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Abstract. This paper presents the assimilation of solar-
induced chlorophyll fluorescence (SIF) into a terrestrial bio-
sphere model to estimate the gross uptake of carbon through
photosynthesis (GPP). We use the BETHY-SCOPE model
to simulate both GPP and SIF using a process-based for-
mulation, going beyond a simple linear scaling between the
two. We then use satellite SIF data from the Orbiting Car-
bon Observatory-2 (OCO-2) for 2015 in the data assimila-
tion system to constrain model biophysical parameters and
GPP. The assimilation results in considerable improvement
in the fit between model and observed SIF, despite a lim-
ited capability to fit regions with large seasonal variability
in SIF. The SIF assimilation increases global GPP by 31 %
to 167±5 PgCyr−1 and shows an improvement in the global
distribution of productivity relative to independent estimates,
but a large difference in magnitude. This change in global
GPP is driven by an overall increase in photosynthetic light-
use efficiency across almost all biomes and more minor, re-
gionally distinct changes in APAR. This process-based data
assimilation opens up new pathways to the effective utiliza-
tion of satellite SIF data to improve our understanding of the
global carbon cycle.

1 Introduction

Through photosynthesis terrestrial plants fix atmospheric
carbon dioxide (CO2) into organic compounds constituting
the largest carbon flux on Earth. This process is the first step
in terrestrial carbon sequestration and plays a critical role in
offsetting anthropogenic carbon emissions (Campbell et al.,
2017; Janssens et al., 2003). However, the gross uptake of
CO2 through photosynthesis (GPP; gross primary produc-
tion) cannot be observed at large spatial scales, which limits
our understanding of its spatiotemporal distribution and re-
sponse to climate (Schimel et al., 2015). Ignorance of GPP
limits our ability to predict the terrestrial net CO2 flux under
future climate conditions (Friedlingstein et al., 2014; Sitch
et al., 2015).

Numerous approaches have been developed to estimate
GPP at large scales (see Anav et al., 2015). One approach
takes existing observations and merges them with process-
based models using model–data fusion (“data assimilation”)
techniques. Process-based models provide a quantitative de-
scription of the current state of knowledge underlying ter-
restrial biospheric processes. However, there are large uncer-
tainties in model predictions due to both the model formu-
lation and input parameters. Data assimilation provides an
effective way of optimizing the input parameters and eval-
uating the consistency of the model with various observa-
tional data, providing insight into the model formulation as
well (Rayner, 2010). The Carbon Cycle Data Assimilation
System (CCDAS) is one example that has been developed to
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ingest multiple sources of data (Kaminski et al., 2013; Koffi
et al., 2012; Rayner et al., 2005). More generally, various car-
bon cycle data assimilation systems have been applied using
a range of observational data, including atmospheric CO2,
soil moisture, the fraction of absorbed photosynthetically ac-
tive radiation (FAPAR) and flux tower measurements (Ba-
cour et al., 2015; Kaminski et al., 2012, 2013; Kato et al.,
2013; MacBean et al., 2016; Scholze et al., 2016).

Recent remote sensing measurements of solar-induced
chlorophyll fluorescence (SIF) (Frankenberg et al., 2011b;
Joiner et al., 2011) offer a novel insight into the spatiotempo-
ral patterns of GPP (e.g., Duveiller and Cescatti, 2016; Guan
et al., 2015; Joiner et al., 2014; Li et al., 2018; Luus et al.,
2017). Many studies have shown that SIF correlates strongly
with GPP across biome types and generally performs bet-
ter at tracking GPP than traditional reflectance-based vege-
tation measurements (e.g., NDVI, EVI) (Joiner et al., 2014;
Li et al., 2018; Luus et al., 2017; Walther et al., 2016; Yang
et al., 2015).

SIF and GPP are linked at the cellular level through the
light reactions of photosynthesis. To initiate the light reac-
tions of photosynthesis, pigment–protein complexes forming
so-called photosystems absorb sunlight energy and convert
it into the chemical energy required to power photosynthetic
CO2 fixation. This absorbed energy, or excitation energy, has
one of three fates. Firstly, excitation energy may be used
to drive photosynthetic electron transport, ultimately power-
ing photosynthetic CO2 fixation (Krall and Edwards, 1992),
termed photochemical quenching (PQ). Secondly, excitation
energy may be dissipated as heat via a range of mechanisms
used to protect photosystems against excessive light-induced
damage (Demmig-Adams and Adams III, 2006) collectively
termed non-photochemical quenching (NPQ). Finally, ex-
citation energy may be passively emitted from the chloro-
phyll pigments as chlorophyll fluorescence. During photo-
synthesis PQ and NPQ are actively regulated by plants to
balance energy supply and demand under changing environ-
mental conditions (Porcar-Castell et al., 2014). Chlorophyll
fluorescence therefore responds dynamically to changes in
the rates of PQ and NPQ, providing a highly useful non-
invasive tool to monitor leaf physiological processes (for
reviews see Baker, 2008; Govindjee, 1995; Porcar-Castell
et al., 2014). Measurements of artificially induced chloro-
phyll fluorescence at the leaf level have been used for this
purpose for several decades (Govindjee, 1995).

With the use of satellite-based instruments global maps
of SIF have also been produced (Frankenberg et al., 2011a;
Guanter et al., 2012; Joiner et al., 2011). Parazoo et al.
(2014) and MacBean et al. (2018) have used these data to
optimize model estimates of GPP. Parazoo et al. (2014) de-
veloped a framework to use SIF alongside model estimates
to redistribute global GPP patterns by applying linear scal-
ing between SIF and GPP. They did not, however, optimize
model parameters so did not alter model predictive capabili-
ties. MacBean et al. (2018) optimized model parameters of a

single model (ORCHIDEE). Following empirical evidence,
MacBean et al. (2018) related SIF to GPP using a biome-
specific linear scaling. In both cases SIF added useful infor-
mation and induced large shifts in global GPP. However, SIF
was not explicitly modeled and therefore was not compared
with the observed SIF to assess performance against the data.
Koffi et al. (2015) was the first to combine a process-based
model of SIF with a global terrestrial biosphere model. Koffi
et al. (2015) performed global simulations of SIF and a set
of sensitivity tests, demonstrating that the model is capable
of utilizing the SIF data. Norton et al. (2018) extended this
to include a module for prognostic leaf growth. Using this
model Norton et al. (2018) quantified how effectively SIF
could constrain uncertainties in model parameters and GPP,
finding a reduction in uncertainty of global annual GPP of
73 %, a result consistent with the model used in MacBean
et al. (2018). However, no formal optimization algorithm was
applied.

Using a process-based model of SIF may be important in a
data assimilation context. Firstly, while SIF and GPP appear
to relate linearly at some spatiotemporal scales, this relation-
ship is ultimately driven by underlying nonlinear processes
and other variables such as absorbed photosynthetically ac-
tive radiation (APAR) (Yang et al., 2018). A linear scaling
approach is therefore likely to be scale-dependent, whereas a
process-based approach can be applied over a range of spa-
tial and temporal scales. Secondly, assuming a linear scaling
between SIF and GPP assumes that SIF relates to biophys-
ical parameters in the same way as GPP. This is unlikely
to be accurate, especially for parameters controlling radia-
tive transfer and fluorescence re-absorption. The linear scal-
ing approach therefore preconditions the assimilation to shift
GPP in proportion to SIF, which, as we will show, does not
always occur with a process-based approach. Therefore, this
study makes an advance on past approaches by simulating
SIF explicitly using a process-based model. The aim is to
integrate satellite observations of SIF into a data assimila-
tion system to optimize model parameters, assess the perfor-
mance against the data and estimate spatiotemporal patterns
of GPP globally.

2 Methods

Here we outline the steps taken to assimilate SIF into the ter-
restrial biosphere model BETHY-SCOPE. First, we briefly
describe the BETHY-SCOPE model. This model is capable
of simulating SIF which provides a means of mapping model
variables into the observational space. Second, we outline the
quantities that are optimized within the data assimilation sys-
tem. In this study these quantities are the biophysical param-
eters of BETHY-SCOPE. Third, we describe the satellite SIF
observations used. Fourth, we outline the optimization algo-
rithm and the method for error propagation. Finally we give
a brief description of the specifics of the experimental setup.
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Table 1. PFTs defined in BETHY and their abbreviations.

PFT
no.

PFT name Abbreviation

1 Tropical broadleaved evergreen tree TrEv
2 Tropical broadleaved deciduous tree TrDec
3 Temperate broadleaved evergreen tree TmpEv
4 Temperate broadleaved deciduous tree TmpDec
5 Evergreen coniferous tree EvCn
6 Deciduous coniferous tree DecCn
7 Evergreen shrub EvShr
8 Deciduous shrub DecShr
9 C3 grass C3Gr
10 C4 grass C4Gr
11 Tundra vegetation Tund
12 Swamp vegetation Wetl
13 Crops Crop

2.1 BETHY-SCOPE

BETHY-SCOPE is a coupling of the existing models
BETHY (Biosphere Energy Transfer Hydrology) (Knorr,
2000) and SCOPE (Soil Canopy Observation, Photosynthe-
sis and Energy fluxes; van der Tol et al., 2009, 2014) and
builds upon the developments by Koffi et al. (2015) and Nor-
ton et al. (2018). Here, some model developments have been
made that distinguish this version of BETHY-SCOPE from
that used in Norton et al. (2018); hence we refer to this ver-
sion as BETHY-SCOPE v1.1. The coupling of BETHY and
SCOPE enables spatially explicit global simulations of GPP
and SIF that are dependent on plant functional type (PFT).

BETHY is a process-based terrestrial biosphere model,
which is a key element of the CCDAS (Rayner et al., 2005;
Scholze et al., 2007). Full model description details can be
found elsewhere (e.g., Rayner et al., 2005; Scholze et al.,
2007; Knorr et al., 2010). Briefly, BETHY simulates car-
bon assimilation and plant and soil respiration within a full
energy and water balance. Although we prescribe leaf area
index (LAI) to the model, this version of BETHY has an
optional leaf area dynamics module for prognostic LAI as
described in Knorr et al. (2010). BETHY represents vari-
ability in the physiology and ecology of plant classes by 13
PFTs (see Table 1) originally based on classifications by Wil-
son and Henderson-Sellers (1985). Each model grid cell may
consist of up to three PFTs as defined by their grid cell frac-
tional coverage.

SCOPE (version 1.53) is a vertically integrated (one-
dimensional, 1-D) radiative transfer and energy balance
model with modules for photosynthesis and chlorophyll flu-
orescence (van der Tol et al., 2009). It utilizes a canopy ra-
diative transfer scheme based on the Scattering by Arbitrar-
ily Inclined Leaves (SAIL) model (Verhoef, 1984) and the
leaf radiative transfer model of Fluspect (Miller et al., 2005),
which is based upon the optical properties of leaves (Jacque-
moud and Baret, 1990). A limitation of this SCOPE version

is that it lacks a water balance and only accounts for verti-
cal variation in canopy properties, not horizontal variation.
We note that a recent update has included a water balance
and water stress in SCOPE, although this was only tested at
a semiarid grassland site (Bayat et al., 2019).

While van der Tol et al. (2009, 2014) provide a more com-
prehensive description of the SCOPE model, we provide a
brief description of the link between SIF and GPP. During
the iterative calculation of the thermal radiative transfer and
energy balance modules, the photosynthesis and chlorophyll
fluorescence quantum efficiency (φF) of each canopy element
are calculated. This includes the leaf biochemistry module,
which simulates the photosynthetic rate as the minimum of
two potentially limiting reaction rates (see Collatz et al.,
1991 for C3 plants and Collatz et al., 1992 for C4 plants). In-
puts to the leaf biochemistry module include APAR, relative
humidity, temperature, CO2 concentration, O2 concentration
and leaf physiological parameters (e.g., carboxylation capac-
ity). The φF for each canopy element is also calculated within
this module. To determine the φF, the fate of absorbed quanta
via PQ and NPQ must be determined. First, the photochemi-
cal yield (φP) is determined from the quantum requirement of
the photosynthetic dark reactions, i.e., the electron transport
rate (Je), where Je is calculated as

Je = Ag
Ci+ 20∗

Ci−0∗
effcon, (1)

where Ag is the gross photosynthetic rate (i.e., excluding
dark respiration), Ci is the intercellular CO2 partial pressure
and 0∗ is the CO2 compensation point, and effcon is a vari-
able based on the electron requirements and assumptions on
the processes limiting electron transport (in SCOPE, C3 plant
effcon= 1/5; C4 plant effcon= 1/6). Photochemical yield
is determined by the ratio of Je to the total absorbed flux of
electrons (JAPAR). The φP is calculated, based on the Genty
et al. (1989) relationship (see van der Tol et al., 2014), as
follows:

φP =
Je

JAPAR
=

Je

0.5APAR
, (2)

where JAPAR is the flux of electrons absorbed by photosys-
tem II, assumed to equal to half the APAR. In this study, the
APAR driving biochemistry is only that absorbed by chloro-
phyll, which differs from the original SCOPE model but is
consistent with understanding of light-harvesting (Fleming
et al., 2012). Equation (2) imposes the condition that the flux
of electrons produced from photochemistry must equal those
consumed by the photosynthetic dark reactions (van der Tol
et al., 2014). The remaining quanta are distributed between
chlorophyll fluorescence and NPQ, where NPQ is further
split into constitutive thermal dissipation (constitutive NPQ)
and energy-dependent, regulated thermal dissipation (regu-
lated NPQ).

From the Genty et al. (1989) relationship, the steady-state
φP equals the ratio of variable fluorescence to total fluores-
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cence: φP = (F
′
m−Ft)/F

′
m, where Ft is the steady-state flu-

orescence and F ′m is the maximal fluorescence under a sat-
urating pulse, indicating regulated NPQ. This evolved from
decades of research using pulse amplitude modulation fluo-
rescence measurements and theory (Baker, 2008). This rela-
tionship can be rearranged to the following:

φF = F
′
m(1−φP), (3)

Therefore, to obtain φF, a formulation for F ′m is required.
Understanding of the mechanisms driving F ′m are not yet
sufficient for a process-based model applicable in a canopy-
scale steady-state photosynthesis model; however, van der
Tol et al. (2014) showed that its variability could be captured
using an empirical formulation. Here, we use the empirical
fit to the drought data (Flexas et al., 2002; van der Tol et al.,
2014). It is known that regulated NPQ is controlled by bio-
chemical feedbacks (Zaks et al., 2013). It is therefore cal-
culated using an empirically derived equation and a variable
that describes the strength of the feedback termed the relative
light saturation of photosynthesis, defined as 1−φP/φ

0
P (see

van der Tol et al., 2014), where φ0
P is the maximum potential

photochemical yield with typical values of 0.83 (Björkman
and Demmig, 1987). Constitutive NPQ is also calculated, but
it is known to be low and relatively constant, although the
model does include a high temperature correction (van der
Tol et al., 2014). Chlorophyll fluorescence quantum yield can
thus be calculated by Eq. (3).

The photosystem I (PSI) and photosystem II (PSII) fluo-
rescence spectra are calculated by the Fluspect module based
upon the canopy structure, irradiance, biophysical properties
(i.e., leaf composition; pigment concentrations, mesophyll
structure and senescent and dry matter contents) and fluo-
rescence quantum efficiency values for low-light unstressed
conditions. Only the PSII fluorescence spectra is adjusted for
regulatory feedbacks, as PSI fluorescence is considered to
be relatively low and constant (Porcar-Castell et al., 2014).
This is modeled by scaling the PSII spectra with the ratio
φF from Eq. (3) (sometimes denoted by ηII) to the low-light
unstressed quantum yield (sometimes denoted by ηII(0)). Re-
absorption and scattering of fluorescence within the canopy
is calculated by a separate routine (van der Tol et al., 2009).
This is wavelength-dependent and occurs based on leaf com-
position and canopy structure. The fluorescence of canopy
elements are then numerically integrated over canopy depth
and orientation to determine the top-of-canopy SIF, similarly
performed for leaf photosynthetic rates to determine GPP.

Overall, the modeled link between SIF and GPP occurs via
the above equations. Therefore, variables (e.g., input param-
eters, environmental variables) that affect the photosynthetic
rate will also affect SIF via φF. This includes variables that
affect APAR, as APAR is an input to the leaf biochemistry
module. However, APAR not only modulates φF, but has the
additional, perhaps more significant effect of scaling the fluo-
rescence spectra. Furthermore, variables such as leaf compo-

sition or canopy structure can influence the escape probabil-
ity of fluorescence emission by re-absorption and scattering.

Between BETHY-SCOPE v1.0 used in Norton et al.
(2018) and v1.1 used here, the key changes are (i) the cor-
rection of an error in the Fluspect module where the fluores-
cence quantum efficiency (fqe) for PSI and PSII were set to
be equal, while SCOPE v1.53 sets fqe for PSI to be one-fifth
that of PSII, and (ii) the leaf biochemistry module is now
driven by green APAR (as mentioned above), rather than to-
tal APAR that is used in SCOPE v.153. Overall, in BETHY-
SCOPE the canopy radiative transfer, energy balance and
leaf biochemistry schemes of BETHY have been replaced
by the corresponding schemes in SCOPE. The spatial distri-
bution, vegetation (PFT) characteristics and carbon balance
are handled by BETHY. SCOPE therefore takes climate forc-
ing (meteorological and radiation data) and spatial informa-
tion from BETHY and returns GPP, enabling process-based
global simulations of GPP and SIF.

2.2 BETHY-SCOPE parameters

In this data assimilation system, the quantities to be opti-
mized are the biophysical parameters that relate to SIF and
GPP (see Table A1 in Appendix A). Parameters can be ei-
ther global or spatially differentiated by PFT. PFT-dependent
parameters enable differentiation between biophysical traits.
Two key parameters for this study, the maximum carboxyla-
tion rate at 25 ◦C (Vcmax) and chlorophyll a/b content (Cab),
are considered PFT-dependent. The Vcmax parameter is used
in most process-based terrestrial biosphere models as it is
a parameter of the photosynthesis model of Farquhar et al.
(1980). The Cab parameter is a parameter specific to the
SCOPE model and an important component of the canopy
radiative transfer scheme as it strongly influences both SIF
and APAR.

In total there are 41 parameters that are optimized by the
data assimilation system. The uncertainty associated with
each of these parameters is represented by a Gaussian prob-
ability density function (PDF). The mean and standard devi-
ation for the prior parameters are shown in Table A1. Choice
of the prior mean and uncertainty follow those used in previ-
ous studies (Kaminski et al., 2012; Knorr et al., 2010; Koffi
et al., 2015). For new parameters that are not well charac-
terized (e.g., SCOPE parameters) we assign relatively large
prior uncertainties and mean values in line with the default
SCOPE parameters and with Koffi et al. (2015) and Norton
et al. (2018). An exception is the Cab parameters, which are
assigned higher prior values than Norton et al. (2018), more
in line with physiological understanding.

Parameters exposed to the data assimilation system are
chosen based on previous sensitivity tests such as those per-
formed by Verrelst et al. (2015) and Norton et al. (2018).
This includes leaf composition parameters such as Cab, leaf
dry matter content (Cdm) and leaf senescent material frac-
tion (Cs). Also included are structural parameters such as leaf
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distribution function parameters (LIDFa, LIDFb), vegetation
height (hc) and leaf mesophyll structure, the prior values for
these were obtained from literature values and are assigned
to groups of PFTs that we assume have a generally similar
structural form (see Table A1). Physiological parameters are
also incorporated, including Vcmax and Michaelis—Menten
constants of Rubisco for CO2 (KC) and O2 (KO). Addition-
ally, the photosynthetic kinetic parameter for the maximum
oxygenation rate (Vomax) is included. Given the uncertainty
of Vomax and its importance for modeling GPP (von Caem-
merer, 2000), this may be an important parameter to consider
and is given by its ratio with Vcmax, aVo,Vc . Given this pa-
rameter also affects the relative specificity of Rubisco (Sc/o)
we calculate Sc/o explicitly following von Caemmerer (2000)
which differs from the original SCOPE model.

2.3 Satellite SIF observations

We use satellite SIF observations from the NASA Orbiting
Carbon Observatory-2 (OCO-2) (Sun et al., 2018). Launched
in July 2014, OCO-2 operates in a sun-synchronous orbit
with an overpass at approximately 13:30 local time and a re-
peat cycle of 16 d. Collecting approximately 24 spectra per
second, it has relatively high data density within the field of
view. OCO-2 has a ground-pixel size of 1.3×2.25 km2 and a
total swath width of 10.6 km. Full spatial mapping of SIF is
therefore not possible with OCO-2. However, the high spec-
tral resolution of OCO-2 allows for robust and accurate SIF
retrievals (Frankenberg et al., 2014; Sun et al., 2018).

Alternative satellite SIF datasets are also available, includ-
ing from the GOME-2 and GOSAT instruments (Franken-
berg et al., 2011a; Guanter et al., 2012; Joiner et al., 2011).
There are benefits and pitfalls in using these alternative data.
For example, GOME-2 and GOSAT provide longer time se-
ries going back to 2007 and 2009, respectively. GOME-2
also provides better spatial mapping compared with OCO-
2. However, there are known issues of sensor degradation
with GOME-2 (Zhang et al., 2018). The advantage of the
OCO-2 satellite is that it collects 8 times more spectra and
has a higher spectral resolution providing more robust and
data dense observations (Frankenberg et al., 2014; Sun et al.,
2018). We note that a formal comparison of these other
datasets is outside the scope of this study, but a recent com-
parison of TROPOMI and OCO-2 showed strong agreement
(Köhler et al., 2018).

We use the OCO-2 processed SIF-lite data files. For
details on the retrieval algorithm for the SIF data see
Frankenberg et al. (2014) and Sun et al. (2018). These
data are gridded at 2◦× 2◦ spatial resolution, equivalent to
the model grid resolution. We exclude soundings collected
over water as determined by the corresponding International
Geosphere-Biosphere Programme (IGBP) land classification
index (Friedl et al., 2010). We use instantaneous SIF at
757 nm and only soundings taken in nadir mode. Data are
also available at 771 nm; however, the signal at 757 nm is

stronger (Sun et al., 2018), and thus we only consider that
signal. The annual mean OCO-2 SIF for 2015 is shown in
Fig. 1.

There are potential limitations in using OCO-2 for global
mapping due to spatial coverage of the observations and sam-
pling bias of biomes, particularly if it differs from the as-
sumed biome types used in the model. We assessed the simi-
larity between the sampled IGBP land classification index of
the OCO-2 soundings and the BETHY-SCOPE PFTs to eval-
uate this limitation. Considering the differences in vegetation
classifications this is a qualitative test. Qualitatively, the oc-
currence of IGBP biome sampling appears to be similar to the
BETHY-SCOPE PFTs. Moreover, Frankenberg et al. (2014)
showed that despite the limited spatial coverage of OCO-2 it
provides a representative sampling of 1◦× 1◦ grid cell aver-
ages. We therefore do not perform any further filtering of the
data. Future studies may benefit from evaluating this in more
detail and performing the assimilation using observations at a
PFT-specific level rather than the grid cell level as is applied
here.

Observational uncertainty

The calculation of observational uncertainties is an important
aspect of any data assimilation study as it partly determines
posterior probabilities. We note two rather extreme cases in
calculating the uncertainty in the satellite observations of
SIF. The first is to take the average of the single measurement
precision error, considered an overestimate of the uncertainty
as it does not account for the sample size. Second is to calcu-
late the standard error, where the average of the single mea-
surement precision error is divided by the square root of the
number of observations, as applied in Parazoo et al. (2014).
Use of the standard error almost certainly underestimates the
uncertainty as it neglects correlated or systematic errors.

Therefore, to determine the measurement error of SIF (σ )
in a given grid cell (i), we sum the single measurement pre-
cision error (σe) of each sounding within that grid cell and
divide by the total number of soundings (ni). Dividing this
by one half scales it closer to the standard error but remains
a conservative estimate of the actual error.

σ =
1
2

∑
σe

ni
(4)

Calculated uncertainties are shown for January and
July 2015 in the Supplement, in Figs. S1 and S2. Statistical
tests on the results, using the so-called reduced chi-squared
statistic, allow us to test whether these observational uncer-
tainties are consistent with other aspects of this data assimi-
lation process, as outlined further below.
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2.4 Data assimilation system

To assimilate SIF into BETHY-SCOPE we require a min-
imization algorithm, cost function and error propagation
method. A variety of techniques are available for the op-
timization of terrestrial biosphere models and reviews are
available (Fox et al., 2009; Kaminski et al., 2013; MacBean
et al., 2016; Trudinger et al., 2007).

We utilize a probabilistic framework whereby quantities
(e.g., observations, model state variables, model process pa-
rameters) are represented by their PDF. These quantities are
treated as Gaussian, and thus can be described by their mean
and standard deviation. For the model parameters the mean
is denoted by x and error covariance matrix by Cx . We de-
note the prior parameter vector and covariance matrix by x0
and Cx0 , respectively, and the posterior parameter vector and
covariance matrix by xpost and Cxpost , respectively. For the
observations the mean is denoted by d . The error covariance
matrix in observation space, denoted by Cd , combines er-
rors in the observations and in their simulated counterpart,
i.e., model (Kuppel et al., 2013). Quantification of model
error can be performed through an assessment of model–
observation residuals following optimization (e.g., Kuppel
et al., 2013). We assess potential model errors in this study;
however, we do not explicitly account for this error in the
propagation of errors onto GPP; hence Cd accounts only for
errors in the observations. We point out that the uncertainty is
embodied in the error covariance matrices and that diagonal
elements represent the variance of the quantities while off-
diagonal elements represent error covariances between quan-
tities.

2.4.1 Assimilation procedure

The assimilation procedure finds the posterior PDF for the
target variables which, in this case, are the model process pa-
rameters. We assume Gaussian PDFs, so our posterior PDF
is described by its mean and standard deviation. The mean
is also the maximum posterior estimate which can be found
by minimizing a cost function (J ). The cost function, shown
in Eq. (5), quantifies the difference between the model sim-
ulated SIF (M(xn)) and SIF observations (d) and the depar-
ture of parameter values (xn) from the prior estimate (x0).
These differences are squared and normalized by the uncer-
tainties in the observations Cd and model parameters Cx , re-
spectively, allowing for more certain quantities to carry more
weight. J thus provides a measure of the model-observed
mismatch and the deviation from the prior information ac-
counting for uncertainties. We consider the optimization to
have converged on an optimal solution when the change in
the cost function is less than 1 % of the change that occurred
during the first iteration.

J =
1
2

∑(
(M(xn)− d)

2

Cd
+
(xn− x0)

2

Cx

)
(5)

To find the minimum of J we employ a quasi-Newton’s
method, which is a variational, iterative technique (p. 69
Tarantola, 2005). This algorithm requires a matrix of partial
derivatives of the observable with respect to model param-
eters, called the Jacobian matrix (H), calculated using finite
differences. H is therefore a representation of the sensitivity
of model-simulated SIF to each model parameter.

The quasi-Newton algorithm assumes weak nonlinearity
in the model. This approximation is better than assuming
a linear model, but not as useful as having a model adjoint
where the entire parameter space can be efficiently examined
(Kaminski et al., 2013). With this assumption the model is
presumed to be linear about the point where H is calculated.
However, to account for nonlinearities in the model we recal-
culate H after each iteration of the algorithm. Given a single
“global” minimum of J , this algorithm will converge upon it
(Tarantola, 2005). There is still potential that the algorithm
will converge upon a local minimum in J .

For each iteration n of the algorithm the parameter vector
(xn) is updated using Eq. (6). This adjusts for nonlinearity by
performing a forward run of the full nonlinear model at each
iteration (M(xn)). It takes the following form:

xn+1 = xn−µ
(
Cx0 +HT C−1

d H
)−1(HT C−1

d (M(xn)− d)

+C−1
x (xn− x0)

)
, (6)

where µ is a step-size (set to 0.2) as required in gradient-
based techniques (Tarantola, 2005). In a case where the pa-
rameter update produces values that are unphysical (e.g.,
negative Cab), they are reset to the nearest physical value for
the next iteration.

Alongside J the reduced chi-squared (χ2
r ) statistic is used

to assess the match with the observations. Shown in Eq. (7)
below, χ2

r measures the goodness of fit per observation ac-
counting for observational uncertainties, where N is the
number of degrees of freedom which is equal to the total
number of observations in our case.

χ2
r =

2J
N

(7)

Under the Gaussian assumption this widely applied sta-
tistical test assesses the appropriateness of our assumed un-
certainties. With a χ2

r value of 1 the statistical assumptions
that underlie our procedure, including the assumed errors,
are consistent with the model–data mismatch (see Tarantola,
1987, p. 212). This means the fit to the data is as good as the
assumed distributions say it should be. Informally, this would
mean we are neither over-fitting or under-fitting the data.

2.4.2 Error estimation

For linear and weakly nonlinear problems Gaussian proba-
bility densities propagate forward through to Gaussian dis-
tributed quantities (Tarantola, 2005), termed linear error
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propagation. The posterior parameter errors, Cxpost , are es-
timated using linear error propagation as shown in Eq. (8) as
follows:

C−1
xpost
= C−1

x0
+HTC−1

d H, (8)

where H is calculated at the posterior (i.e., xpost). Rayner
et al. (2005) demonstrated how to propagate these param-
eter uncertainties forward through a model onto simulated
quantities such as carbon fluxes. Using the Jacobian rule for
probabilities, parameter uncertainties in the model parame-
ter covariance matrix (Cx0 and Cxpost ) can propagate forward
onto GPP using Eq. (9): this determines the error covariance
of GPP (CGPP).

CGPP =HGPPCxHT
GPP, (9)

where HGPP is the model Jacobian with respect to GPP. To
calculate the prior error covariance of GPP, HGPP is calcu-
lated about the prior parameter vector and Cx equals Cx0 . To
calculate the posterior error covariance of GPP, HGPP is cal-
culated about the posterior parameter vector and Cx equals
Cxpost . The difference between these two cases determines
the change in GPP error covariance and therefore the uncer-
tainty reduction in GPP.

2.5 Experimental setup

In this study BETHY-SCOPE is run for the year 2015. This
constitutes the optimization (or calibration) period. We then
assess the optimized model performance against independent
OCO-2 observations outside of the optimization period from
September to December 2014.

The model is run on a 2◦× 2◦ grid resolution. Cli-
mate forcing data are provided in the form of monthly
meteorology (precipitation, minimum and maximum tem-
peratures, and incoming solar radiation) obtained from the
WATCH/ERA Interim dataset (WFDEI; Weedon et al.,
2014). These are used to derive average diurnal cycles of me-
teorological forcing. Thus, a single average diurnal cycle of
meteorological forcing for each month is used to simulate
photosynthesis and fluorescence. This allows the computa-
tion of SIF at the equivalent overpass time as the satellite data
(13:00–14:00 local time). The model SIF is also calculated at
the equivalent wavelength to the OCO-2 SIF data (757 nm).
Atmospheric CO2 concentration is set to the 2015 annual av-
erage. LAI is prescribed to the model using the MODIS im-
proved LAI dataset (Yuan et al., 2011). The LAI is averaged
at the model 2◦× 2◦ grid resolution and for each grid cell it is
split between PFTs using the model PFT grid cell fractional
coverage.

2.6 Global GPP products for comparison

To assess the SIF-optimized global GPP we compare the
model prior and posterior GPP to other global GPP products.

The first dataset for comparison is an upscaled product based
on site-level measurements termed FLUXCOM GPP (Tra-
montana et al., 2016). The FLUXCOM GPP product uses
various machine-learning techniques to empirically upscale
flux tower data using remote sensing and meteorological data
as the predictor variables. Here, we use the ensemble aver-
age of the FLUXCOM GPP product that uses remote sens-
ing data exclusively (Tramontana et al., 2016). The second
dataset for comparison is an ensemble of 11 global dynamic
vegetation models forced with equivalent climate fields and
atmospheric CO2 concentration that were used to investigate
trends in sources and sinks of CO2 (TRENDY; Sitch et al.,
2015). It is important to note that global GPP is highly uncer-
tain and that both the FLUXCOM GPP and TRENDY GPP
estimates are based on their own model assumptions and/or
sparse measured data (Anav et al., 2015). Therefore, these
data are used to evaluate whether the SIF assimilation results
in global patterns of GPP that align with the current under-
standing and not for extensive validation purposes.

3 Results

There is an abundance of results that may be presented from a
global data assimilation study with SIF. First, we present the
model fit to the observed SIF for the prior and posterior cases
and for the calibration and validation periods. Second, we
examine the estimated parameters and their associated un-
certainties. Third, we present the spatiotemporal patterns of
model GPP alongside other model GPP products. Finally, we
present derived quantities from the model including APAR
and photosynthetic light-use efficiency.

3.1 Assimilation with SIF

Here we show how the model compares with the observed
SIF (shown in Fig. 1) for the prior and posterior cases and
for the calibration and validation periods. The goodness of
fit between modeled and observed SIF is assessed using mul-
tiple metrics. The χ2

r fit is a key metric (see Eq. 7). Differ-
ences between the model and observations (“residual”) and
the squared residual normalized by the observational vari-
ance (“mismatch”) are also used. The mismatch is a measure
of the difference between the model and observations ac-
counting for observational uncertainties, indicating the con-
tribution grid cells make toward the cost function. The model
fit during the calibration period is presented in more detail as
there is more data. The model fit during the validation pe-
riod provides a more stringent test of the assimilation per-
formance. We then show the performance of an additional
model simulation testing seasonal variation in parameters.

3.1.1 Calibration

The model prior SIF (SIFprior) over the calibration period
yields a global χ2

r fit of 2.45. Large residuals in the annual
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Figure 1. Annual mean observed SIF from the OCO-2 satellite for
2015.

Figure 2. Annual mean residual between model SIFprior and ob-
served SIF for 2015.

mean, shown in Fig. 2, are evident across the globe, ranging
from −0.87 to +1.20 Wm−2 µm−1 sr−1. Generally, SIFprior
overestimates observed SIF across regions dominated by
tropical forest (e.g., the Amazon, western equatorial Africa
and Maritime Continent), boreal forest (parts of North Amer-
ica and Eurasia) and semiarid regions (e.g., central Australia,
central Asia and southern Africa). SIFprior tends to underesti-
mate observed SIF across the rest of the land, in particular for
regions dominated by croplands (e.g., American Midwest,
parts of Europe, India, eastern Asia), mixed forests (across
Europe and Asia), and grassland and savanna regions (e.g.,
the African savanna and Brazilian Highlands of South Amer-
ica). Latitudinal averages, shown in Fig. 4, also show these
spatial patterns for SIFprior. Overestimation of observed SIF
is seen over the central tropics between 15◦ S and 5◦ N, a re-
gion dominated by tropical evergreen forest (TrEv), whereas
there is significant underestimation of observed SIF over the
Northern Hemisphere, particularly during northern summer
(see Fig. 5).

Following the assimilation, the model shows a consider-
ably better fit to the calibration data. The global χ2

r fit is
strongly reduced from 2.45 to 1.01. This is close to the op-
timal value of 1, demonstrating the ability of the optimized
model to fit the observed patterns of SIF and validating our

Figure 3. Annual mean residual between model SIFpost and ob-
served SIF for 2015.

chosen uncertainties as far as is practicable, including the
choice of the scaling used to calculate observational uncer-
tainties in Eq. (4). Annual mean residuals between model
posterior SIF (SIFpost) and the observations, shown in Fig. 3,
range between −0.58 and +0.45 Wm−2 µm−1 sr−1, consid-
erably smaller than SIFprior. The spatial patterns of posterior
residuals (Fig. 3) show that the regional patterns of resid-
uals broadly exhibit the same sign as the prior case albeit
with a significantly reduced magnitude. For the latitudinal
averages, SIFpost is remarkably close to the observed SIF
for the annual average (Fig. 4). However, discrepancies are
evident for the northern summer averages for both SIFprior
and SIFpost (Fig. 5), where observed SIF is underestimated
in the Northern Hemisphere and overestimated in the South-
ern Hemisphere.

Latitudinal sums of the mismatch between the model and
the observations (bar charts in Figs. 4 and 5) also show a
significant reduction (i.e., improvement in fit) following the
assimilation. Comparison of the gray and green bars, indi-
cating the respective prior and posterior mismatch, show that
this improvement in fit occurs over all latitudes at the an-
nual and northern summer timescales. The total annual mis-
match between SIFpost and the observations is about 40 %–
80 % smaller across the latitudes between 40◦ S and 60◦ N
relative to SIFprior.

Despite the strong improvement in fit, SIFpost
tends to underestimate large observed SIF values
> 1.0 Wm−2 µm−1 sr−1, shown in the Fig. S4. A linear
regression line between the observed SIF and SIFpost
has a slope of 0.67. Furthermore, while the observed
SIF for any given month and grid cell can reach up
to 2.29 Wm−2 µm−1 sr−1, SIFprior does not exceed
1.98 Wm−2 µm−1 sr−1 and SIFpost does not exceed
1.43 Wm−2 µm−1 sr−1. The SIFprior does not show this
systematic underestimation, however, but it has a poorer
global fit (Fig. S3). We note that these large observed
SIF values occur mostly over the tropics and the northern
midlatitudes during the peak growing season.
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Figure 4. Latitudinal averaged SIF and mismatch with observa-
tions. OCO-2 observations (black line), SIFprior (gray dashed line,
gray bars) and SIFpost (green line, green bars) for the annual aver-
age. Data are only shown for spatiotemporal points where OCO-2
observations are present.

Figure 5. Latitudinal averaged SIF and mismatch with observa-
tions. OCO-2 observations (black line), SIFprior (gray dashed line,
gray bars) and SIFpost (green line, green bars) for northern sum-
mer (June–August). Data are only shown for spatiotemporal points
where OCO-2 observations are present.

From Fig. 3 it appears that SIFpost overestimates observed
SIF over arid regions (e.g., the Sahara, Atacama and Namib
deserts, central Australia and central Asia). This occurs pri-
marily because the observed SIF is slightly negative (see
Fig. 1), potentially due to measurement noise or issues from
the correction of constant error artifacts in the SIF retrieval
(Sun et al., 2018). Negative SIF values are still considered
in the assimilation system. However, they contribute little to
the overall mismatch given the uncertainty in the SIF obser-
vations (see Figs. S8 and S9).

3.1.2 Validation

To validate the optimized model we assess the model fit to
independent OCO-2 SIF data from September to December
2014, outside of the calibration period. The global χ2

r for

SIFprior is 2.57, while SIFpost is 1.06 (Figs. S5 and S6). This
indicates a strong improvement in fit following the SIF as-
similation. Comparison of SIFpost with the validation data
shows that large SIF values (> 1.0 Wm−2 µm−1 sr−1) are
systematically underestimated, similar to the fit to calibra-
tion data. For these validation data, these large SIF values
typically occur over tropical forest, grassland and cropland
regions.

3.1.3 A case with seasonally varying parameters

Most terrestrial biosphere models assume process parame-
ters are constant through time despite evidence showing that
some of these biophysical variables (e.g., Cab, Vcmax) vary in
response to resource availability (e.g., Demarez, 1999; Wang
et al., 2007; Wilson et al., 2000; Xu and Baldocchi, 2003;
Zhang et al., 2014). At present the BETHY-SCOPE model
does not include any mechanism for varying these with time,
other than a temperature correction for Vcmax. Given this, we
expect that assuming these parameters are temporally con-
stant will contribute to the disparity between the modeled and
observed SIF, particularly for more seasonal vegetation.

Thus, an additional comparison is made where we apply
a simple seasonal cycle to Cab and Vcmax parameters for the
posterior model. We set the annual mean to be the posterior
Cab and Vcmax values and apply a seasonal cycle by using a
sine function that has a period of 1 year, a maximum on the
summer solstice (i.e., 22 December in the Southern Hemi-
sphere and 22 June in the Northern Hemisphere) and an as-
signed amplitude (see Eqs. S1 and S2 in the Supplement). For
highly seasonal PFTs including deciduous trees and shrubs,
C3 and C4 grasses, and crops, the amplitude is set to 50 %
of the mean, while for all other PFTs the amplitude is set to
10 %. While this seasonal cycle is arguably oversimplified,
this still provides us with a simple sensitivity test to investi-
gate whether introducing a more formal seasonal variation in
Cab and Vcmax would improve the fit with the observed SIF.

Implementation of seasonally varying Cab and Vcmax re-
sults in a moderate improvement in fit with the observed SIF
(Fig. S7). The posterior χ2

r fit improves from 1.01 to 0.91
given the seasonally variable parameters (SIFpost,seas). Both
the coefficient of determination (R2) and slope of a linear
regression line improve with SIFpost,seas, with R2 increasing
from 0.74 to 0.77 and the slope increasing from 0.67 to 0.71
(Fig. S7). This indicates that the systematic underestimation
of large observed SIF values may be improved. Furthermore,
the χ2

r fit to the observed SIF data > 1.0 Wm−2 µm−1 sr−1

shows a strong improvement given seasonally varying pa-
rameters, going from 3.97 for SIFpost to 2.99 for SIFpost,seas.
The χ2

r fit to low SIF values (< 0.25 Wm−2 µm−1 sr−1) also
improves from 0.56 for SIFpost to 0.50 for SIFpost,seas. No-
tably, when the fit is assessed per PFT (i.e., grid cells with the
same spatially dominant PFT are considered together) the χ2

r
fit improves for all of these “biomes”.
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Figure 6. Seasonal amplitude of observed SIF versus the model-
observed mismatch for the SIF optimized (SIFpost) model. Mis-
match is defined as the squared residual normalized by the ob-
servational uncertainty (expressed as variances). A positive curvi-
linear relationship exists such that spatiotemporal points with a
large model-observed mismatch generally also exhibit a large ob-
served seasonal amplitude.

3.1.4 Fit to the seasonal cycle

We can also assess the seasonal cycle of SIF to determine
how well the model simulates the amplitude of observed SIF.
First, we assess how well the model replicates the seasonal
amplitude of observed SIF across all spatial points. Second,
we assess the seasonal patterns of SIF for a selection of case
study regions in more detail. We avoid assessing the seasonal
cycle of SIF aggregated at global or hemispheric scales as re-
gional patterns of residuals can differ in sign and magnitude
(e.g., see Fig. 3). The seasonal amplitude of observed SIF is
calculated as the difference between the maximum and min-
imum SIF across the year for each grid point. To increase
confidence that the observations really capture the seasonal
cycle, we only assess grid points with at least 8 months of
observed SIF data. In doing so, most regions north of 60◦ N
are excluded due to limited SIF observations. We do not as-
sess the timing of the seasonal cycle (e.g., start and end of
the growing season) as this is largely driven by LAI which is
prescribed and therefore fixed in this study.

The comparison of the seasonal amplitude of observed SIF
against SIFprior, SIFpost and SIFpost,seas is shown in Fig. S10.
The model underestimates the observed seasonal amplitude
in all cases. With a perfect match to the observed seasonal
amplitude the model would follow the 1 : 1 line and the slope
of a linear regression line would equal 1. However, we find
that the slope is 0.21 for SIFprior, 0.35 for SIFpost and 0.43
for SIFpost,seas. Spatial points with the largest seasonal varia-
tions in observed SIF also exhibit the largest model-observed
mismatch (Fig. 6).

For a more detailed assessment of seasonal patterns we in-
vestigate three case study regions: (i) the tropical forest of
mainland southeast Asia, (ii) croplands in North America

and (iii) the north African savanna (see Figs. S11–S15 for
details). These regions are selected as they represent quite
different biome types, exhibit varied SIF patterns and have
relatively large posterior model-observed mismatch.

The tropical evergreen forest of mainland southeast Asia
exhibits a clear seasonal cycle in observed SIF. The monthly
mean observed SIF averaged over this region varies from
a minimum of ∼ 0.6 Wm−2 µm−1 sr−1 in March to a max-
imum of ∼ 1.4 Wm−2 µm−1 sr−1 in August (see Fig. S11).
Both SIFprior and SIFpost exhibit seasonal cycles that differ
strongly from the observations, with little change in the shape
of the seasonal cycle from the prior to posterior simulations.
Model SIF shows a minimum in July and two maximums in
February and November, following the seasonal evolution of
LAI (see Fig. S11), which we reiterate is prescribed. This
results in strong negative temporal correlations between ob-
served SIF and model SIF as over this region.

Croplands in North America are heavily managed land-
scapes with highly productive vegetation as indicated by
the large observed SIF values during the growing season.
Even with the monthly averages used here, observed SIF
can exceed 2.0 Wm−2 µm−1 sr−1. As presented earlier, the
model SIF cannot match the seasonal amplitude of ob-
served SIF and subsequently underestimates the maximum
monthly SIF averaged over this region by almost 40 %
(0.45 Wm−2 µm−1 sr−1) (see Fig. S13). The fit is improved
in SIFpost,seas (χ2

r (SIFpost)= 4.62; χ2
r (SIFpost,seas)= 3.10).

In both cases the timing of seasonal maximum and senes-
cence is simulated quite well, while the onset of the growing
season is predicted to be too early.

The north African savanna exhibits a strong seasonal cy-
cle in observed SIF. This region is dominated by grasslands
and open forest, with a seasonality closely following the sea-
sonal variation in precipitation. Averaged over the region,
observed SIF varies from 0.07 Wm−2 µm−1 sr−1 in January
to 0.77 Wm−2 µm−1 sr−1 in September (see Fig. S15). How-
ever, SIFpost exhibits a much smaller seasonality with varia-
tion from 0.24 to 0.48 across the year, only 34 % of the ob-
served seasonal amplitude. Temporal correlations are quite
strong, however, as model SIF also reaches its peak in
September.

3.2 Estimated parameters

The prior and posterior parameter mean values and associ-
ated uncertainties are shown in Table A1. In this data assim-
ilation system the number of observations far outweighs the
number of unknowns. This means that there is a substantial
amount of observational information available to constrain
parameter values, and thus they can shift from their prior
values considerably even if given a relatively tight prior un-
certainty. We can be more confident in parameters that see
large reductions in uncertainty. Conversely, parameters with
little reduction in uncertainty following optimization should
be accepted cautiously.
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Posterior Vcmax estimates range from 16 to
130 µmolm−2 s−1. The lowest posterior rates occur for
the TmpEv, C4Gr, Tund and Wetl PFTs, all equal or below
30 µmolm−2 s−1. The highest posterior rates occur for the
Crop and C3Gr PFTs, both exceeding 100 µmolm−2 s−1.
Out of 13 PFTs, 9 see an increase in Vcmax. Increases greater
than 2 standard deviations occur for the PFTs TmpDec,
EvCn, C3Gr, C4Gr and Tund, many of which dominate
temperate regions. Latitudinal averages of Vcmax (Fig. S19)
show a strong increase in temperate-zone Vcmax following
the SIF assimilation, shifting it higher than Vcmax in the
tropics. Zonally, the lowest Vcmax occurs in the cold-climate
high latitudes. Most of these parameters see moderately
strong uncertainty reductions (> 30 %), indicating strong
constraints from SIF.

Posterior Cab estimates range from 8 to 38 µgcm−2. Out
of 13 PFTs, 9 see a decrease in Cab. The highest posterior
Cab values occur for the TrEv, TmpEv, TmpDec, DecCn and
Crop PFTs, all > 25 µgcm−2, while the lowest values occur
for the EvShr, Tund and Wetl PFTs, all < 15 µgcm−2. Un-
certainty reduction ranges from weak to moderately strong
for the Cab parameters, with a maximum constraint of 34 %.
Latitudinal averages of posterior Cab show a relatively low
variance across different zones (Fig. S20), with posterior val-
ues being similar between the tropics and temperate mid-
latitudes, albeit with a distinct dip in drier subtropics and
high latitudes. The leaf composition parameter for dry mat-
ter content, Cdm, increases by about 70 % and an uncertainty
reduction of about 20 %. The leaf composition parameter
for senescent material remains almost unchanged and shows
only a very weak uncertainty reduction of about 1 %.

Parameters that control canopy structure and the leaf an-
gle distribution see large deviations from their prior val-
ues. Some leaf angle distribution parameters, LIDFa and
LIDFb, shift considerably. SIF is particularly sensitive to
the LIDFa and LIDFb parameters, although this depends on
which group of PFTs they pertain to, and so these param-
eters have uncertainty reductions of up to 90 %. Vegetation
height for both trees and shrubs remain relatively unchanged,
while vegetation height for grasses and crops see a decrease
of over 4 standard deviations. However, the uncertainty re-
duction of the vegetation height parameters is very weak
(< 1 %). Despite these changes GPP is relatively insensitive
to the canopy structure parameters.

3.3 Estimated GPP

The spatial patterns of posterior GPP and the changes fol-
lowing the SIF assimilation are shown in Figs. 7–11. Follow-
ing the assimilation of SIF global GPP increases by about
39 PgCyr−1, from 127.6 to 166.7 PgCyr−1. This change
shifts BETHY-SCOPE further from the TRENDY mean
(142.4 PgCyr−1) and FLUXCOM GPP (103.3 PgCyr−1) es-
timates. The parametric uncertainty in global GPP is reduced

Figure 7. Spatial patterns of BETHY-SCOPE posterior annual
mean GPP (GPPpost) for 2015.

Figure 8. Change in annual mean GPP rate for 2015 following op-
timization with SIF relative to GPPprior.

by 38 % from ±7.4 to ±4.6 PgCyr−1 by the SIF assimila-
tion.

Spatially, increases in annual GPP are seen across much
of the land surface as shown in Fig. 8 (see Fig. S17 for
the percentage change in GPP). Declines in GPP are seen
in dry tropical forests in parts of South America, Africa and
mainland Asia (TrDec PFT; also shown in Fig. 9). Globally,
TrDec-dominated forests see a decline in total GPP of 23 %.
Two other biomes, TmpEv and DecShr, show a decline in
global GPP; however, their contribution to global GPP is rel-
atively small (see Fig. 9). The global GPP of TrEv forest
biomes, including the Amazon, equatorial Africa and Mar-
itime Continent, increase by about 20 %. In relative terms,
the largest increases in global GPP occur for TmpDec, EvCn,
C3Gr and C4Gr, all > 60 %. We note that these changes
in model GPP can differ in sign and magnitude from the
changes in model SIF (see Figs. 8 and S18). This can oc-
cur as SIF and GPP have differing sensitivities to the un-
derlying parameters, a result of the process-based approach.
For example, the wet tropical forests (TrEv) and cold-climate
conifer forests (EvCn) see an increase in GPP but decline in
SIF.
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Figure 9. Annual GPP for 2015 per biome. Biomes are defined by
aggregating model grid cells that have the same spatially dominant
PFT as shown in the Fig. A1 in Appendix A.

Figure 10. Annual latitudinal averages of GPPprior (gray line),
GPPpost (green line), FLUXCOM GPP (orange line), TRENDY
model average (light blue line) and TRENDY model spread given
by the 10th and 90th percentiles (light blue shading).

Averaged over latitudinal bands (Figs. 10 and 11) we can
see the distinctive peak in GPP across the tropics at the an-
nual timescale and secondary peak in GPP across the north-
ern midlatitudes during the northern summer. With the assim-
ilation of SIF the GPP across all latitudes increases. Some
regions and seasons see larger changes. Across the central
tropics (15◦ S–5◦ N; dominated by the PFT TrEv), GPP in-
creases substantially. For this region, the prior and posterior
estimates are near the high end of other estimates, with the
posterior GPP exceeding the 90th percentile of TRENDY
models (blue shading). FLUXCOM GPP is very low in the
central tropics, but we note that this product is not expected
to be representative of the tropics given the sparsity of the
flux tower network there (Tramontana et al., 2016). The
northern extratropics (30–60◦ N) show a general increase in
BETHY-SCOPE GPP, with the SIF assimilation shifting it to

Figure 11. Northern summer (June–August) latitudinal averages of
GPPprior (gray line), GPPpost (green line), FLUXCOM GPP (or-
ange line), TRENDY model average (light blue line) and TRENDY
model spread given by the 10th and 90th percentiles (light blue
shading).

the higher end of other estimates. This is particularly strong
during northern summer (Fig. 11). While the prior GPP in
this region is within the TRENDY model range and close to
the FLUXCOM GPP, the SIF assimilation results in a poste-
rior that exceeds the 90th percentile of the TRENDY model
range. North of 65◦ N the prior closely matches FLUXCOM
GPP, but the posterior sees an increase which brings it more
in line with the TRENDY model average. There is also a
distinct difference between the FLUXCOM GPP product
and all models north of 75◦ N, with FLUXCOM GPP being
higher. BETHY-SCOPE posterior GPP over the southern lat-
itudes south of 15◦ S is generally within the TRENDY model
range. In this region, the prior GPP is near the bottom of the
TRENDY model range, although this shows closer similarity
to the FLUXCOM GPP.

A useful metric for patterns of global productivity is the
ratio of GPP between different regions. These ratios are sum-
marized in Table B1 in Appendix B. The ratio of the tropics
(30◦ S–30◦ N) to the extratropics (south of 30◦ S and north
of 30◦ N) declines following the SIF assimilation, due to a
relatively larger increase in extratropical GPP compared to
tropical GPP. This shifts the ratio of tropical to extratropi-
cal GPP from a prior of 2.47 to a posterior of 1.94, which
is substantially closer to patterns of the FLUXCOM (1.90)
and TRENDY (1.93) mean. Similarly, the ratios of the trop-
ics to the boreal region (north of 55◦ N), tropics to the tem-
perate region (south of 30◦ S and north of 30–55◦ N) and the
temperate to boreal region converge toward the FLUXCOM
values (see Table B1).

We also note an improvement in the correlation between
the BETHY-SCOPE estimate and the FLUXCOM GPP over
North America (see Figs. B1 and B2 in Appendix B) and Eu-
rope (data not shown), two regions where FLUXCOM GPP
has considerably more training data. Over North America the
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Figure 12. Per PFT LUEGPP for the prior and posterior simula-
tions. Values were determined by monthly average GPP divided by
monthly averaged APAR, then averaged to annual scales thus aver-
aging over seasonal variations. Note that the theoretical maximum
is 0.08 molCmolphotons−1 (Waring et al., 2016).

correlation improves from a prior R2
= 0.80 to a posterior of

R2
= 0.89, while over Europe the correlation improves from

a prior R2
= 0.76 to a posterior of R2

= 0.86. Despite this
improvement in match between the patterns, the posterior
slope is 1.6 for North America and 1.8 for Europe, indicating
that the magnitude of posterior monthly GPP is larger than
that of FLUXCOM GPP.

Changes in GPP due to changes in parameter values can be
broken down into changes in intercepted radiation (APAR)
and canopy photosynthetic light-use efficiency (LUEGPP).
The LUEGPP is calculated as the annual average of the ratio
between monthly GPP to monthly APAR. Overall, the major-
ity of biomes see an increase in LUEGPP following the SIF
assimilation, shown in Fig. 12. Just three biomes, TrDec, Tm-
pEv and DecShr, see a decline in LUEGPP. These biomes are
the same that see a decline in annual GPP (comparing Figs. 8
and B4). This can be related back to the general increase
in Vcmax for most PFTs (Table A1) and latitudes (Fig. S19).
Changes in APAR are smaller in relative terms and show dis-
tinct regional differences (Fig. B6). With the exception of
low-productivity arid regions, the largest percentage change
in APAR occurs for the high-latitude tundra biome with ap-
proximately a 20 % increase in APAR, due primarily to an
increase in Cab. Wet tropical forests see a decline in APAR of
about 5 %, while drier tropical biomes (e.g., Brazilian High-
lands, north African savanna) see an increase of< 5 %. Other
regions show only minor shifts in APAR.

4 Discussion

The use of satellite-derived SIF in a data assimilation system
has substantially improved the performance of the BETHY-
SCOPE model against calibration and validation SIF obser-

vations. The posterior model fit is similarly good between the
validation period (χ2

r = 1.06) and calibration period (χ2
r =

1.01), indicating that the model performs similarly well out-
side of the assimilation period. We show that with the in-
clusion of seasonal variations in biophysical quantities (e.g.,
Cab and Vcmax) the fit to SIF can be improved further as
well as provide a better representation of ecosystem func-
tion. We highlight that the improvement in fit following the
assimilation occurs given equivalent LAI fields. Overall, as-
sessing the optimized model in this way is a key validation
test and highlights the improvement following the assimila-
tion. While this is the most stringent validation we can carry
out with the available data (considering the available OCO-2
and model meteorological forcing data), future work should
consider longer periods to sample more varied climatic con-
ditions. Assessment against other satellite SIF products (e.g.,
GOME-2, GOSAT, TROPOMI) is also feasible provided that
careful consideration is taken of the instrumental differences.

The SIF-optimized model produces a global GPP of
166.7 PgCyr−1 for 2015. This is an increase of 31 % rel-
ative to the prior and is due to increases in GPP in both
tropical and extratropical regions. Other approaches to quan-
tify GPP globally have produced a large range of esti-
mates over different periods including 119 PgCyr−1 (Jung
et al., 2011), 146 PgCyr−1 (Koffi et al., 2012), 157 PgCyr−1

(Peylin et al., 2016) and 175 PgCyr−1 (Welp et al., 2011).
As pointed out by a recent review of global GPP (Anav
et al., 2015), validating GPP estimates at these large scales
is highly challenging. Nevertheless, the substantial improve-
ment in fit with SIF data during the calibration and valida-
tion periods provides some confidence in the overall spa-
tial patterns (Figs. 4, 5, S3–S6). Indeed, the correlation of
BETHY-SCOPE GPP with the FLUXCOM GPP over North
America and Europe, regions with many calibration sites,
improves with the assimilation of SIF observations despite
showing a higher magnitude. This suggests that the SIF as-
similation brings about better agreement on the spatial pat-
terns but disagreement on the magnitude. While there is no
wholly measurement-based GPP with which to validate our
GPP estimate (Anav et al., 2015), there is some recent evi-
dence that is consistent with the results that the productivity
of the northern midlatitudes may be higher than previously
thought. Badgley et al. (2018), for example, used measure-
ments of near-infrared reflectance of vegetation (NIRv) and
flux tower data to upscale GPP, producing a higher GPP in
midlatitude ecosystems than the FLUXCOM product. This
occurred even though the two methods have similar predic-
tive capabilities of flux tower GPP (Tramontana et al., 2016).
Furthermore, evidence from SIF-based estimates of cropland
GPP, such as the American Midwest, produce GPP that is
50 %–75 % higher than most models predict (Guanter et al.,
2014). Further analysis is required to assess if this is consis-
tent with other measured data such as carbonyl sulfide, an-
other proxy for GPP (Campbell et al., 2008).
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The SIF assimilation also alters the distribution of global
GPP. Here, we find that extratropical ecosystems contribute
relatively more to global productivity with the SIF assim-
ilation. Despite an increase in the GPP rate over the trop-
ics, their relative contribution reduces from 71 % to 66 % of
global productivity (see Table B1). This result differs from
both MacBean et al. (2018) and Parazoo et al. (2014), as
they found relatively larger increases in tropical GPP such
that tropical ecosystems contributed more to global produc-
tivity following the assimilation of SIF data. Nevertheless, it
is difficult to reconcile the relative and absolute changes in
GPP across these studies.

Perhaps the largest difference between the approach ap-
plied here and the studies of MacBean et al. (2018) and Para-
zoo et al. (2014) is that here we apply a process-based rela-
tionship between SIF and GPP. The results here demonstrate
that with the consideration of the underlying processes, the
model can increase SIF in some regions to better fit the ob-
served data, but they also show a decline in GPP (Figs. 8
and S18). This cannot occur when applying a linear scaling
approach. Such patterns (e.g., wet tropical forests) are due
to canopy composition and structure parameters such as leaf
angle distribution, which can have a large effect on SIF but
small effect on GPP. Conversely, parameters such as Vcmax
have a large effect on GPP and relatively smaller effect on
SIF. This highlights the point that SIF and GPP do not re-
late to biophysical parameters in the same way, casting some
doubt on the use of a linear scaling approach for inverse stud-
ies. Field-based studies applying a process-based data assim-
ilation system with SIF, supplemented by other ecophysio-
logical measurements, should be aimed at testing these un-
derlying relationships and the dynamical limitations of how
SIF and GPP relate mechanistically. Doing so may allow for
improved retrieval of biophysical quantities (e.g.,Cab, Vcmax)
based on the current theory of their relationship to SIF, with
consideration of nonlinear effects such as leaf and canopy
radiative transfer and the relationship of quantum yields to
photosynthetic rate.

The uncertainty reduction from the SIF assimilation is
weak to moderate for leaf composition parameters, moderate
for canopy structure parameters, and moderate for leaf phys-
iological parameters. The SIF-constraint on these parameter
uncertainties results in a moderate overall reduction of para-
metric uncertainty in global annual GPP of 38 %. This dif-
fers from previous work that found an uncertainty reduction
in global GPP of 73 % using a different version of the same
model (Norton et al., 2018) and 83 % using a different model
(MacBean et al., 2018) which could be due to a number of
reasons. Firstly, compared with Norton et al. (2018) we use
prescribed LAI rather than a prognostic LAI model. Param-
eters that control LAI were found to be effective at propa-
gating information from SIF to GPP (Norton et al., 2018).
The choice to use prescribed rather than prognostic LAI was
made due to clear issues with the model simulated LAI, an
issue outside the scope of this study. Secondly, there is a

much larger constraint of Vcmax and smaller constraint of Cab
found here compared to Norton et al. (2018). This is in part
because of a correction of an error in Fluspect in BETHY-
SCOPE v1.0 (see Sect. 2.1). In BETHY-SCOPE v1.1, the
contribution of PSII to canopy SIF will be relatively larger
than v1.0. PSII is sensitive to biochemical feedbacks while
PSI is not; hence SIF is more sensitive to Vcmax. Also in-
fluencing the constraint of Vcmax is the assignment of larger
priorCab values and lower prior uncertainties. This shiftsCab
into a range that is more likely to occur under typical condi-
tions considering values < 15 µgcm−2 strongly reduce light
interception and limit photosynthesis (Björkman, 1981; Hi-
rose and Werger, 1987). GPP is strongly sensitive to Cab only
when light strongly limits photosynthetic rate (e.g., when
Cab < 15 µgcm−2) (Björkman, 1981) and it is under these
conditions that the SIF-constraint of Cab will propagate onto
GPP effectively. With more physically defensible Cab val-
ues, other parameters (including Vcmax) become relatively
more important in simulating SIF; hence, Vcmax parameters
here exhibit a stronger constraint from SIF compared to Nor-
ton et al. (2018). This also suggests that SIF may provide
good constraint on GPP under both light-limited and light-
saturating conditions. Additionally, in MacBean et al. (2018)
a much stronger constraint of Vcmax was found as there was
no process-based relationship between SIF and GPP such
that information is passed directly via linear scaling parame-
ters (i.e., the slope and intercept) to GPP and its related pa-
rameters, an approach that is yet to be evaluated against mea-
surements or current theory.

The collective change in parameters results in an over-
all increase of LUEGPP (Fig. B4) while APAR sees smaller,
regionally dependent changes (Fig. B6). We note that the
reported LUEGPP and APAR are annual mean values, as
is the case with estimated model parameters. Diurnal and
seasonal variability also occurs and would need consider-
ation when comparing to field-based studies. The poste-
rior values for LUEGPP (Fig. 12) are well within the ex-
pected physiological range with the theoretical maximum be-
ing 0.08 molCmolphotons−1 (Waring et al., 2016). Overall,
Vcmax is the driving parameter behind changes in LUEGPP.
We highlight that the latitudinal distribution of Vcmax shows
an increase in temperate and boreal zones following the SIF
assimilation (Fig. S19). The resulting zonal distribution of
Vcmax seems to be in closer agreement with independent
studies using trait scaling, environmental scaling and remote
sensing retrieval methods that all show moderate values in
the tropics and high values in the temperate zone (Ali et al.,
2015; Alton, 2018; Walker et al., 2017). This remarkable re-
sult highlights the strength of a process-based SIF data as-
similation system in estimating key biophysical parameters.
This provides a pathway toward fully utilizing the informa-
tion in SIF measurements. This also presents an opportu-
nity to further evaluate our SIF-optimized global patterns of
LUEGPP, APAR and specific biophysical parameters against
independent estimates.
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Deficiencies in the model formulation and/or missing pro-
cesses still limit the performance of the assimilation system.
One example, investigated here, is the lack of time-varying
biophysical parameters. Introducing time-varying parame-
ters would improve the fit to observed SIF and in particular to
large SIF values (Figs. 6 and S7). Similarly, seasonal changes
in NPQ may also be important, particularly for cold-climate
vegetation (Raczka et al., 2019). Introducing an empirical
or mechanistic relationship between Cab and Vcmax via their
known relationship to nitrogen content (Evans, 1989) would
also improve the constraint SIF provides on GPP and bet-
ter represent ecosystem function. Moreover, SCOPE is a 1-
D radiative transfer model and therefore may not effectively
represent canopies with complex horizontal structure (e.g.,
open forest). More complex 3-D models are under develop-
ment (Gastellu-Etchegorry et al., 2017); however, the high
computational requirements may limit their application at
the global scale. We note that further work is needed at both
leaf and canopy scales to develop the model. The leaf-level
empirical formulation for NPQ also needs further testing as
it partly determines how information is transferred between
SIF and GPP via parameters like Vcmax. Finally, further work
is needed to determine a mechanistic basis for drought stress
effects on canopy SIF, such as that of Bayat et al. (2019),
which can be implemented in BETHY-SCOPE.

There are other limitations to the present data assimila-
tion system. First, it is somewhat limited by use of prescribed
LAI. This is exemplified by the regional assessment over the
tropical forest of mainland southeast Asia (Fig. S12). We
point out that the derived MODIS LAI and OCO-2 SIF show
different seasonal patterns and that both are uncertain. Nev-
ertheless, with prescribed LAI the model is limited in its flex-
ibility and cannot alter the shape or amplitude of the seasonal
cycle through the assimilation, resulting in a large posterior
mismatch. Second, the assimilation algorithm used cannot
guarantee the global minimum of J and hence optimal set
of parameters, a problem for any local, gradient-based opti-
mization. Third, a number of potential sources of error are
not accounted for in the error propagation. This means our
uncertainty estimate for global GPP is likely to be an under-
estimate as it only accounts for uncertainties from the pa-
rameters considered in Table A1. Inclusion of uncertainties
in climate forcing and prescribed LAI would increase the un-
certainty in global GPP although SIF would mediate this to
some extent (Norton et al., 2018). Finally, systematic errors
due to the instrument and retrieval errors, spatial sampling
biases and undersampling of diffuse light conditions as thick
cloud prevents SIF retrieval may also need addressing in the
future (Sun et al., 2018). Norton et al. (2018) did note, how-
ever, that one of the most important instrumental uncertain-
ties arising from the correction of constant error artifacts in
the SIF retrieval did not greatly contaminate results. Further-
more, spatial sampling limitations associated with OCO-2
may be overcome with the recently launched TROPOMI in-
strument that provides daily coverage of the Earth’s surface.

Future work should assess how SIF and other observa-
tional data may complement each other in constraining re-
gions of model space. This would require explicit compar-
isons of observational constraints (e.g., atmospheric CO2,
carbonyl sulfide or vegetation indices; EVI, FAPAR) using
the same model. These data may be incorporated into a joint
assimilation with SIF (e.g., Peylin et al., 2016; Scholze et al.,
2016) or used as independent data for validation purposes.
Evaluating the SIF-optimized GPP patterns and resulting net
terrestrial carbon flux will be a particular focus of future
work. Indeed the relatively high global GPP presented here
would have implications for carbon–climate feedbacks, par-
ticularly for quantifying and modeling CO2 fertilization and
climate effects on the land carbon sink.

5 Conclusions

In this study we have presented the first application of satel-
lite SIF to optimize parameters of a terrestrial biosphere
model with a process-based model for SIF. We show, by com-
paring the model with satellite SIF observations within and
outside of the calibration period, that there is substantial im-
provement in the predictive capability of the model following
the optimization with SIF. Despite this, there are still limita-
tions of BETHY-SCOPE to match the high SIF values. This
may be partly due to uncertainties in the prescribed LAI and
a lack of temporal variability in biophysical parameters such
asCab and Vcmax. The SIF-optimized GPP is generally higher
than the FLUXCOM GPP and TRENDY model average over
the central tropics and temperate north. However, following
the assimilation there is a better match in the spatiotemporal
patterns. The use of SIF alters GPP by increasing LUEGPP
across almost all ecosystems and altering APAR in regionally
distinct ways. This study provides a significantly useful tool
with which to improve our understanding of the global pat-
terns of GPP. This may be extended by applying the model
at flux tower sites, using additional satellite SIF data (e.g.,
GOSAT, GOME-2, TROPOMI), and assimilating other car-
bon cycle observations.

Code and data availability. The BETHY-SCOPE model code is
available upon request from the authors. The OCO-2 satellite SIF
data are freely available at https://ocov2.jpl.nasa.gov (last access:
4 August 2019) and https://disc.gsfc.nasa.gov/datasets?project=
OCO (last access: 4 August 2019). Maps were produced using the
freely available Panoply software (https://www.giss.nasa.gov/tools/
panoply/, last access: 4 August 2019).
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Appendix A: Spatially dominant PFT in
BETHY-SCOPE model

Figure A1. Spatially dominant PFT for each BETHY-SCOPE model grid cell.

Table A1. BETHY-SCOPE process parameters along with their prior and optimized uncertainties following the SIF constraint, represented
as 1 standard deviation. Relative uncertainty reduction (i.e., effective constraint) is reported for the error propagation with low-resolution and
high-resolution SIF observations. Units are as follows: Vcmax, µmol(CO2)m−2 s−1; aVo,Vc , dimensionless ratio; KC, µbar; KO, bar; Cab,
µg cm−2; Cdm, g cm−2; Csm, dimensionless fraction; hc, m; leaf width, m.

Class No. Description Parameter Prior Posterior Relative
change*

Effective
constraint
(%)

L
ea

fp
hy

si
ol

og
y

1

Maximum carboxylation
rate at 25 ◦C

Vcmax (TrEv) 60.0± 12.0 68.9± 5.4 +0.74 55.1 %
2 Vcmax (TrDec) 90.0± 18.0 40.7± 8.6 −2.7 52.1 %
3 Vcmax (TmpEv) 41.0± 8.2 28.7± 6.6 −1.5 19.4 %
4 Vcmax (TmpDec) 35.0± 7.0 81.6± 4.8 +6.7 31.2 %
5 Vcmax (EvCn) 29.0± 5.8 54.1± 4.0 +4.3 30.0 %
6 Vcmax (DecCn) 53.0± 10.6 73.5± 7.5 +1.9 29.5 %
7 Vcmax (EvShr) 52.0± 10.4 51.8± 8.0 −0.02 23.0 %
8 Vcmax (DecShr) 160.0± 32.0 89.1± 26.3 −2.2 17.9 %
9 Vcmax (C3Gr) 42.0± 8.4 101.6± 6.8 +7.1 18.9 %
10 Vcmax (C4Gr) 8.0± 1.6 15.8± 1.3 +4.8 19.5 %
11 Vcmax (Tund) 20.0± 4.0 30.4± 3.6 +2.6 9.1 %
12 Vcmax (Wetl) 20.0± 4.0 24.3± 3.9 +1.1 1.6 %
13 Vcmax (Crop) 117.0± 23.4 130.1± 16.9 +0.6 28.0 %
14 Ratio of Vomax to Vcmax aVo,Vc 0.220± 0.0022 0.219± 0.0022 −0.4 < 1 %
15 Michaelis–Menten constant

of Rubisco for CO2

KC 350± 17.5 283± 16.9 −3.8 3.6 %

16 Michaelis–Menten constant
of Rubisco for O2

KO 0.45± 0.0225 0.51± 0.0224 +2.7 < 1 %
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Table A1. Continued.

Class No. Description Parameter Prior Posterior Relative
change*

Effective
constraint
(%)

L
ea

fc
om

po
si

tio
n

17

Chlorophyll ab content

Cab (TrEv) 40.0± 4.0 28.5± 3.5 −2.9 13.1 %
18 Cab (TrDec) 40.0± 4.0 17.8± 3.6 −5.6 10.9 %
19 Cab (TmpEv) 30.0± 3.0 25.7± 2.7 −1.4 9.7 %
20 Cab (TmpDec) 30.0± 3.0 37.7± 2.4 +2.6 20.3 %
21 Cab (EvCn) 30.0± 3.0 18.7± 2.5 −3.8 16.3 %
22 Cab (DecCn) 30.0± 3.0 29.1± 2.7 −0.3 10.4 %
23 Cab (EvShr) 20.0± 2.0 8.2± 1.5 −5.9 25.7 %
24 Cab (DecShr) 20.0± 2.0 18.1± 1.9 −0.9 7.5 %
25 Cab (C3Gr) 20.0± 2.0 18.4± 1.8 −0.8 10.4 %
26 Cab (C4Gr) 20.0± 2.0 20.4± 1.8 +0.2 11.5 %
27 Cab (Tund) 10.0± 1.0 12.3± 0.7 +2.3 33.9 %
28 Cab (Wetl) 10.0± 1.0 11.1± 0.9 +1.1 4.3 %
29 Cab (Crop) 40.0± 4.0 33.7± 3.8 −1.6 4.5 %
30 Dry matter content Cdm 0.0120± 0.0020 0.0207± 0.0016 +4.4 18.9 %
31 Senescent material content Csm 0.00± 0.01 0.01± 0.01 +1.2 1.3 %

C
an

op
y

st
ru

ct
ur

e

32

Leaf inclination
distribution function
parametersa

LIDFab 0.00± 0.10 −0.42± 0.05 −4.2 54.0 %
33 LIDFac

−0.35± 0.10 −0.64± 0.03 −2.9 71.8 %
34 LIDFad

−1.0± 0.10 −0.82± 0.01 +1.8 90.0 %
35 LIDFbb

−1.0± 0.10 −0.15± 0.10 +8.5 < 2.4 %
36 LIDFbc

−0.15± 0.10 0.48± 0.08 +6.3 20.0 %
37 LIDFbd 0.00± 0.10 1.00± 0.06 +10.0 37.1 %
38

Vegetation height
hce 20.0± 3.0 20.1± 3.0 0.04 < 1 %

39 hcf 2.00± 0.40 1.97± 0.40 −0.08 < 1 %
40 hcg 0.50± 0.10 0.05± 0.10 −4.5 < 1 %
41 Leaf mesophyll structure N 0.10± 0.01 0.11± 0.01 +1.2 < 1 %

∗ The relative change is the parameter change in multiples of prior uncertainty. a Prior values based on Verhoef and Bach (2007). b Applies to PFTs TrEv, TrDec, TmpEv,
TmpDec, EvShr, DecShr. c Applies to PFTs EvCn, DecCn, Tund. d Applies to PFTs C3Gr, C4Gr, Wetl, Crop. e Applies to PFTs TrEv, TrDec, TmpEv, TmpDec, EvCn, DecCn.
f Applies to PFTs. EvShr, DecShr. g Applies to PFTs C3Gr, C4Gr, Tund, Wetl, Crop.

www.biogeosciences.net/16/3069/2019/ Biogeosciences, 16, 3069–3093, 2019



3086 A. J. Norton et al.: Global GPP from a SIF data assimilation system

Appendix B: Posterior GPP, LUEGPP and APAR
patterns

Figure B1. Comparison between FLUXCOM GPP and BETHY-SCOPE prior GPP over continental North America (between 24 and 56◦ N).

Figure B2. Comparison between FLUXCOM GPP and BETHY-SCOPE posterior GPP over continental North America (between 24 and
56◦ N).
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Figure B3. Posterior annual mean LUEGPP following the SIF assimilation.

Figure B4. Percentage change in annual mean LUEGPP following the SIF assimilation.

Figure B5. Posterior annual mean APAR following the SIF assimilation.
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Figure B6. Percentage change in annual mean APAR following the SIF assimilation.

Table B1. Estimated GPP per biome and latitudinal region, given as GPP rate and total annual GPP (in brackets). Biomes are defined by the
spatially dominant PFT as shown in Fig. A1. The tropics are defined as the region between 30◦ S and 30◦ N and the extratropics is defined
as all latitudes outside of the tropics. The boreal region is defined as north of 54◦ N. The temperate region is defined as south of 30◦ S and
30–54◦ N.

Biome or region Prior GPP,
kgCm−2 yr−1

(PgCyr−1)

Posterior GPP,
kgCm−2 yr−1

(PgCyr−1)

FLUXCOM GPP,
kgCm−2 yr−1

(PgCyr−1)

TrEv 3.5 (48.2) 4.1 (56.0) 2.2 (30.3)
TrDec 2.0 (12.3) 1.5 (9.5) 1.2 (7.5)
TmpEv 1.1 (0.4) 1.1 (0.4) 1.1 (0.4)
TmpDec 0.9 (3.3) 1.6 (6.1) 1.0 (3.8)
EvCn 0.6 (6.5) 1.1 (11.1) 0.7 (7.1)
DecCn 0.7 (2.3) 1.1 (3.5) 0.5 (1.7)
EvShr 0.1 (2.1) 0.1 (2.6) 0.3 (3.8)
DecShr 0.5 (0.1) 0.5 (0.1) 0.4 (0.1)
C3Gr 0.6 (11.4) 1.2 (20.7) 0.7 (12.2)
C4Gr 0.7 (20.3) 1.1 (31.3) 0.8 (22.2)
Tund 0.2 (1.8) 0.2 (2.5) 0.3 (2.7)
Wetl 0.4 (0.3) 0.5 (0.4) 0.5 (0.5)
Crop 1.4 (18.5) 1.7 (22.5) 0.8 (10.9)

Tropics 1.62 (90.8± 6.3) 1.97 (110.0± 3.4) 1.21 (67.5)
Extratropics 0.56 (36.8± 2.4) 0.86 (56.7± 1.7) 0.54 (35.6)
Boreal 0.43 (10.1± 0.7) 0.68 (16.1± 0.5) 0.44 (10.1)
Temperate 0.67 (26.6± 1.8) 1.02 (40.6± 1.4) 0.64 (25.8)

Tropics : extratropics ratio 2.89 (2.47) 2.29 (1.94) 2.24 (1.90)
Tropics : boreal ratio 3.77 (8.99) 2.90 (6.83) 2.75 (6.69)
Tropics : temperate ratio 2.42 (3.41) 1.93 (2.70) 1.89 (2.66)
Temperate : boreal ratio 1.56 (2.63) 1.50 (2.52) 1.45 (2.51)
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Supplement. The supplement related to this article is available on-
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Author contributions. AJN and PJR designed the study and per-
formed the model simulations and data analysis. AJN prepared the
manuscript and handled the edits. ENK conducted the initial cou-
pling of the BETHY and SCOPE models. ENK and MS also con-
tributed to further model development and manuscript revisions.
JDS contributed to improving the efficiency of model simulations
and analysis. YPW contributed to the interpretation of results and
manuscript revisions.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This research was undertaken with the assis-
tance of resources and services from the National Computational
Infrastructure (NCI), which is supported by the Australian Gov-
ernment. We acknowledge the efforts of the TRENDY modeling
group and thank them for supplying the TRENDY model data. We
acknowledge the efforts of the OCO-2 science team and Chris-
tian Frankenberg for his assistance with the satellite SIF data.

Financial support. Alexander J. Norton was partly supported by
an Australian Postgraduate Award from the Australian Government
and a CSIRO OCE Scholarship. This research benefited from sup-
port provided by the ARC Centre of Excellence for Climate Sys-
tem Science (grant no. CE110001028). Peter J. Rayner was sup-
ported by an Australian Research Council Fellowship (grant no.
DP1096309).

Review statement. This paper was edited by Akihiko Ito and re-
viewed by two anonymous referees.

References

Ali, A. A., Xu, C., Rogers, A., Mcdowell, N. G., Medlyn, B. E.,
Fisher, R. A., Wullschleger, S. D., Reich, P. B., Vrugt, J. A.,
Bauerle, W. L., Santiago, L. S., and Wilson, C. J.: Global-scale
environmental control of plant photosynthetic capacity, Ecol.
Appl., 25, 2349–2365, 2015.

Alton, P. B.: Decadal trends in photosynthetic capacity and leaf
area index inferred from satellite remote sensing for global
vegetation types, Agr. Forest Meteorol., 250-251, 361–375,
https://doi.org/10.1016/j.agrformet.2017.11.020, 2018.

Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A.,
Jones, C., Murray-Tortarolo, G., Papale, D., Parazoo, N. C.,
Peylin, P., Piao, S., Sitch, S., Viovy, N., Wiltshire, A., and
Zhao, M.: Spatiotemporal patterns of terrestrial gross pri-
mary production: A review, Rev. Geophys., 53, 785–818,
https://doi.org/10.1002/2015RG000483, 2015.

Bacour, C., Peylin, P., Macbean, N., Rayner, P. J., Delage, F.,
Chevallier, F., Weiss, M., Demarty, J., Santaren, D., Baret,
F., Berveiller, D., Dufrêne, E., and Prunet, P.: Joint assim-
ilation of eddy covariance flux measurements and FAPAR
products over temperate forests within a process-oriented bio-
sphere model, J. Geophys. Res.-Biogeo., 120, 1839–1857,
https://doi.org/10.1002/2015JG002966, 2015.

Badgley, G., Anderegg, L. D. L., Berry, J. A., and Field, C. B.:
An ecologically based approach to terrestrial primary production,
EarthArXiv, https://doi.org/10.31223/osf.io/s6t3z, 2018.

Baker, N. R.: Chlorophyll fluorescence: a probe of photo-
synthesis in vivo, Annu. Rev. Plant Biol., 59, 89–113,
https://doi.org/10.1146/annurev.arplant.59.032607.092759,
2008.

Bayat, B., van der Tol, C., Yang, P., and Verhoef, W.: Extending the
SCOPE model to combine optical reflectance and soil moisture
observations for remote sensing of ecosystem functioning under
water stress conditions, Remote Sens. Environ., 221, 286–301,
https://doi.org/10.1016/j.rse.2018.11.021, 2019.

Björkman, O.: Responses to different quantum flux densities, in:
Physiological Plant Ecology I: Responses to physical environ-
ment, edited by: Lange, O., Nobel, P., Osmond, C., and Ziegler,
H., Vol. 12A, 57–107, Springer, Heidelberg, Berlin, and New
York, https://doi.org/10.1111/aji.12612, 1981.

Björkman, O. and Demmig, B.: Photon yield of O2 evolution
and chlorophyll fluorescence characteristics at 77 K among
vascular plants of diverse origins, Planta, 170, 489–504,
https://doi.org/10.1007/BF00402983, 1987.

Campbell, J. E., Carmichael, G. R., Chai, T., Mena-Carrasco, M.,
Tang, Y., Blake, D. R., Blake, N. J., Vay, S. A., Collatz, G. J.,
Baker, I., Berry, J. A., Montzka, S. A., Sweeney, C., Schnoor,
J. L., and Stanier, C. O.: Photosynthetic control of atmospheric
carbonyl sulfide during the growing season, Science, 322, 1085–
1088, https://doi.org/10.1126/science.1164015, 2008.

Campbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A.,
Launois, T., Belviso, S., Bopp, L., and Laine, M.: Large histori-
cal growth in global terrestrial gross primary production, Nature,
544, 84–87, https://doi.org/10.1038/nature22030, 2017.

Collatz, G., Ball, J., Grivet, C., and Berry, J.: Physiological
and environmental regulation of stomatal conductance, pho-
tosynthesis and transpiration: a model that includes a lam-
inar boundary layer, Agr. Forest Meteorol., 51, 659–668,
https://doi.org/10.1016/0168-1923(91)90002-8, 1991.

Collatz, G., Ribas-Carbo, M., and Berry, J.: Coupled
photosynthesis-stomatal conductance model for leaves
of C4 plants, Aust. J. Plant Physiol., 19, 519–538,
https://doi.org/10.1071/PP9920519, 1992.

Demarez, V.: Seasonal variation of leaf chlorophyll
content of a temperate forest. Inversion of the
PROSPECT model, Int. J. Remote Sens., 20, 879–894,
https://doi.org/10.1080/014311699212975, 1999.

Demmig-Adams, B. and Adams III, W. W.: Photoprotection in an
ecological context : the remarkable complexity of thermal energy
dissipation, New Phytol., 172, 11–21, 2006.

Duveiller, G. and Cescatti, A.: Spatially downscaling sun-induced
chlorophyll fluorescence leads to an improved temporal corre-
lation with gross primary productivity, Remote Sens. Environ.,
182, 72–89, https://doi.org/10.1016/j.rse.2016.04.027, 2016.

www.biogeosciences.net/16/3069/2019/ Biogeosciences, 16, 3069–3093, 2019

https://doi.org/10.5194/bg-16-3069-2019-supplement
https://doi.org/10.1016/j.agrformet.2017.11.020
https://doi.org/10.1002/2015RG000483
https://doi.org/10.1002/2015JG002966
https://doi.org/10.31223/osf.io/s6t3z
https://doi.org/10.1146/annurev.arplant.59.032607.092759
https://doi.org/10.1016/j.rse.2018.11.021
https://doi.org/10.1111/aji.12612
https://doi.org/10.1007/BF00402983
https://doi.org/10.1126/science.1164015
https://doi.org/10.1038/nature22030
https://doi.org/10.1016/0168-1923(91)90002-8
https://doi.org/10.1071/PP9920519
https://doi.org/10.1080/014311699212975
https://doi.org/10.1016/j.rse.2016.04.027


3090 A. J. Norton et al.: Global GPP from a SIF data assimilation system

Evans, J. R.: Photosynthesis and nitrogen relationships in leaves of
C3 plants, Oecologia, 78, 9–19, 1989.

Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochem-
ical model of photosynthetic CO2 assimilation in leaves of C3
species, Planta, 90, 78–90, 1980.

Fleming, G. R., Schlau-Cohen, G. S., Amarnath, K., and Zaks,
J.: Design principles of photosynthetic light-harvesting, Faraday
Discuss., 155, 27, https://doi.org/10.1039/c1fd00078k, 2012.

Flexas, J., Escalona, J. M., Evain, S., Gulías, J., Moya, I., Osmond,
C. B., and Medrano, H.: Steady-state chlorophyll fluorescence
(Fs) measurements as a tool to follow variations of net CO2 as-
similation and stomatal conductance during water-stress in C3
plants, Physiol. Plantarum, 114, 231–240, 2002.

Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove,
J. H., Quaife, T., Ricciuto, D., Reichstein, M., Tomelleri,
E., Trudinger, C. M., and Wijk, M. T. V.: The REFLEX
project: Comparing different algorithms and implementations
for the inversion of a terrestrial ecosystem model against
eddy covariance data, Agr. Forest Meteorol., 149, 1597–1615,
https://doi.org/10.1016/j.agrformet.2009.05.002, 2009.

Frankenberg, C., Butz, A., and Toon, G. C.: Disentangling chloro-
phyll fluorescence from atmospheric scattering effects in O2
A-band spectra of reflected sun-light, Geophys. Res. Lett., 38,
L03801, https://doi.org/10.1029/2010GL045896, 2011a.

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi,
S. S., Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze, A.,
and Yokota, T.: New global observations of the terrestrial car-
bon cycle from GOSAT: Patterns of plant fluorescence with
gross primary productivity, Geophys. Res. Lett., 38, L17706,
https://doi.org/10.1029/2011GL048738, 2011b.

Frankenberg, C., O’Dell, C., Berry, J., Guanter, L., Joiner, J.,
Köhler, P., Pollock, R., and Taylor, T. E.: Prospects for
chlorophyll fluorescence remote sensing from the Orbiting
Carbon Observatory-2, Remote Sens. Environ., 147, 1–12,
https://doi.org/10.1016/j.rse.2014.02.007, 2014.

Friedl, M., Strahler, A., Hodges, J., Hall, F., Collatz, G.,
Meeson, B., Los, S., Brown De Colstoun, E., and Landis,
D.: ISLSCP II MODIS (Collection 4) IGBP Land Cover,
2000–2001, ORNL DAAC, Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/ORNLDAAC/968, 2010.

Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D.,
Anav, A., Liddicoat, S. K., and Knutti, R.: Uncertainties in
CMIP5 Climate Projections due to Carbon Cycle Feedbacks,
J. Climate, 27, 511–526, https://doi.org/10.1175/JCLI-D-12-
00579.1, 2014.

Gastellu-Etchegorry, J. P., Lauret, N., Yin, T., Landier, L., Kallel,
A., Malenovský, Z., Al Bitar, A., Aval, J., Benhmida, S., Qi,
J., Medjdoub, G., Guilleux, J., Chavanon, E., Cook, B., Morton,
D., Chrysoulakis, N., and Mitraka, Z.: DART: Recent advances
in remote sensing data modeling with atmosphere, polarization,
and chlorophyll fluorescence, IEEE J. Sel. Top. Appl., 10, 2640–
2649, https://doi.org/10.1109/JSTARS.2017.2685528, 2017.

Genty, B., Briantais, J.-M., and Baker, N. R.: The relation-
ship between the quantum yield of photosynthetic electron
transport and quenching of chlorophyll fluorescence, Biochim.
Biophys. Acta, 990, 87–92, https://doi.org/10.1016/S0304-
4165(89)80016-9, 1989.

Govindjee: Sixty-three years since Kautsky: Chlorophyll a Fluores-
cence, Aust. J. Plant Physiol., 22, 131–160, 1995.

Guan, K., Berry, J. A., Zhang, Y., Joiner, J., Guanter, L., Badg-
ley, G., and Lobell, D. B.: Improving the monitoring of crop
productivity using spaceborne solar-induced fluorescence, Glob.
Change Biol., 22, 716–726, https://doi.org/10.1111/gcb.13136,
2015.

Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-
Dans, J., Kuze, A., Suto, H., and Grainger, R. G.: Retrieval and
global assessment of terrestrial chlorophyll fluorescence from
GOSAT space measurements, Remote Sens. Environ., 121, 236–
251, https://doi.org/10.1016/j.rse.2012.02.006, 2012.

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry,
J. a., Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee,
J.-E., Moran, M. S., Ponce-Campos, G., Beer, C., Camps-
Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti,
A., Baker, J. M., and Griffis, T. J.: Global and time-
resolved monitoring of crop photosynthesis with chlorophyll
fluorescence, P. Natl. Acad. Sci. USA, 111, E1327–E1333,
https://doi.org/10.1073/pnas.1320008111, 2014.

Hirose, T. and Werger, M. J. A.: Maximizing daily canopy
photosynthesis with respect to the leaf nitrogen allo-
cation pattern in the canopy, Oecologia, 72, 520–526,
https://doi.org/10.1007/BF00378977, 1987.

Jacquemoud, S. and Baret, F.: PROSPECT: A Model of Leaf
Optical Properties Spectra, Remote Sens. Environ., 34, 75–91,
https://doi.org/10.1016/0034-4257(90)90100-Z, 1990.

Janssens, I. A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.-
J., Folberth, G., Schlamadinger, B., Hutjes, R. W. A., Ceule-
mans, R., Schulze, E. D., Valentini, R., and Dolman, A. J.:
Europe’s terrestrial biosphere absorbs 7 to 12 % of Euro-
pean anthropogenic CO2 emissions, Science, 300, 1538–1542,
https://doi.org/10.1126/science.1083592, 2003.

Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A.,
and Middleton, E. M.: First observations of global and seasonal
terrestrial chlorophyll fluorescence from space, Biogeosciences,
8, 637–651, https://doi.org/10.5194/bg-8-637-2011, 2011.

Joiner, J., Yoshida, Y., Vasilkov, A. P., Schaefer, K., Jung, M.,
Guanter, L., Zhang, Y., Garrity, S., Middleton, E. M., Huemm-
rich, K. F., Gu, L., and Marchesini, L. B.: The seasonal
cycle of satellite chlorophyll fluorescence observations and
its relationship to vegetation phenology and ecosystem atmo-
sphere carbon exchange, Remote Sens. Environ., 152, 375–391,
https://doi.org/10.1016/j.rse.2014.06.022, 2014.

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson,
A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen,
J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G.,
Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors,
E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C.:
Global patterns of land-atmosphere fluxes of carbon dioxide, la-
tent heat, and sensible heat derived from eddy covariance, satel-
lite, and meteorological observations, J. Geophys. Res.-Biogeo.,
116, 1–16, https://doi.org/10.1029/2010JG001566, 2011.

Kaminski, T., Knorr, W., Scholze, M., Gobron, N., Pinty, B., Gier-
ing, R., and Mathieu, P.-P.: Consistent assimilation of MERIS
FAPAR and atmospheric CO2 into a terrestrial vegetation model
and interactive mission benefit analysis, Biogeosciences, 9,
3173–3184, https://doi.org/10.5194/bg-9-3173-2012, 2012.

Kaminski, T., Knorr, W., Schürmann, G., Scholze, M., Rayner, P. J.,
Zaehle, S., Blessing, S., Dorigo, W., Gayler, V., Giering, R., Go-
bron, N., Grant, J. P., Heimann, M., Houweling, S., Kato, T.,

Biogeosciences, 16, 3069–3093, 2019 www.biogeosciences.net/16/3069/2019/

https://doi.org/10.1039/c1fd00078k
https://doi.org/10.1016/j.agrformet.2009.05.002
https://doi.org/10.1029/2010GL045896
https://doi.org/10.1029/2011GL048738
https://doi.org/10.1016/j.rse.2014.02.007
https://doi.org/10.3334/ORNLDAAC/968
https://doi.org/10.1175/JCLI-D-12-00579.1
https://doi.org/10.1175/JCLI-D-12-00579.1
https://doi.org/10.1109/JSTARS.2017.2685528
https://doi.org/10.1016/S0304-4165(89)80016-9
https://doi.org/10.1016/S0304-4165(89)80016-9
https://doi.org/10.1111/gcb.13136
https://doi.org/10.1016/j.rse.2012.02.006
https://doi.org/10.1073/pnas.1320008111
https://doi.org/10.1007/BF00378977
https://doi.org/10.1016/0034-4257(90)90100-Z
https://doi.org/10.1126/science.1083592
https://doi.org/10.5194/bg-8-637-2011
https://doi.org/10.1016/j.rse.2014.06.022
https://doi.org/10.1029/2010JG001566
https://doi.org/10.5194/bg-9-3173-2012


A. J. Norton et al.: Global GPP from a SIF data assimilation system 3091

Kattge, J., Kelley, D., Kemp, S., Koffi, E. N., Köstler, C., Math-
ieu, P., Pinty, B., Reick, C. H., Rödenbeck, C., Schnur, R., Scipal,
K., Sebald, C., Stacke, T., Van, A. T., Vossbeck, M., Widmann,
H., and Ziehn, T.: The BETHY/JSBACH Carbon Cycle Data As-
similation System: experiences and challenges, J. Geophys. Res.-
Biogeo., 118, 1–13, https://doi.org/10.1002/jgrg.20118, 2013.

Kato, T., Knorr, W., Scholze, M., Veenendaal, E., Kaminski, T.,
Kattge, J., and Gobron, N.: Simultaneous assimilation of satellite
and eddy covariance data for improving terrestrial water and car-
bon simulations at a semi-arid woodland site in Botswana, Bio-
geosciences, 10, 789–802, https://doi.org/10.5194/bg-10-789-
2013, 2013.

Knorr, W.: Annual and interannual CO2 exchanges of the terrestrial
biosphere: process-based simulations and uncertainties, Global
Ecol. Biogeogr., 9, 225–252, https://doi.org/10.1046/j.1365-
2699.2000.00159.x, 2000.

Knorr, W., Kaminski, T., Scholze, M., Gobron, N., Pinty, B., Gier-
ing, R., and Mathieu, P.-P.: Carbon cycle data assimilation with
a generic phenology model, J. Geophys. Res., 115, G04017,
https://doi.org/10.1029/2009JG001119, 2010.

Koffi, E. N., Rayner, P. J., Scholze, M., and Beer, C.: At-
mospheric constraints on gross primary productivity and net
ecosystem productivity: Results from a carbon-cycle data
assimilation system, Global Biogeochem. Cy., 26, 1–16,
https://doi.org/10.1029/2010GB003900, 2012.

Koffi, E. N., Rayner, P. J., Norton, A. J., Frankenberg, C., and
Scholze, M.: Investigating the usefulness of satellite-derived flu-
orescence data in inferring gross primary productivity within
the carbon cycle data assimilation system, Biogeosciences, 12,
4067–4084, https://doi.org/10.5194/bg-12-4067-2015, 2015.

Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J.,
and Landgraf, J.: Global Retrievals of Solar-Induced Chloro-
phyll Fluorescence With TROPOMI: First Results and Inter-
sensor Comparison to OCO-2, Geophys. Res. Lett., 45, 10456–
10463, https://doi.org/10.1029/2018GL079031, 2018.

Krall, J. and Edwards, G.: Relationship between photosystem II ac-
tivity and CO2 fixation in leaves, Physiol. Plantarum, 86, 180–
187, https://doi.org/10.1111/j.1399-3054.1992.tb01328.x, 1992.

Kuppel, S., Chevallier, F., and Peylin, P.: Quantifying the model
structural error in carbon cycle data assimilation systems,
Geosci. Model Dev., 6, 45–55, https://doi.org/10.5194/gmd-6-
45-2013, 2013.

Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A. R.,
Emmel, C., Hollinger, D. Y., Krasnova, A., Mammarella, I.,
Noe, S. M., Ortiz, P. S., Rey-Sanchez, A. C., Rocha, A. V.,
and Varlagin, A.: Solar-induced chlorophyll fluorescence is
strongly correlated with terrestrial photosynthesis for a wide
variety of biomes: First global analysis based on OCO-2 and
flux tower observations, Glob. Change Biol., 24, 3990–4008,
https://doi.org/10.1111/gcb.14297, 2018.

Luus, K. A., Commane, R., Parazoo, N. C., Benmergui, J., Eu-
skirchen, E. S., Frankenberg, C., Joiner, J., Lindass, J., Miller,
C. E., Oechel, W. C., Zona, D., Wofsy, S., and Lin, J. C.: Tun-
dra photosynthesis captured by satellite-observed solar-induced
chlorophyll fluorescence, Geophys. Res. Lett., 44, 1564–1573,
https://doi.org/10.1002/2016GL070842, 2017.

MacBean, N., Peylin, P., Chevallier, F., Scholze, M., and Schür-
mann, G.: Consistent assimilation of multiple data streams in a

carbon cycle data assimilation system, Geosci. Model Dev., 9,
3569–3588, https://doi.org/10.5194/gmd-9-3569-2016, 2016.

MacBean, N., Maignan, F., Bacour, C., Lewis, P., Peylin, P.,
Guanter, L., Köhler, P., Gómez-Dans, J., and Disney, M.:
Strong constraint on modelled global carbon uptake using solar-
induced chlorophyll fluorescence data, Sci. Rep.-UK, 8, 1–12,
https://doi.org/10.1038/s41598-018-20024-w, 2018.

Miller, J., Berger, M., Goulas, Y., Jacquemoud, S., Louis, J., Mo-
hammed, G., Moise, N., Moreno, J., Moya, I., and Pedrós, R.:
Development of a vegetation fluorescence canopy model, Tech.
rep., ESA Scientific and Technical Publications Branch, ESTEC,
available at: http://quantalab.ias.csic.es/fluormod/ (last access: 4
August 2019) 2005.

Norton, A. J., Rayner, P. J., Koffi, E. N., and Scholze, M.: As-
similating solar-induced chlorophyll fluorescence into the terres-
trial biosphere model BETHY-SCOPE v1.0: model description
and information content, Geosci. Model Dev., 11, 1517–1536,
https://doi.org/10.5194/gmd-11-1517-2018, 2018.

Parazoo, N. C., Bowman, K., Fisher, J. B., Frankenberg, C., Jones,
D. B. A., Cescatti, A., Perez-Priego, O., Wohlfahrt, G., and Mon-
tagnani, L.: Terrestrial gross primary production inferred from
satellite fluorescence and vegetation models, Glob. Change Biol.,
20, 3103–3121, https://doi.org/10.1111/gcb.12652, 2014.

Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kup-
pel, S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P.,
and Prunet, P.: A new stepwise carbon cycle data assimilation
system using multiple data streams to constrain the simulated
land surface carbon cycle, Geosci. Model Dev., 9, 3321–3346,
https://doi.org/10.5194/gmd-9-3321-2016, 2016.

Porcar-Castell, A., Tyystjärvi, E., Atherton, J., van der Tol, C.,
Flexas, J., Pfündel, E. E., Moreno, J., Frankenberg, C., and Berry,
J. A.: Linking chlorophyll a fluorescence to photosynthesis for
remote sensing applications: mechanisms and challenges, J. Exp.
Botany, 65, 4065–95, https://doi.org/10.1093/jxb/eru191, 2014.

Raczka, B., Porcar-Castell, A., Magney, T., Lee, J., Köhler,
P., Frankenberg, C., Grossmann, K., Logan, B., Stutz, J.,
Blanken, P., Burns, S., Duarte, H., Yang, X., Lin, J., and
Bowling, D.: Sustained Non-Photochemical Quenching Shapes
the Seasonal Pattern of Solar- Induced Fluorescence at a
High-Elevation Evergreen Forest, J. Geophys. Res.-Biogeo.,
https://doi.org/10.1029/2018JG004883, online first, 2019.

Rayner, P., Scholze, M., Knorr, W., and Kaminski, T.: Two decades
of terrestrial carbon fluxes from a carbon cycle data assimila-
tion system (CCDAS), Global Biogeochem. Cy., 19, GB2026,
https://doi.org/10.1029/2004GB002254, 2005.

Rayner, P. J.: The current state of carbon-cycle data
assimilation, Curr. Opin. Env. Sust., 2, 289–296,
https://doi.org/10.1016/j.cosust.2010.05.005, 2010.

Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi,
S., Townsend, P., Miller, C., Frankenberg, C., Hibbard, K.,
and Cox, P.: Observing terrestrial ecosystems and the car-
bon cycle from space, Glob. Change Biol., 21, 1762–1776,
https://doi.org/10.1111/gcb.12822, 2015.

Scholze, M., Kaminski, T., Rayner, P., Knorr, W., and Giering, R.:
Propagating uncertainty through prognostic carbon cycle data as-
similation system simulations, J. Geophys. Res., 112, D17305,
https://doi.org/10.1029/2007JD008642, 2007.

www.biogeosciences.net/16/3069/2019/ Biogeosciences, 16, 3069–3093, 2019

https://doi.org/10.1002/jgrg.20118
https://doi.org/10.5194/bg-10-789-2013
https://doi.org/10.5194/bg-10-789-2013
https://doi.org/10.1046/j.1365-2699.2000.00159.x
https://doi.org/10.1046/j.1365-2699.2000.00159.x
https://doi.org/10.1029/2009JG001119
https://doi.org/10.1029/2010GB003900
https://doi.org/10.5194/bg-12-4067-2015
https://doi.org/10.1029/2018GL079031
https://doi.org/10.1111/j.1399-3054.1992.tb01328.x
https://doi.org/10.5194/gmd-6-45-2013
https://doi.org/10.5194/gmd-6-45-2013
https://doi.org/10.1111/gcb.14297
https://doi.org/10.1002/2016GL070842
https://doi.org/10.5194/gmd-9-3569-2016
https://doi.org/10.1038/s41598-018-20024-w
http://quantalab.ias.csic.es/fluormod/
https://doi.org/10.5194/gmd-11-1517-2018
https://doi.org/10.1111/gcb.12652
https://doi.org/10.5194/gmd-9-3321-2016
https://doi.org/10.1093/jxb/eru191
https://doi.org/10.1029/2018JG004883
https://doi.org/10.1029/2004GB002254
https://doi.org/10.1016/j.cosust.2010.05.005
https://doi.org/10.1111/gcb.12822
https://doi.org/10.1029/2007JD008642


3092 A. J. Norton et al.: Global GPP from a SIF data assimilation system

Scholze, M., Kaminski, T., Knorr, W., Blessing, S., Vossbeck, M.,
Grant, J. P., and Scipal, K.: Simultaneous assimilation of SMOS
soil moisture and atmospheric CO2 in-situ observations to con-
strain the global terrestrial carbon cycle, Remote Sens. Environ.,
180, 334–345, https://doi.org/10.1016/j.rse.2016.02.058, 2016.

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-
Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze,
C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poul-
ter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan,
G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis,
R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B.,
Zhu, Z., and Myneni, R.: Recent trends and drivers of regional
sources and sinks of carbon dioxide, Biogeosciences, 12, 653–
679, https://doi.org/10.5194/bg-12-653-2015, 2015.

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L.,
Köhler, P., and Magney, T.: Overview of Solar-Induced
chlorophyll Fluorescence (SIF) from the Orbiting Carbon
Observatory-2: Retrieval, cross-mission comparison, and global
monitoring for GPP, Remote Sens. Environ., 209, 808–823,
https://doi.org/10.1016/j.rse.2018.02.016, 2018.

Tarantola, A.: Inverse Problem Theory: Methods for Data Fitting
and Model Parameter Estimation, 1st Edn., Elsevier, New York,
1987.

Tarantola, A.: Inverse Problem Theory and Methods for Model Pa-
rameter Estimation, SIAM, Philadelphia, 2005.

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls,
G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely,
G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and
Papale, D.: Predicting carbon dioxide and energy fluxes across
global FLUXNET sites with regression algorithms, Biogeo-
sciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-
2016, 2016.

Trudinger, C. M., Raupach, M. R., Rayner, P. J., Kattge, J., Liu,
Q., Pak, B., Reichstein, M., Renzullo, L., Richardson, A. D.,
Roxburgh, S. H., Styles, J., Wang, Y. P., Briggs, P., Bar-
rett, D., and Nikolova, S.: OptIC project: An intercomparison
of optimization techniques for parameter estimation in terres-
trial biogeochemical models, J. Geophys. Res., 112, G02027,
https://doi.org/10.1029/2006JG000367, 2007.

van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., and Su,
Z.: An integrated model of soil-canopy spectral radiances, pho-
tosynthesis, fluorescence, temperature and energy balance, Bio-
geosciences, 6, 3109–3129, https://doi.org/10.5194/bg-6-3109-
2009, 2009.

van der Tol, C., Berry, J. A., Campbell, P. K. E., and
Rascher, U.: Models of fluorescence and photosynthesis
for interpreting measurements of solar-induced chloro-
phyll fluorescence, J. Geophys. Res.-Biogeo., 119, 1–16,
https://doi.org/10.1002/2014JG002713, 2014.

Verhoef, W.: Light scattering by leaf layers with applica-
tion to canopy reflectance modeling: The SAIL model, Re-
mote Sens. Environ., 16, 125–141, https://doi.org/10.1016/0034-
4257(84)90057-9, 1984.

Verhoef, W. and Bach, H.: Coupled soil–leaf-canopy and
atmosphere radiative transfer modeling to simulate hy-
perspectral multi-angular surface reflectance and TOA
radiance data, Remote Sens. Environ., 109, 166–182,
https://doi.org/10.1016/j.rse.2006.12.013, 2007.

Verrelst, J., Rivera, J. P., Tol, C. V. D., Magnani, F., Mo-
hammed, G., and Moreno, J.: Global sensitivity analysis of
the SCOPE model: What drives simulated canopy-leaving sun-
induced fluorescence?, Remote Sens. Environ., 166, 8–21,
https://doi.org/10.1016/j.rse.2015.06.002, 2015.

von Caemmerer, S.: Biochemical Models of Photosynthesis, CSIRO
Publishing, Collingwood, Australia, 2000.

Walker, A. P., Quaife, T., van Bodegom, P. M., De Kauwe, M. G.,
Keenan, T. F., Joiner, J., Lomas, M. R., MacBean, N., Xu, C.,
Yang, X., and Woodward, F. I.: The impact of alternative trait-
scaling hypotheses for the maximum photosynthetic carboxyla-
tion rate (Vcmax) on global gross primary production, New Phy-
tol., 215, 1370–1386, https://doi.org/10.1111/nph.14623, 2017.

Walther, S., Voigt, M., Thum, T., Gonsamo, A., Zhang, Y.,
Koehler, P., Jung, M., Varlagin, A., and Guanter, L.: Satel-
lite chlorophyll fluorescence measurements reveal large-scale
decoupling of photosynthesis and greenness dynamics in bo-
real evergreen forests, Glob. Change Biol., 22, 2979–2996,
https://doi.org/10.1111/gcb.13200, 2016.

Wang, Y. P., Baldocchi, D., Leunig, R., Falge, E., and Vesala,
T.: Estimating parameters in a land-surface model by apply-
ing nonlinear inversion to eddy covariance flux measurements
from eight FLUXNET sites, Glob. Change Biol., 13, 652–670,
https://doi.org/10.1111/j.1365-2486.2006.01225.x, 2007.

Waring, R., Landsberg, J., and Linder, S.: Tamm Review:
Insights gained from light use and leaf growth effi-
ciency indices, Forest Ecol. Manage., 379, 232–242,
https://doi.org/10.1016/j.foreco.2016.08.023, 2016.

Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best,
M. J., and Viterbo, P.: The WFDEI meteorological forcing
data set: WATCH Forcing Data methodology applied to ERA-
Interim reanalysis data, Water Resour. Res., 50, 7505–7514,
https://doi.org/10.1002/2014WR015638, 2014.

Welp, L. R., Keeling, R. F., Meijer, H. A. J., Bollenbacher, A. F.,
Piper, S. C., Yoshimura, K., Francey, R. J., Allison, C. E., and
Wahlen, M.: Interannual variability in the oxygen isotopes of
atmospheric CO2 driven by El Nino, Nature, 477, 579–582,
https://doi.org/10.1038/nature10421, 2011.

Wilson, K. B., Baldocchi, D. D., and Hanson, P. J.: Spatial and sea-
sonal variability of photosynthetic parameters and their relation-
ship to leaf nitrogen in a deciduous forest, Tree Physiol., 20, 565–
578, https://doi.org/10.1093/treephys/20.9.565, 2000.

Wilson, M. and Henderson-Sellers, A.: Global archive of land cover
and soils data for use in general-circulation climate models, Int.
J. Climatol., 5, 119–143, 1985.

Xu, L. and Baldocchi, D. D.: Seasonal trends in photosynthetic pa-
rameters and stomatal conductance of blue oak (Quercus dou-
glasii) under prolonged summer drought and high temperature,
Tree Physiol., 23, 865–877, 2003.

Yang, K., Ryu, Y., Dechant, B., Berry, J. A., Hwang, Y., Jiang,
C., Kang, M., Kim, J., Kimm, H., Kornfeld, A., and Yang, X.:
Sun-induced chlorophyll fluorescence is more strongly related
to absorbed light than to photosynthesis at half-hourly reso-
lution in a rice paddy, Remote Sens. Environ., 216, 658–673,
https://doi.org/10.1016/j.rse.2018.07.008, 2018.

Yang, X., Tang, J., Mustard, J. F., Lee, J.-E., Rossini, M., Joiner,
J., Munger, J. W., Kornfeld, A., and Richardson, A. D.: Solar-
induced chlorophyll fluorescence that correlates with canopy
photosynthesis on diurnal and seasonal scales in a temper-

Biogeosciences, 16, 3069–3093, 2019 www.biogeosciences.net/16/3069/2019/

https://doi.org/10.1016/j.rse.2016.02.058
https://doi.org/10.5194/bg-12-653-2015
https://doi.org/10.1016/j.rse.2018.02.016
https://doi.org/10.5194/bg-13-4291-2016
https://doi.org/10.5194/bg-13-4291-2016
https://doi.org/10.1029/2006JG000367
https://doi.org/10.5194/bg-6-3109-2009
https://doi.org/10.5194/bg-6-3109-2009
https://doi.org/10.1002/2014JG002713
https://doi.org/10.1016/0034-4257(84)90057-9
https://doi.org/10.1016/0034-4257(84)90057-9
https://doi.org/10.1016/j.rse.2006.12.013
https://doi.org/10.1016/j.rse.2015.06.002
https://doi.org/10.1111/nph.14623
https://doi.org/10.1111/gcb.13200
https://doi.org/10.1111/j.1365-2486.2006.01225.x
https://doi.org/10.1016/j.foreco.2016.08.023
https://doi.org/10.1002/2014WR015638
https://doi.org/10.1038/nature10421
https://doi.org/10.1093/treephys/20.9.565
https://doi.org/10.1016/j.rse.2018.07.008


A. J. Norton et al.: Global GPP from a SIF data assimilation system 3093

ate deciduous forest, Geophys. Res. Lett., 42, 2977–2987,
https://doi.org/10.1002/2015GL063201, 2015.

Yuan, H., Dai, Y., Xiao, Z., Ji, D., and Shangguan, W.: Repro-
cessing the MODIS Leaf Area Index products for land surface
and climate modelling, Remote Sens. Environ., 115, 1171–1187,
https://doi.org/10.1016/j.rse.2011.01.001, 2011.

Zaks, J., Amarnath, K., Sylak-Glassman, E. J., and Fleming, G. R.:
Models and measurements of energy-dependent quenching, Pho-
tosynth. Res., 116, 389–409, https://doi.org/10.1007/s11120-
013-9857-7, 2013.

Zhang, Y., Guanter, L., Berry, J. A., Joiner, J., van der Tol, C., Huete,
A., and Gitelson, A.: Estimation of vegetation photosynthetic ca-
pacity from space-based measurements of chlorophyll fluores-
cence for terrestrial biosphere models, Glob. Change Biol., 20,
3727–3742, https://doi.org/10.1111/gcb.12664, 2014.

Zhang, Y., Joiner, J., Gentine, P., and Zhou, S.: Reduced solar-
induced chlorophyll fluorescence from GOME-2 during Ama-
zon drought caused by dataset artifacts, Glob. Change Biol., 24,
2229–2230, https://doi.org/10.1111/gcb.14134, 2018.

www.biogeosciences.net/16/3069/2019/ Biogeosciences, 16, 3069–3093, 2019

https://doi.org/10.1002/2015GL063201
https://doi.org/10.1016/j.rse.2011.01.001
https://doi.org/10.1007/s11120-013-9857-7
https://doi.org/10.1007/s11120-013-9857-7
https://doi.org/10.1111/gcb.12664
https://doi.org/10.1111/gcb.14134

	Abstract
	Introduction
	Methods
	BETHY-SCOPE
	BETHY-SCOPE parameters
	Satellite SIF observations
	Data assimilation system
	Assimilation procedure
	Error estimation

	Experimental setup
	Global GPP products for comparison

	Results
	Assimilation with SIF
	Calibration
	Validation
	A case with seasonally varying parameters
	Fit to the seasonal cycle

	Estimated parameters
	Estimated GPP

	Discussion
	Conclusions
	Code and data availability
	Appendix A: Spatially dominant PFT in BETHY-SCOPE model
	Appendix B: Posterior GPP, LUEGPP and APAR patterns
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

