilation period. While there are long-
term remotely sensed proxies of FAPAR, such as the NDVI
(Rouse et al., 1974), it has been found previously that NDVI

was less reliable than TIP-FAPAR in terms of the seasonal
cycle amplitude of vegetation seasonality (Dalmonech and
Zaehle, 2013; Dalmonech et al., 2015). Therefore, we used
as FAPAR proxy the Global Inventory Monitoring and Mod-
eling System (GIMMS) NDVI product for the period 1982
to 2006 (Tucker et al., 2005), and merged it with the TIP-
FAPAR product to provide a longer record of vegetation
greenness. The maximum and minimum NDVI values were
rescaled at the pixel level to coincide with those from the
TIP-FAPAR for the overlapping periods (i.e., 2003 to 2006)
following

FAPARmod =
NDVI−NDVImin,x

NDVImax,x −NDVImin,x

×
(
TIPmax,x −TIPmin,x

)
+TIPmin,x, (2)

where x is the period from 2003 to 2006 for each data set,
and NDVI is the full NDVI product from 1982 to 2006, with
minimum values given by NDVImin and maximum values by
NDVImax. TIPmin and TIPmax are the corresponding mini-
mum and maximum values from the TIP-FAPAR product.
With this approach, the resulting merged product maintains
the maximum and minimum values from TIP-FAPAR while
preserving the temporal dynamics of NDVI. The median un-
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certainty of the available TIP-FAPAR data was considered to
be the uncertainty for the entire time series. Due to a tech-
nical failure in the MPI-CCDAS, the final FAPARmod prod-
uct used in the assimilation procedure only spans from 1982
to 2006 and the last 4 years from the TIP-FAPAR product
were not considered. For this study, this product was aggre-
gated to match the model grid horizontal resolution consider-
ing background snow-free and snow-covered conditions sep-
arately (Schürmann et al., 2016).

To discard pixels in the global FAPAR data that might lead
to bias during the assimilation procedure, we applied a mask
to the global FAPAR grid following three criteria. (1) We
masked out the grid cells with crop-dominating phenology
of > 20 % since no explicit crop phenology is described in
JSBACH. This step has consequences in areas where other
relevant functional types are also present in the same grid
cells, such as deciduous broadleaves that are also abundant
in the USA and Europe. As a result, the parameters related
to deciduous broadleaves are constrained from other loca-
tions; (2) we further masked out pixels that hold a low corre-
lation (R2 < 0.2) when the prior model results are compared
to the observations, as we had previously found that the MPI-
CCDAS is incapable of correcting such poor model behav-
iors (Schürmann et al., 2016). Finally, (3) we masked out pix-
els located in areas where phenology abundance is low, i.e.,
deserts, because they would influence the optimization caus-
ing significant bias due to global compensating effects. The
final FAPAR product used during the assimilation contains
40 % of the original number of pixels after the applied mask,
resulting in more pixels distributed in the Northern Hemi-
sphere compared to the southern areas. These observational
data will be referred to hereafter as FAPARobs (see Fig. 1
for the global distribution of mean FAPARobs from 1982 to
2006).

2.2.2 Atmospheric CO2 concentrations and
observation operator

Measurements of atmospheric CO2 mixing ratios were taken
from the flask data continuous record of 28 sites in the
NOAA CMDL station network (Conway et al., 1994; Röden-
beck et al., 2003). The selection criteria included the length
of the record (on average 19 years) (Fig. A1 in Appendix A)
and focused on remote and ocean stations with low impact
of local carbon sources and sinks of carbon (Schürmann et
al., 2016) (see the location of CO2 stations in Fig. 1). In
the MPI-CCDAS, the atmospheric transport of CO2 is cal-
culated by integrating the simulated half-hourly net CO2
fluxes to monthly values followed by the transport calcu-
lation with the Jacobian representation of the atmospheric
transport model TM3 that is driven with meteorology fields
from NCEP (National Centers for Environmental Prediction)
reanalysis (Heimann and Körner, 2003; Rödenbeck et al.,
2003). During the generation of the monthly transport ma-
trices, the precise sampling time of flask measurements as

well as the 3-hourly atmospheric transport was considered to
minimize the representation error due to short-term fluctu-
ations in atmospheric transport and to minimize the impact
of synoptic atmospheric transport variability on the simu-
lated seasonal and long-term dynamics of atmospheric CO2
at the monitoring stations. Through this approach, the non-
linear effect of weather anomalies on the surface fluxes were
also taken into account. TM3 runs at horizontal “fine grid”
(fg) resolution of 4◦× 5◦. Due to computational demands, it
is not possible at this stage to use the MPI-CCDAS at the
same fine grid resolution as in the TM3. The treatment of
uncertainties is performed in the same way as in the TM3 at-
mospheric inversion (Rödenbeck et al., 2003) but imposing a
floor value of 1 ppm on the uncertainties (Rayner et al., 2005)
to allow a range for the comparison to the observational op-
erator.

We also compare the fluxes from the assimilation to fluxes
obtained from an atmospheric transport inversion (referred
to as INV). Similar to the MPI-CCDAS, the atmospheric
transport inversion is constrained by atmospheric CO2 data
linked to surface fluxes through a tracer transport model,
but the land surface CO2 fluxes are adjusted directly rather
than through changes in the parameters of a land surface pro-
cess model. The inversion setup used in this study is simi-
lar to Jena CarboScope v4.1 (Rödenbeck, 2005; Rödenbeck
et al., 2003), involving the same TM3 model as in the MPI-
CCDAS. To make the inversion results as comparable as pos-
sible to those from the MPI-CCDAS, we used in the inversion
the same prior fluxes from fossil fuel emissions and ocean
(Sect. 2.2.3), as well as the same CO2 stations. This compar-
ison also helps to gauge the impact of non-land surface fluxes
on the ability to reproduce the observations.

2.2.3 Background carbon fluxes

To account for the total carbon balance during the compar-
ison between the land fluxes from MPI-CCDAS and atmo-
spheric concentrations, it is necessary to include background
carbon fluxes (i.e., from fossil fuel emissions, use and change
of land cover, and the ocean).

Land use and land cover change (LULCC). The LULCC
fluxes were obtained from a transient simulation carried out
with the JSBACH 3.0 forced with prescribed annual maps of
modified cover fractions (Hurtt et al., 2006). These fluxes do
not consider disturbances such as fluxes from fires.

Fossil fuel (FF) emissions. The FF emissions used for
this work are the result of a merged product from vari-
ous data sets to complete a long record of emissions, i.e.,
1980 to 2012. This product was prepared for the GEOCAR-
BON project (http://www.geocarbon.net, Version 3, last ac-
cess: June 2014) by Philippe Peylin after merging and har-
monizing various data sets: (1) for the period 1980 to 1989,
the CDIAC (Carbon Dioxide Information Analysis Center;
http://cdiac.ess-dive.lbl.gov/, last access: May 2013) product
prepared for the CMIP5 exercise (Andres et al., 2013, 2011,
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1996); (2) for the period 1990 to 2009, the IER-EDGAR
(Institute of Energy and Rational use of Energy, Stuttgart,
Germany – Emission Database for Global Atmospheric Re-
search; http://www.carbones.eu/wcmqs/project/, last access:
May 2013) product where the FF emissions are constructed
using the EDGAR v4.2 data set (http://edgar.jrc.ec.europa.
eu/overview.php?v=42, last access: May 2013) and com-
pleted with profiles for different countries, emission sec-
tors, and time zones available for different temporal resolu-
tions; and (3) for the period 2010 to 2012, the CarbonTracker
product derived at the NOAA Climate Monitoring and Diag-
nostics Laboratory (CMDL; https://www.esrl.noaa.gov/gmd/
ccgg/carbontracker/, last access: May 2013).

Ocean fluxes. Two products were merged to account for
the oceanic CO2 fluxes: (1) results from the Jena CarboScope
v3.4 for the period between 1990 and 2007 (Rödenbeck et
al., 2013) (http://www.bgc-jena.mpg.de/CarboScope/?ID=s,
last access: June 2015) and (2) annual ocean fluxes from the
Global Carbon Budget 2014 (Le Quéré et al., 2015) (http://
cdiac.ess-dive.lbl.gov/GCP/carbonbudget/2014/, last access:
June 2015). The ocean fluxes for monthly resolution follow
Takahashi et al. (2002), and the spatial distributions follow
Mikaloff Fletcher et al. (2006).

2.3 Experimental setup

2.3.1 Spin-up and preparation of initial files

The MPI-CCDAS was forced with meteorology from CRU-
NCEP (the Climate Research Unit from the University of
East Anglia, analysis of the NCEP reanalysis atmospheric
forcing) version 6.1, available at daily resolution from 1901
to 2014 and a spatial resolution of 0.5◦ (Viovy and Ciais,
2015). The atmospheric forcing fields (i.e., wind speed,
air temperature, precipitation, downward short- and long-
wave radiation, and specific humidity) were remapped to the
coarse (8◦× 10◦) model grid. Prescribed annual means (one
annual global mean value) of atmospheric CO2 were also
included as part of the forcing fields for the model (https:
//www.esrl.noaa.gov/gmd/ccgg/trends/global.html, last ac-
cess: July 2015).

Before the assimilation experiments, the JSBACH 3.0
model was spun up to equilibrium of the vegetation and soil
carbon pools with 1901 atmospheric CO2, land cover, and
1901–1910 climate. The spin-up procedure was performed
for a model period of 1000 years with repeated cycles of at-
mospheric forcing data. After this period, a transient model
simulation was also performed with JSBACH 3.0 for the
period 1901 to 2012. This transient simulation included a
change in atmospheric CO2, climate, and land cover. The
purposes of this simulation were (i) to obtain the initial con-
ditions for the CCDAS experiments and (ii) to derive spa-
tially resolved land use emissions from a JSBACH 3.0 simu-
lation as additional forcing (see Sect. 2.2.2). Due to technical
limitations, the cover fraction of each PFT is kept constant

in MPI-CCDAS during data assimilation, and thus remained
fixed through the simulation period to account for the imprint
of the space-time dynamics of land use change emissions
on atmospheric CO2 concentrations. After the spin-up pro-
cedure, an initial global scaling factor was set for the slowly
varying carbon pool (fslow, also selected as optimization pa-
rameter) to account for non-steady-state conditions at the be-
ginning of the assimilation (Carvalhais et al., 2008; Schür-
mann et al., 2016).

2.3.2 Assimilation experiments

During the assimilation procedure, the model was forced
with the same daily reanalysis atmospheric data used dur-
ing the model spin up. In this study we present the results of
three long-term experiments using the MPI-CCDAS, which
differ in the timeframe of the observational records used dur-
ing the assimilation: (1) ALL covers data in 1980–2010 and
includes the complete available timeframe of the two obser-
vational data sets, i.e., for FAPAR from 1982 to 2006 and
for the atmospheric CO2 concentrations from 1982 to 2010;
(2) DEC1 covers observations from the two data sets avail-
able from 1982 to 1990; and (3) DEC2 covers measurements
available from the two data sets from 1990 to 2000 (Fig. A2).
Because of the different lengths of the CO2 records for some
stations, this ultimately leads to a different number of obser-
vations used for each experiment (Fig. A1).

The simulation period in the three assimilation experi-
ments is from 1970 to 2010. The first 10 years (1970 to 1979)
of the results are discarded because during this period the
phenology, vegetation productivity, and the fast land C pools
adjust to the new model control vector p. Through this ad-
justment any imprint of the initial conditions on the calcula-
tion of the cost function is avoided. The soil C pool at the
beginning of the experiment was included in the model con-
trol vector and only results from 1980 are reported below.
The results of the assimilation for the periods of time that fall
within the observational temporal window are considered for
model diagnostic, whereas the periods that fall outside the as-
similation window on each experiment are periods of model
prognosis, i.e., the prognosis period in DEC1 is from 1991 to
2010, and in DEC2 for 2001 to 2010.

3 Results

We first evaluate the long-term trends, seasonal and spa-
tial variability of FAPAR, and carbon fluxes from the dif-
ferent assimilation experiments (Sect. 3.1 to 3.3), and based
on these analyze the prognostic ability of the MPI-CCDAS
(Sect. 3.4). To facilitate the analysis in some of our results,
the global land is divided into eight regions: boreal west and
east (BW and BE, for latitudes north of 60◦ N), temperate
northwest and northeast (TNW and TNE, between latitudes
20 and 60◦ N); tropical west and east (TW and TE, between
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Figure 2. RMSE for FAPAR from the model results and observa-
tions for the period 1982–2006 and for different regions.

latitudes 20◦ N and 20◦ S); temperate southwest and south-
east (TSW and TSE, for latitudes south of 20◦ S) (Fig. 1).

3.1 Phenology

In all assimilation experiments, the RMSE and the bias be-
tween the modeled and observed FAPAR for 1982 to 2006 is
reduced compared to the prior (Table 2). One important cause
for this improvement is the change in the spatial distribution
of the yearly maximum leaf area index (LAI) due to the opti-
mization of the PFT-specific maximum LAI (3max) parame-
ter (Fig. S2) (see also Sect. A1 and Fig. A3 in the Appendix
for more specific results of parameter changes due to the as-
similation). The improvement occurs in all regions (Fig. 2),
despite notable differences between the different assimilation
experiments. In the decadal experiments DEC1 and DEC2,
the largest error reduction compared to the prior is 19 % for
boreal regions, while in the temperate areas this reduction
is about 16 %. In the ALL experiment, larger reductions of
21 % on average are obtained in the tropical regions TE and
TW.

One important factor in the error reduction is a substantial
increase in the linear global correlation (R2) in FAPAR dur-
ing spring and autumn in experiments DEC1 (0.42 and 0.48,
respectively) and DEC2 (0.48 and 0.47, respectively) with re-
spect to the prior (0.31 and 0.33, respectively), with changes
mostly taking place in the Northern Hemisphere (Fig. S3).
An analysis for representative pixels (Fig. 1) shows that the
assimilation procedure results in a better representation of
the timing and amplitude of the mean seasonal cycle, par-
ticularly in the temperate and boreal zones of the Northern
Hemisphere (Fig. S4). As a result, the average global R2 be-
tween modeled and observed FAPAR increased with respect
to the prior experiment from 0.17 in the prior to 0.20 for ALL
and 0.34 for both DEC1 and DEC2 (Table 2, Fig. S3). Further

details on the pixel-level analysis are presented in Sect. A2
of the Appendix.

The observed FAPAR signal exhibits positive long trends,
indicating a greening trend of vegetation for most of the re-
gions, with the exception of the TSW region, where the long-
term trend indicates a decrease in FAPAR (i.e., browning). In
most of the regions, the assimilation results agree on a posi-
tive long-term trend as in the observations; the magnitude of
this trend is in disagreement with the observations (Fig. 3).
Particularly in the BE region, the prior experiment overes-
timates the FAPARobs trend by almost double. After the as-
similation, the simulated FAPAR trend is reduced, leading
instead to a slight underestimation of the growth rate in all of
the posterior experiments. In the TWS region, the assimila-
tion improved the long-term trend from a positive to a nega-
tive growth rate in the three posterior experiments. The most
substantial disagreement between FAPARobs and FAPARmod
occurs in the TW region, where the observations show a pos-
itive trend in FAPAR during the period of analysis, whereas
this is not captured in the prior and all the posterior experi-
ments. Despite these trend adjustments, the model–data error
(based on the 4-year mean differences to the observations at
regional scale) remains more or less constant across the 30-
year period (Fig. 4).

The observed FAPAR signal also contains a small amount
of interannual variability (Fig. S5). Compared to obser-
vations, the simulated IAV of FAPAR (obtained from the
monthly signal for each experiment) is improved only in
the predominantly temperature-controlled boreal regions,
whereas in temperate and tropical areas with a larger con-
tribution of moisture-controlled phenology, the assimilation
does not improve the variability (Fig. S5).

3.2 Atmospheric CO2

To diagnose the performance of the MPI-CCDAS with re-
spect to the atmospheric mole fractions of CO2, we compare
the observed and simulated values, in terms of the mean sea-
sonal cycle, IAV, and monthly growth rate, at three stations:
(1) Alert (ALT) in the Northern Hemisphere, (2) Mauna Loa
(MLO) in the tropics, and (3) South Pole (SPO) in the South-
ern Hemisphere. Results of this comparison are shown in
Fig. 5. For MLO and ALT, the timing of the seasonal cy-
cle is already well reproduced in the prior simulation, and
the assimilation corrects errors in the amplitude of the sea-
sonal cycle and the long-term trend. At SPO, there are also
large relative differences between the model results and the
observations, however, of a much smaller magnitude than for
the two other stations. After the assimilation, the seasonal
phase of CO2 is shifted by approximately a month to better
match the pattern in the measurements in the three experi-
ments, and the amplitude of the seasonal cycle is in better
agreement with the observations than compared to the prior.

Figure 6 demonstrates that these examples are broadly rep-
resentative of the global changes due to the assimilation. Fig-
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Table 2. Statistical analysis of FAPAR for 1982–2006 in all of the experiments, and also for the periods of the window of assimilation only
for DEC1 and DEC2. R2 is obtained from the linear correlation between FAPARobs and FAPARmod calculated for the entire period and by
seasons. NRMSE is the normalized root-mean-squared error, defined as RMSE divided by the mean (FAPARobs).

Bias NRMSE R2

All year DJF MAM JJA SON

Prior 0.37 0.95 0.16 0.14 0.31 0.21 0.33
ALL 0.10 0.76 0.20 0.14 0.34 0.20 0.37
DEC1 0.08 0.64 0.34 0.15 0.39 0.18 0.41
DEC2 0.09 0.65 0.34 0.14 0.39 0.18 0.41

Only for the period of the assimilation window

DEC1 (1980–1990) 0.09 0.66 0.34 0.18 0.42 0.21 0.48
DEC2 (1990–2000) 0.05 0.48 0.34 0.18 0.41 0.21 0.47

Figure 3. Mean monthly growth rate of FAPAR for 1982–2006 on each analyzed geographical region for the satellite observations and results
of prior and the posterior experiments.

ure 6a shows a reduction in the CO2 amplitude for stations
of the Northern Hemisphere (> 40◦ N) after the assimilation,
which is in better agreement with the observations than the
prior simulation. The most substantial amplitude reduction
occurs at the northernmost station (ALT), where the seasonal
amplitude decreases from 23.5 ppm in the prior experiment
to 16.5 ppm in the ALL experiment, bringing it closer to
the observed amplitude of 14.4 ppm. The latitudinal distribu-
tion of the linear correlation coefficient between the observed
and simulated mean seasonal cycles is depicted in Fig. 6b,
and demonstrates a very good agreement (R2 > 0.9) in the
Northern Hemisphere in all of the experiments (including the
prior simulation). In the tropics (specifically between 20 and
40◦ N), the misfit of the phasing of the seasonal cycle is im-
proved after the assimilation, as evidenced by an increased
linear correlation. However, this is achieved at the expense
of a considerable reduction in the amplitude of the seasonal

cycle compared to the observations. The results from the at-
mospheric inversions (INV) show a closer statistical agree-
ment with the observations, as shown in Figs. 5 and 6.

During the nearly 30 years of atmospheric CO2 data avail-
able, the time series of the CO2 mole fractions in the prior
model results strongly underestimate the long-term trend,
and start to deviate in the first 5 years of the time series. In
all the assimilation experiments, the long-term atmospheric
CO2 trend is in much better agreement with the 30-year
trend of the measurements in the entire period of the as-
similation (leftmost panels of Figs. 5 and 6c). The mean
growth rate calculated from the results of the ALL experi-
ment is in good agreement with the results in the observa-
tions (0.15 ppm month−1 in both cases) compared to the prior
model (0.087 ppm month−1). Despite the moderate improve-
ment, the MPI-CCDAS is incapable of improving the IAV
of the atmospheric CO2 concentration substantially, with the
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Figure 4. Time series of the 4-year mean of the FAPAR anomaly for
the satellite data for each model experiment in six selected model
pixels. The error bar indicates the ±1 standard deviation of the 4-
year differences. The first marker (as asterisk) in the time series is
the single value for 1982.

most notable deviations from the observed signals remaining
unchanged after the assimilation procedure (Fig. 5).

3.3 Global and regional carbon pools and fluxes

We next compare the simulated land carbon cycle in the
prior and posterior experiments to independent data. In the
posterior experiments, the vegetation C pool decreased be-
tween 14 % and 20 % of the value in the prior but remained
within the range of the literature estimate (442± 146 PgC).
The global soil C stock showed significant changes af-
ter the assimilation. In all the posterior experiments, the
soil C pool decreased by 45 %, 43 %, and 53 % with re-
spect to the value in the prior. Still, the total C in the soil
(1362 PgC) in the ALL experiment after the assimilation is
in closer agreement with the estimate from the Harmonized
World Soil Database (http://webarchive.iiasa.ac.at/Research/
LUC/External-World-soil-database/HTML, last access: Jan-
uary 2015) of 1343 PgC (Table 3). As for the total global
vegetation C stock, the prior and assimilation are in closer

agreement with the lower end of the estimate by Carvalhais
et al. (2014) (296 PgC).

The simulated latitudinal GPP values agree well with the
data-driven model tree ensemble (MTE) estimate from Jung
et al. (2011) for the period from 1982 to 2010 north of
30◦ N. However, the assimilation results are low biased in
the tropics, which propagated into lower estimates of global
GPP in all the posterior results (Fig. 7d and Table 3). Af-
ter the assimilation, the global GPP and NPP are reduced in
the three posterior experiments compared to the prior (118.8
and 54.5 PgC yr−1, respectively). In contrast to the posterior
global mean of GPP, the value in the prior simulation com-
pares favorably well to the global mean from the MTE prod-
uct (118.9 PgC yr−1) for the same period of analysis. The
global mean GPP is reduced by up to 26 PgC yr−1 on aver-
age in the three posterior experiments compared to the prior
experiment. Simulation DEC1 experienced the largest reduc-
tion in the global photosynthetic C uptake (83.1 PgC yr−1)
relative to the prior value (Table 3 and spatial distribution of
the GPP difference to the prior in Fig. S6d, f, and h).

At the large scale, the variation in the NBE (net biome
exchange of CO2 with the atmosphere, calculated as the net
ecosystem exchange (NEE) minus the flux related to land use
change) from all of the simulations through the time series is
similar to that from the Global Carbon Project 2017 (GCP17;
Le Quéré et al., 2018) and INV, with the significant anoma-
lies collocated in time (Figs. 7a, A4). Contrary to the prior
simulation, the total annual NBE from the three posterior ex-
periments falls within the uncertainty (shaded green area in
Fig. A4d calculated as ±1 standard deviation) of the mean
NBE from the terrestrial ecosystem models in the GCP17.
However, the 1982–2010 mean net biome exchange in all
of the assimilation experiments through the time series is on
average 1.4 PgC yr−1 lower than the flux in the prior simula-
tion (−2.06 PgC yr−1) and 0.8 PgC yr−1 less than the GCP17
value (−1.27±0.97 PgC yr−1) (Table 3, Figs. A4d and S7 for
summary of C balance).

In all MPI-CCDAS simulations, the NEE is reduced rela-
tive to the prior in most of the Southern Hemisphere, while it
is increased in the Northern Hemisphere (Fig. S6c, e, and g).
Temperate northern areas contribute the most to the global
net CO2 uptake. In the boreal east and west regions (BE
and BW), the net land C emissions increased in all of the
posterior experiments compared to the prior (Fig. S6c, e,
and g) with the most significant increase in BE for DEC2
(−0.29 PgC yr−1) relative to the corresponding value in the
prior (−0.09 PgC yr−1). The decrease in GPP in the trop-
ics is depicted in the latitudinal gradient of NBE shown in
Fig. 7c and in the spatial distribution of the NEE difference
between the prior and the posterior experiments (Fig. S6c, e,
and g). As in the tropics, the NEE in the southern temperate
region is consistently reduced after the assimilation experi-
ments, also switching the NEE of the TSE region from a C
sink of−0.18 PgC yr−1 in the prior to a mean C source to the
atmosphere of 0.016 PgC yr−1 in the DEC2 experiment.
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Figure 5. Statistical analysis of atmospheric CO2 at three flask measurement sites: Alert (ALT; top panels), Mauna Loa (MLO, center panels),
and South Pole (SPO, bottom panels), from the measurements, prior, posterior experiments (ALL, DEC1, and DEC2), and inversion (INV1).
For each station the panels show the time series of the mean monthly values, the mean seasonal cycle, the interannual variability, and the
monthly growth rate for the entire period of the simulation (1980–2010).

The magnitude of the global NBE and GPP is smaller
in the posterior experiments than in the prior. However, the
trend in the anomaly of these fluxes (calculated relative to
the temporal mean of each time series) is comparable in all
the experiments (Fig. 7a and b), suggesting that the response
to the environmental conditions is similar through the sim-
ulation period after the assimilation as well. This robust re-
sponse shows in GPP a similar and gradual increasing C up-
take (positive trend) during the period of analysis, only with
a slightly reduced slope in the prior experiment (Fig. 7b).

3.4 Prognostic capability of MPI-CCDAS

Finally, we evaluate the goodness of the model–data fit of
the decadal assimilation runs with respect to their long-term
carbon cycle simulation relative to (i) that of the prior and
(ii) that of the assimilation run using data from the 30-year

experiment as a reference case for “best possible” model–
data match given the structural limitations of the MPI-
CCDAS to match the observations (as evaluated in Sect. 3.1
and 3.2). We calculate the 4-year mean differences between
the atmospheric CO2 mole fraction measurements and the
CO2 model results and also the INV results, for all of the sta-
tions (Fig. 8). In the ALL assimilation experiment, the atmo-
spheric CO2 concentration consistently matches the observa-
tions across the entire assimilation period (that also corre-
sponds to the window of assimilation) with a −0.03±1 ppm
average bias to the observations (Fig. 8). This is comparable
to the trend (Fig. 6c), and 4-year mean differences inferred
by the inversions, where the 4-year mean results in the ALL
fall within the standard deviation of the 4-year mean of the
INV (Fig. 8). This is in striking contrast to the prior exper-
iment, where the 4-year mean of the CO2 mole fraction at
the end of this simulation is 18.8 ppm lower than observed.
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Figure 6. (a) Latitudinal distribution of the mean CO2 seasonal amplitude for the 28 flask measurement stations from the observations, prior,
and posterior experiments. (b) Latitudinal distribution of R2 obtained from the correlation between the observations and each simulation
result of the mean atm. CO2 seasonal cycle and (c) average atmospheric CO2 monthly growth rate across stations for the observations and
model results. The star on each bar is the mean of the atm. CO2 monthly growth rate, the horizontal middle black line on each box is the
median, the red whiskers depict the error as 1 standard deviation, and the grey dots on each box are the actual monthly growth rate values for
all the stations in each data set.

Table 3. Global average of the terrestrial carbon cycle components and carbon stocks in results from the assimilation experiments and prior
(1982–2010), and other independent estimates (see table footnote for description).

Prior ALL DEC1 DEC2 INV Literature

GPP (PgC yr−1) 118.8 96.9 83.1 97.2 – 118.9a

NPP (PgC yr−1) 54.5 34.2 37.3 30.3 – –
NEE (PgC yr−1) −2.64 −1.13 −1.32 −1.18 −1.20c −2.52± 0.98b

NBE (NEE+LULCC) (PgC yr−1) −2.06 −0.54 −0.74 −0.60 – −1.27± 0.97b

ER (PgC yr−1) 115.7 95.2 81.0 95.3 – –
Ra (PgC yr−1) 64.2 62.7 45.8 66.9 – –
Rh (PgC yr−1) 51.5 32.4 35.2 28.4 – –
Root exudates (PgC yr−1) 3.3 2.0 2.2 1.7 – –
Soil C (PgC) 2481 1364 1423 1167 – 1343d

Vegetation C (PgC) 394 310 335 311 – 442± 146e

Litter C (PgC) 228 166 171 158 – –

a Model tree ensemble data-driven product; Jung et al., 2011; average for 1982–2010. b Global Carbon Project (2017), Le Quéré et
al. (2018); average for 1982–2010. The NBE values include the LULCC reported for each individual model. c Inversion result is the
average for 1982–2009. d http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML (last access: June 2015).
e Carvalhais et al. (2014).
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Figure 7. Time series of the anomaly to the temporal mean of the time series (a, b), and latitudinal gradient (c, d) of the total net ecosystem
exchange (NEE including the influence of LULCC) (a, c) and gross primary production (b, d) for the results of each model simulation. NEE
from the model is compared to the GCP 2017 and INV data set (a, c). GPP is compared to the MTE data-data driven estimate of Jung et
al. (2011) (b, d).

For the DEC1 experiment, the 4-year mean difference among
the measurements and the model results is between−0.3 and
0.3 ppm in the 1980s. This level of model–data agreement re-
mains for the 1990s, where the experiment did not see any
observations. After the year 2000, the fit increasingly de-
grades, with an underestimation of the CO2 mole fraction
by 1.6 ppm for the last 4-year average. However, this is still
a 90 % reduction in misfit compared to the prior experiment.

We next quantify the RMSE between the CO2 measure-
ments and model results for each station for four differ-
ent periods: 1982–1990, 1990–2000, 2000–2010, and 1982–
2010 (Figs. 9 and A2). The large bias of the prior is re-
flected in the RMSE where the results of this experiment
have the most substantial error for all of the stations and
periods (between 2.8 and 18.7 ppm) (Fig. 9). For the pos-
terior experiments with a decadal window of assimilation
(DEC1 and DEC2), the performance of the assimilation of
CO2 mole fraction also improves substantially across all time
periods. Within the period of the assimilation, the difference
to the measurements and RMSE is most strongly reduced,
and the error increases somewhat outside of the window of
assimilation. The model results show that when only the first
decade of data is assimilated (DEC1), a more significant de-
viation to the long-term trend of atmospheric CO2 occurs be-
tween 2000 and 2010 compared to DEC2 and ALL (Fig. 9c).
Similarly, a larger bias is also observed in the results from
DEC2 where the lowest 4-year mean difference between the
observations and the assimilation results takes place in the
period of the window of assimilation for this experiment
(1990–2000) (Figs. 8 and 9b for RMSE). During this period,
the model overestimates the CO2 atmospheric concentration
only by 0.15 ppm on average, whereas for the periods out-

Figure 8. Time series of the 4-year mean of the atm. CO2 anomaly
to the observations for each model experiment and inversion results,
for all the stations. The y axis is limited to the results in the poste-
rior experiments. The error bar is 1 standard deviation to the 4-year
mean of the differences to the observations. The first marker to the
left in the time series (as asterisk) is the single value for 1982 not
included in the subsequent 4-year means.
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Figure 9. RMSE for different periods between CO2 atm. concentrations from measurements and model results for the different assimilation
experiments and inversion results for each of the flask measurement stations.

side the window of assimilation, the CO2 concentration is
underestimated by 0.64 ppm in the period 1982–1990, and
by 1.04 ppm in the period 2000–2010. Thus, in experiment
DEC2 the prognostic skill of CCDAS is also reduced outside
the window of assimilation, and the long-term trend is less
well reproduced than in the ALL experiment.

The analysis of the 4-year mean differences for the pe-
riod 1982–2006 between FAPARobs and the results of the
prior and assimilation experiments at the regional scale (ar-
eas in Fig. 1) reveals, contrary to the CO2 observations,
a near-constant 4-year mean FAPAR difference within the
time series and each of the experiments (Fig. 4). In general
terms, the decadal experiments are better able to reproduce
the mean FAPAR across all regions. The largest difference
between posterior results to the observations is in the tropical
regions, where the FAPAR 4-year mean difference showed
that the observations remained consistently larger than the
ALL results by on average 0.042 in TE and 0.095 in TW
(Fig. 4). Importantly, however, the trend correction for the

boreal and temperate areas (Fig. 3) is similar across the dif-
ferent assimilation experiments, suggesting that important
biases of the JSBACH 3.0 model, including the tendency to
simulate too strong boreal greening, can be readily reduced
with only 10 years of data, as further improvement with the
30-year record is small.

4 Discussion

The parameter optimization with a simultaneous assimila-
tion of long-term spaceborne FAPAR and atmospheric CO2
measurements in the MPI-CCDAS, resulted in a consider-
able reduction in the cost function and norm of the gradient,
which can be seen as an overall improvement in the mod-
eled global carbon fluxes with a decrease in the root-mean-
squared error of the MPI-CCDAS compared to the CO2 and
FAPAR and observations (Figs. 9 and 2). The trajectory of
model parameters involved in the optimization differed for
each experiment and each phenotype. While some parame-
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ters were consistently retrieved after the assimilation, such as
the maximum leaf area of grasses and shrubs and the correc-
tion parameter for the initial soil pool size, some final param-
eter estimates varied considerably between the three experi-
ments, e.g., the tropical maximum leaf area index and some
of the parameters controlling the seasonality of the phenol-
ogy (Fig. A3). These variations lead to regional differences
in the simulated compartment flux GPP and ecosystem respi-
ration, which are not well constrained from the observations.
Interestingly, these differences result in very similar absolute
values in global carbon fluxes and their trends. This demon-
strates a certain degree of equifinality in the results and cau-
tions a too stringent interpretation of the MPI-CCDAS out-
come in terms of improving understanding about biosphere
processes and their long-term trends.

4.1 FAPAR

MPI-CCDAS is capable of extracting information about the
seasonal cycle and the long-term trends from the FAPAR ob-
servations. Using decade-long FAPAR data during the assim-
ilation (DEC1 and DEC2) already leads to notable improve-
ment of the simulated seasonal phenology of the land surface
within and outside the window of assimilation, i.e., main-
taining these changes during the prognosis periods. This im-
provement is predominantly the result of the ability in the
model to simulate the timing of green-up and brown-down
in spring and summer through the optimization of parame-
ters that regulate the onset and end of the growing season
(i.e., parameters for temperature and day-length thresholds).
The greening effect is especially taking place in the Northern
Hemisphere, dominated by the phenotypes deciduous and ev-
ergreen needleleaf and extratropical deciduous trees.

The long-term greening trend in the vegetation of boreal
regions previously observed in spaceborne data (Forkel et
al., 2016; Lucht et al., 2002) was captured in the results
of MPI-CCDAS before the assimilation, but it was mostly
overestimated in northern regions and underestimated in the
Southern Hemisphere. After the assimilation experiments,
the greening trend was improved primarily in the boreal areas
and is in closer agreement to the reported satellite FAPAR
data. The modest improvements achieved in the simulated
greening trend of temperate areas in the western hemisphere
are associated with a decreased performance in the east-
ern hemisphere, indicating that the model structure of MPI-
CCDAS is incapable of reconciling regional differences. This
difference could be an indicator of the need to parameterize
both hemispheres differently in terms of their phenological
response to the underlying driving factors (such as temper-
ature, moisture availability, and day length); also, this could
be due to the lack of process to account for the land use or
vegetation dynamics in the MPI-CCDAS.

Despite these broadscale improvements, the MPI-CCDAS
does not reproduce the magnitude of the greening trend and
its interannual variability in all the posterior experiments at
pixel and regional levels. This is likely a result of the MPI-
CCDAS structure, which relies on few globally relevant PFT-
level parameters. Although some of the phenological param-
eters in CCDAS adapt to local mean growing season temper-
ature, other thresholds are only globally applicable, causing
a trend to temperature grasslands that cover a wide climato-
logical range. For example, some of the global parameters
such as faut_leaf and fslow imply that improvements of mod-
eled fluxes in the boreal regions directly affect fluxes in the
tropics, inducing parameter changes to compensate for the
altered C fluxes. Defining instead such global parameters per
PFT would alleviate this issue but will compromise the com-
putational cost and might not necessarily reduce the over-
all uncertainty. Another technical challenge is the use of a
spatially mixed signal at the coarse spatial model resolution
(due to the high computational requirements necessary to in-
crease model resolution) to infer PFT-specific parameters. A
likely better strategy for constraining PFT-specific parame-
ters would be to resample the highly resolved satellite prod-
uct to PFT-specific FAPAR classes per pixel before the ag-
gregation into a global grid. This change would allow us to
find more spatially refined classes and provide PFT-specific
FAPAR maps to the CCDAS to reduce issues in the identi-
fication of phenological parameters for different climatic re-
gions.

Except for the tropical latitudes, the difference between the
regional IAV of the observations and model output is small
compared to seasonal variations. The modeled signal remains
within a range of 0.05 (dimensionless) FAPARobs. The sig-
nal and the model–data difference is also smaller than the
global mean retrieval error of the FAPAR product, which is
±0.2088 (Schürmann et al., 2016). This error was used to
quantify the observational FAPAR uncertainty in the assim-
ilation, thereby reducing the ability of the MPI-CCDAS to
detect and correct such smaller variation. Overall, the lack-
ing match of the IAV may therefore be of little overall con-
cern. Nevertheless, the lower than observed IAV in the trop-
ical bands may be indicative of too weak drought response
in the maximum leaf area index of the model. Although the
assimilation procedure allows changes in the phenology re-
sponse to water stress (given by parameter τw), the assimi-
lation procedure decreased the drought sensitivity of tropi-
cal phenology given the entire spatially explicit FAPAR time
series, and therefore did not allow capture of the regional
drought events that could be in principle linked to changes in
LAI.

The technical error during the assimilation procedure to
not include the period from 2007 to 2010 in the FAPARmod
product does not however influence the decadal results ob-
served here because the main information gain of the CC-
DAS in terms of phenology stems from the seasonal cycle,
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with little effect on the overall trends between the three as-
similation experiments with different time periods.

Bearing in mind the different spatial resolution of meth-
ods (i.e., model grids and remote-sensing pixels), a robust
comparison between the mean and maximum LAI values be-
fore and after the assimilation per region are presented in
Table A1 of the Appendix. The results fall within LAI values
from MODIS and lidar reported in the literature. Ground-
based observations in the tropical Amazon–savanna transi-
tion forest between 2005 and 2008 show an annual mean LAI
value for the total canopy of 7.4± 0.6 m2 m−2, and for the
seasonally flooded forest the value of 3.4± 0.1 m2 m−2. For
the remote-sensing data from MODIS, the reported values
are 6.2± 0.2 and 5.8± 0.3 m2 m−2, respectively (Biudes et
al., 2014). In the eastern Amazon forest, the remote-sensing-
based LAI has been reported as 6.2 m2 m−2 from lidar, and
4.8 m2 m−2 with a low end of 2.0 m2 m−2 from MODIS (Qu
et al., 2011).

4.2 Atmospheric CO2

The considerable improvement of the seasonal amplitude and
the long-term trend of atmospheric CO2 at Northern Hemi-
sphere stations is independent of the different periods of data
used for the assimilation. However, the MPI-CCDAS consis-
tently fails to resolve some of the features of the year-to-year
variability detected in the measured atmospheric CO2 sta-
tions, which translates into an acceptable, but far from per-
fect fit to the inferred annual carbon budget of the GCP17
(Le Quéré et al., 2018). We compared the performance to the
results from an atmospheric CO2 inversion (INV) with the
same input fields and atmospheric transport model as MPI-
CCDAS to illustrate that these deviations do not reflect un-
certainties in the representation of the atmospheric transport.
It needs to be mentioned that both the choice of the atmo-
spheric transport model (and associated imperfections at re-
solving the vertical and lateral atmospheric transport of CO2)
and the method to aggregate atmospheric observations to ob-
tain an estimate of the annual growth rate in the global car-
bon budget introduce some error in any forecast of the inter-
annual variability. As a consequence, only the occurrence of
more significant model–data mismatches can be interpreted
as an actual result of the MPI-CCDAS’ inability to correctly
resolve the carbon flux variation.

Notably, the model lacks the representation of some key
processes that contribute to climate-induced interannual vari-
ability of the carbon cycle, such as the possibility to dynami-
cally account for fire disturbance (Lasslop et al., 2014), trop-
ical peatland fires related to El Niño–Southern Oscillation
(ENSO) (van der Werf et al., 2008), or the increase in terres-
trial carbon uptake after large-scale volcanic eruptions such
as for Mt. Pinatubo in 1991 (Lucht et al., 2002; Mercado et
al., 2009). Omitting fluxes in the current model configuration
due to fire events may impair the ability of the model to in-
fer the atmospheric growth rate of CO2 associated with El

Niño events (Frölicher et al., 2011, 2013). One way to over-
come the IAV mismatch would be to include fire fluxes in
the model by prescribing them from the Global Fire Emis-
sions Database (GFED; van der Werf et al., 2010); however
the latest version of this data set (version 4.0) is only avail-
able for years from 1997, which is a limiting factor for the
timeframe of the simulations in this work. However, the con-
tribution of these interannual variations to the overall CO2
cost function is low in comparison to the signal contained in
the seasonal cycle and deviations in the long-term trend, such
that the MPI-CCDAS may simply not be sensitive enough
to these aggregate system properties like the response of the
tropical carbon cycle to El Niño events given the uncertainty
in the atmospheric transport and the observational represen-
tation error.

4.3 Carbon cycle simulation

Independent of the amount of data used in the assimilation
window, our results show that the GPP and NEE were con-
sistently reduced globally compared to the prior run, i.e.,
less carbon uptake by plants leading to the model results
being in closer agreement with other independent estimates
such as the GCP17. The MPI-CCDAS suggests a somewhat
lower average annual atmospheric CO2 growth rate (calcu-
lated by the sum of the net C fluxes from the ocean, land, and
fossil fuel emissions) than the one estimated in the GCP17
(Le Quéré et al., 2018), even if the MPI-CCDAS estimate
falls within the uncertainty of the GCP17 (Figs. 7 and S7).
Most of the difference stems from small differences in the
assumed fossil and ocean carbon fluxes. In the case of the
carbon fluxes from fossil fuels, the data prescribed in MPI-
CCDAS do not contain fluxes due to cement and flaring; thus
the magnitude of the annual carbon sources through the time
series is consistently lower but still within the ±5 % uncer-
tainty of the GCP17 data (Le Quéré et al., 2018) (Fig. A4).
As for the ocean carbon sink, the annual mean values pre-
scribed in MPI-CCDAS are also of lower magnitude than
the mean value in the GCP17 but falling in the lower limit
of the uncertainty value (Figs. A4c and S7). The flux due to
LULCC prescribed in MPI-CCDAS is also of smaller magni-
tude than that from the GCP17 because the simulation made
by JSBACH 3.0 does not consider disturbances like fires and
gross transitions, which might have also contributed to the
lower land C sink obtained in the assimilation experiments
compared to the total land C sink in GCP17 (Fig. A4d).

The MPI-CCDAS GPP matches well the observation-
based product MTE-GPP (Jung et al., 2007) in regions with
a distinct light- and temperature-driven seasonal cycle (i.e.,
north of approx. 30◦ N), translating to a reduction in mod-
eled GPP by 0.7 PgC yr−1 in boreal regions. However, sim-
ilar to the results in Schürmann et al. (2016) with only 5
years of assimilation, the tropical productivity is strongly re-
duced by the assimilation to estimates that are substantially
lower than independent estimates such as MTE. This fea-
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ture is likely the result of a global compensating effect on
heterotrophic respiration, and this effect is observed in the
drop of the photosynthetic capacity (fphotos) in the tropical
evergreen and deciduous PFTs, as well as in the reduction
of the maximum tropical LAI in the three assimilation ex-
periments compared to the prior. In addition, another critical
factor influencing the global reduction of GPP and the trop-
ical uptake of C appears to be related to the difference in
data availability of CO2 stations between the defined assim-
ilation windows. Specifically, this is evident in the results of
the data-poorer experiment DEC1, where the topical GPP is
substantially lower than in the independent estimates and in
the assimilation experiments that use more stations (DEC2
and ALL). As a result, the mean tropical land C source to
the atmosphere in the prior experiment (mean NBE value of
0.12 PgC yr−1, and minimum value of −0.07 PgC yr−1, re-
flecting C uptake in the 4◦ S latitudinal band) was increased
to 0.37± 0.17 PgC yr−1 on average for all the posterior re-
sults.

The NPP : GPP ratio in ALL and DEC2 decreased to 0.35
and 0.31, respectively, when compared to the prior value
(0.45). This reduction might be mainly because the NPP is
not well constrained from the atmospheric record. In JS-
BACH 3.0, autotrophic respiration (Ra) is directly coupled
to GPP; hence the fraction of GPP partitioned to Ra leads to
an increase in the seasonal cycle of the ecosystem respiration.
An increase in Ra with respect to the prior (which is only vis-
ible in the global average value in DEC2; Table 3) results in a
reduced net land carbon uptake, masking the smaller changes
in the vegetation turnover.

The reduction in the soil C pool after the assimilation can
be explained due to an unavoidable effect in the model. The
MPI-CCDAS was initially spun up until the soil C pools
reached equilibrium considering preindustrial forcing; how-
ever, this new initial state does not consider climate variabil-
ity. To compensate for this and to reduce the respiration when
the MPI-CCDAS is confronted with contemporary changes
in the climate, the model creates an artificial C sink that leads
to a reduction in the soil C stocks. It is important to note
that the JSBACH 3.0 version used in this MPI-CCDAS does
not include permafrost processes; therefore, the global soil C
stock might still be underestimated.

4.4 Value of long-term data sets to constrain CCDAS

Notwithstanding the MPI-CCDAS conceptual issues, the
setup of this study enables us to test by how much the quality
of the data–model agreement is reduced after exposing the
MPI-CCDAS to shorter observational time series. In terms
of FAPAR, there is no apparent degradation of fit with time,
despite that in general terms, the trend in the data is best
matched with the ALL experiment. This is foremost a con-
sequence of comparatively small trends in the observed FA-
PAR, implying that extracting the mean seasonal patterns and
amplitude for a few years is essential for simulating current

and near-term FAPAR. Issues with model structure and with
the assimilation setup prevent a better model–data fit irre-
spective of the length of the record. This would suggest that a
focus of assimilation on high-quality and highly spatially re-
solved FAPAR should be a priority over the use of long-term
data sets. The results are different for the case of projecting
atmospheric CO2, where a long record of atmospheric CO2
measurements favorably contributes to a better representa-
tion of the long-term values after the assimilation, whereas
a shorter window leads to deviations to the observations in
the periods outside the assimilation years. The model–data
agreement is of approximately ±0.5 ppm during the assimi-
lation period and starts to deviate for the DEC1 experiment
later than 10 years after the end of the assimilation win-
dow, whereas in the DEC2 experiment, the degradation of the
model–data match already starts after approximately 5 years.
Still, the average deviation from the observations by using
shorter assimilation periods is not far from the upper limit of
the uncertainty when using the longest record. Nonetheless,
with the caveat that MPI-CCDAS does not fully explain the
interannual variability of the land net carbon flux, this sug-
gests a reasonable short-term (for a small number of years)
forecasting skill of atmospheric CO2.

5 Conclusion

The MPI-CCDAS is capable of simultaneously integrating
two independent observational data sets over three consec-
utive decades at the global scale to estimate global car-
bon fluxes. The results demonstrate that assimilating only 1
decade of observations, for two observational data sets (FA-
PAR and atmospheric CO2 concentrations), leads to broadly
comparable results and trends in the global carbon cycle
components than using the entire time series of available ob-
servations (30 years). Currently, the system can confidently
predict the carbon fluxes on short timescales (up to 5 years
after the end of the window of assimilation), e.g., for atmo-
spheric CO2 concentrations at the site level, and the mean
prediction remains within the uncertainty of the observations.
However, long-term forecasts with CCDAS are less certain,
as the observational record does not sufficiently constrain the
interannual variability of the simulated land carbon fluxes
and longer-term changes in the decadal net carbon uptake.
Nevertheless, the comparatively small error of 2± 1.3 ppm
after 15–19 years of prognostic simulation shows the poten-
tial for midterm carbon cycle predictions constrained using
the CCDAS approach.

The MPI-CCDAS is a computationally expensive system,
and the demonstration that large-scale carbon fluxes can be
improved by only using a limited period of observations in-
creases the feasibility of using data assimilation systems to
constrain the land carbon budget in land surface models.
However, we also show that there are considerable variations
in the estimated parameters and the regional distribution of

Biogeosciences, 16, 3009–3032, 2019 www.biogeosciences.net/16/3009/2019/



K. Castro-Morales et al.: Three decades of carbon fluxes with MPI-CCDAS 3025

the land C uptake, suggesting that further improvements in
the land surface model, especially in the current structure and
design, must be first solved to improve the model and com-
putational efficiencies of the system. This is recommended
before an attempt to include another observational stream
or other modifications aiming to test an enhancement on the
prognostic skill in the full MPI-CCDAS.

Code availability. The code of the JSBACH model is available
upon request to Sönke Zaehle (szaehle@bgc-jena.mpg.de). The
TM3 model code is available upon request to Christian Röden-
beck (christian.roedenbeck@bgc-jena.mpg.de). The TAF-generated
derivative code is not available and it is subject to license restric-
tions.
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Appendix A

A1 Assimilation performance

Figure A3 depicts the final posterior value (Xf) for each op-
timization parameter I and in each assimilation experiment.
The last parameter value is normalized to its corresponding
prior value (Xp, shown in Table 1), i.e., (Xf/Xp)− 1; this is
done to make a comparison between parameters on their re-
sponse and the assimilation because each parameter holds a
different range of values. The normalized result is also shown
for each phenotype for the phenology and photosynthesis-
related parameters, and also for the initial leaf growth rate
(ξ ), CO2 initial offset, and land carbon turnover parameters
that are applied globally.

More significant changes in some phenology parameter
values are observed; e.g., the maximum LAI (3max) de-
creased in almost all PFTs and in all experiments, except for
the phenotypes CE (coniferous evergreen) in the ALL exper-
iment and ETD (temperate broadleaf evergreen and decidu-
ous; mostly dominating in Europe and the eastern USA and
Asia). In CD (coniferous–deciduous trees; located in north-
east Asia, specifically in the east Siberian taiga) the 3max
value increased notably in the DEC1 and DEC2 experiments
(Fig. A3e).

In the tropical forest areas, the reduction of the 3max was
from 3.17 in the prior experiment to 2.27 (33 %) in ALL for
the TW area, and from 3.27 in the prior to 2.43 (26 %) in ALL
for the TE area. For the other assimilation experiments the
average maximum LAI moderately decreased in TW from
3.17 in the prior to 2.89 (8.8 %) in DEC1 and from 3.17 in
the prior to 3.00 (5.3 %) in DEC2.

In other extratropical areas results from experiments
DEC1 and DEC2 experienced an average increase in 3max
by 5.6 % in BE (from 2.29 in the prior to 2.42), 24 % in BW
(from 1.62 in the prior to 2.01), and 3.8 % in TNW (from
3.11 in the prior to 3.23).

As a result, the temperature- and daylight-related param-
eters were modulated such that the largest decrease with re-
spect to the prior value in the temperature at leaf onset (T ϕ)
was also observed for these two PFTs, especially for CD
in the DEC1 and DEC2 experiments. Also, the day length
at leaf shedding (tc) and the timescale of leaf senescence
(leaf shedding timescale, 1/τ1) primarily increased for CD.
As for the PFTs influenced by temperature and water (TeH,
TeCr, TrH, and TrCr), the most significant change with re-
spect to the prior value took place in the posterior value
for the C3 crops (TeCr; distributed in Europe, the USA, and
East Asia) whose value decreased considerably for the wa-
ter stress tolerance (τw) in experiments DEC1 and DEC2,
whereas the value of the timescale of leaf senescence (leaf
shedding timescale, 1/τ1) also increased considerably for the
same experiments. These changes seemed to be a response of
the large decrease in the foliar area3max for this PFT, which
took place in all three experiments. The value of the photo-

Figure A1. Data availability and latitudinal location of the 28 sta-
tions where the long-term flask measurements of atmospheric CO2
mole fractions were taken for assimilation in CCDAS. The ALL
experiment used all the stations of the time series (blue and red
bars) (1980–2010), DEC1 used data only from stations with blue
bars (1980–1990), and DEC2 also used the data at the stations with
red bars (1990–2000) (except stations SBL and CRZ marked with a
patterned bar).

Figure A2. Experimental setup for posterior experiments ALL,
DEC1, and DEC2 with different temporal windows for the assimi-
lation of FAPAR and molar fractions of atmospheric CO2.

synthesis rate modifier (fphotos) influences the productivity
at leaf level. Thus, a lower value of fphotos will lead to lower
GPP (less carbon uptake and a potential increase in NEE).
Our results show that after the assimilation experiments the
value of fphotos decreased with respect to the prior experi-
ment, mainly for the C3 grasses and pasture (TeH; distributed
mostly in the Northern Hemisphere) as well as for the tropi-
cal evergreen and deciduous trees (TrBE and TrBD), and this
is more noticeable in the DEC1 experiment.

As for the global parameters, significant deviations from
the prior value are observed in the parameter that controls
the initial size of the slow soil C pool (fslow) and also in the
parameter that defines the initial atmospheric CO2 mole frac-
tion (COoffset

2 ), which is globally set to be constant. The pos-
terior value of both of these parameters decreased in the three
posterior experiments. Variations in fslow induce changes in
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Figure A3. Final value for each parameter p at the end of the assimilation experiments, normalized to the prior value (ppr), i.e., (p/ppr)−1.
This is shown for each model plant functional type (a–h) and globally for the land C turnover parameters (i, j).

Table A1. Regional mean and maximum leaf area index in prior and
posterior experiments.

Region Prior ALL DEC1 DEC2
(LAI (LAI (LAI (LAI

mean; max) mean; max) mean; max) mean; max)
(m2 m−2) (m2 m−2) (m2 m−2) (m2 m−2)

BE 0.61; 2.29 0.60; 1.94 0.70; 2.42 0.69; 2.42
BW 0.31; 1.62 0.30; 1.44 0.35; 2.01 0.35; 2.02
TNE 1.28; 4.28 1.17; 3.33 1.31; 3.49 1.32; 3.79
TNW 1.26; 3.11 1.15; 2.84 1.30; 3.23 1.30; 3.21
TE 1.62; 3.27 1.30; 2.43 1.63; 3.20 1.67; 3.33
TW 2.21; 3.17 1.68; 2.27 2.00; 2.89 2.08; 3.00
TSE 1.54; 2.72 1.43; 2.51 1.86; 2.77 1.83; 2.68
TSW 2.42; 3.69 2.04; 2.71 2.38; 3.47 2.43; 3.66

the global heterotrophic respiration, controlling in this way
the disequilibrium between GPP and the ecosystem respira-
tion. Because JSBACH tends to overestimate the soil C pool,
optimizing fslow is a means to improve this estimation; how-
ever, the spatial distribution of the carbon pools remains un-
changed, and the prior value controls the prior value, mean-
ing that the GPP and ER relation remains similar in the pos-
terior experiments to that in the prior experiment. Since the
magnitude of the initial slow carbon pool was set, this might
influence the other modeled carbon pools compared to the
soil carbon pool, leading to biased soil and vegetation car-
bon stocks; therefore, the assessment on the predicted pools
should be made with care. We compare the resulting global
total soil and vegetation carbon pools robustly to independent

estimates from the literature or other products, and results are
shown in the main text of the Discussion section.

A2 Pixel-level phenology analysis

The FAPAR analysis at the pixel level shows that in pixels
P1 (located in eastern Siberia), P2 (located in eastern Brazil),
and P6 (located in Canada), the magnitude of the mean sea-
sonal cycle is better represented when compared to the obser-
vations (Fig. S4). Also, the timing of the mean seasonal cycle
is corrected, e.g., in pixels with large seasonal amplitude such
as in P1 and in P6. While in the prior experiment (and ALL
experiment) the onset and peak of the growing season in P1
and P6 are delayed by up to 2 months, in the results from
experiments DEC1 and DEC2 this delay is reduced to only
1 month. This correction might be partially due to changes
in some optimized parameters: increase in the day length at
leaf shedding (tc) and reduction in the temperature at leaf
onset T ϕ detected for both the CE and CD, as well as for
ETD, TeCr, and TeH phenotypes (Fig. A3c, d, e, and g); this
is because these parameters control the onset and end of the
vegetation activity. Despite changes in T ϕ and tc after the as-
similation in TrH, this temporal shift is less evident in P2. In
this pixel, the amplitude of the seasonal cycle is small, and
only changes in the magnitude of the amplitude are visible
after the assimilation (Fig. S4). In the results of DEC1 and
DEC2 for pixel P3 (located in the USA and dominated by
TeCr), the water stress tolerance time (τw) and T ϕ were pri-
marily reduced, whereas the leaf shedding timescale (1/τl;
earlier shedding) increased.
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Figure A4. Time series of the annual mean of the major components of the C cycle used as background fluxes in CCDAS compared to those
from the GCP 2017. The atm. CO2 growth from the model output is the result of the sum of fossil fuel, ocean, and land C fluxes. The blue
shadow in the ocean C sink of the GCP 2017 data is the standard deviation of the mean sink from the models that contributed to the GCP.
The land C flux is the total NEE with contribution of the flux due to LULCC. The green shadow area is the standard deviation of the mean
land C flux from the terrestrial models that contributed to the GCP.
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