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Abstract. Particle aggregation determines the particle flux
length scale and affects the marine oxygen concentration and
thus the volume of oxygen minimum zones (OMZs) that are
of special relevance for ocean nutrient cycles and marine
ecosystems and that have been found to expand faster than
can be explained by current state-of-the-art models. To in-
vestigate the impact of particle aggregation on global model
performance, we carried out a sensitivity study with differ-
ent parameterisations of marine aggregates and two different
model resolutions. Model performance was investigated with
respect to global nutrient and oxygen concentrations, as well
as extent and location of OMZs. Results show that including
an aggregation model improves the representation of OMZs.
Moreover, we found that besides a fine spatial resolution
of the model grid, the consideration of porous particles, an
intermediate-to-high particle sinking speed and a moderate-
to-high stickiness improve the model fit to both global distri-
butions of dissolved inorganic tracers and regional patterns of
OMZs, compared to a model without aggregation. Our model
results therefore suggest that improvements not only in the
model physics but also in the description of particle aggre-
gation processes can play a substantial role in improving the
representation of dissolved inorganic tracers and OMZs on
a global scale. However, dissolved inorganic tracers are ap-
parently not sufficient for a global model calibration, which
could necessitate global model calibration against a global
observational dataset of marine organic particles.

1 Introduction

Oxygen is — beside light and nutrients — fundamental for ma-
rine organisms, such as bacteria, zooplankton, and fish. Only
few specialised groups can tolerate regions of low oxygen,
commonly referred to as oxygen minimum zones (OMZs).
These regions are located in the tropical upwelling regions,
where nutrient-rich water enhances primary production and
subsequent transport of organic matter to deeper waters,
which triggers respiration and consumes oxygen. Together
with weak ventilation (which supplies oxygen), this results
in oxygen concentrations well below 100 mmol m~3. Global
models that are used to reproduce OMZ’s volume and loca-
tion, and their evolution under climate change, differ with re-
spect to the biogeochemical parameterisations as well as with
respect to physics (Cabré et al., 2015), resulting in disagree-
ments between projected OMZ extent (Cocco et al., 2013).
To date, it is not clear whether these differences can be at-
tributed to the differences in the model’s biogeochemistry or
the physical models.

One potential parameter affecting distributions of dis-
solved oxygen and thereby the volume and location of OMZs
is the biological carbon pump (Volk and Hoffert, 1985).
Global ocean model studies show that the biological pump
is important for the distribution of dissolved inorganic trac-
ers in the ocean (Kwon and Primeau, 2006, 2008) as well as
atmospheric pCO;, (Kwon et al., 2009; Roth et al., 2014).
It further affects the feeding of deep sea organisms (Kiko et
al., 2017) as well as the OMZ volume (Kriest and Oschlies,
2015). The biological carbon pump can be subdivided into
three components: production of organic matter and biomin-
erals in the euphotic surface layer, particle export into the
ocean interior, and finally their decomposition in the water
column and on the sea floor (Le Moigne et al., 2013). Esti-
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mates of the export of organic carbon out of the surface layer
range from 5 to 20 Gt C yr~!, with the large uncertainty illus-
trating the gap in our understanding of this process (Henson
et al., 2011; Honjo et al., 2008; Keller et al., 2012; Laws
et al., 2000; Oschlies, 2001). Further uncertainties are asso-
ciated with the exact shape of the particle flux profile (e.g.
exponential function vs. power law; Banse, 1990; Berelson,
2002; Boyd and Trull, 2007; Buesseler et al., 2007; Lutz et
al., 2002; Martin et al., 1987) and its possible variations in
space and time. Recent studies suggest conflicting evidence
with regard to the spatial variation of the particle flux length
scale (Guidi et al., 2015; Marsay et al., 2015), which may
again be influenced by the methodology of estimating the
particle flux profile and thus the potential sensitivity to the
considered depth (Marsay et al., 2015). Also, the underlying
mechanisms for a potential spatio-temporal variation remain
unclear: some studies attribute this to variations in tempera-
ture and associated temperature-dependent variation in rem-
ineralisation (Marsay et al., 2015), while other studies derive
this from variations in particle size distributions (Guidi et al.,
2015).

One mechanism that leads to a variation in particle size
distribution consists in the formation of marine aggregates,
which exhibit variable sinking speeds. For example, All-
dredge and Gotschalk (1988) and Nowald et al. (2009)
found sinking rates for aggregates ranging between 10 and
386 md~!. Particle sinking speed, and thus the particle flux
profile, depends on mineral ballast (Armstrong et al., 2002;
Ploug et al., 2008), porosity and particle size (Alldredge and
Gotschalk, 1988; Kriest, 2002; Smayda, 1970). Large parti-
cles are associated with high sinking speed and fast passage
through the water column, resulting in low remineralisation
and thus a small OMZ volume and vice versa. It can therefore
be expected that particle aggregation favouring fast sinking
speeds can alter the volume of OMZs compared to small par-
ticles with low sinking speeds (Kriest and Oschlies, 2015).

However, there are still some gaps in our understanding
of the parameters that control the aggregation rate as well
as the particle’s sinking behaviour. For example, in situ mea-
surements show almost no dependency between diameter and
sinking speed (Alldredge and Gotschalk, 1988), whereas ag-
gregates produced on a roller table show a noticeable re-
lationship (Engel and Schartau, 1999). Furthermore, values
for stickiness, which defines the probability that after col-
lision two particles stick together, vary over a wide range.
Stickiness depends on the chemistry of the particle’s surface
(Metcalfe et al., 2006) and the particle type (e.g. Hansen and
Kigrboe, 1997) and ranges between almost 0 and 1 (e.g. All-
dredge and McGillivary, 1991; Kigrboe et al., 1990). Thus,
aggregation as one process that induces variations in parti-
cle size, and thus sinking speed, is only loosely constrained
through its parameters.

To explore these relationships further and to examine
whether a spatially variable sinking speed improves the fit of
a global biogeochemical model to global distributions of dis-
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solved inorganic tracers and regional patterns of OMZs, this
study uses the three-dimensional Model of Oceanic Pelagic
Stoichiometry (Kriest and Oschlies, 2015), coupled with a
module for particle aggregation and size-dependent sinking
(Kriest, 2002). Given the large uncertainty associated with
parameterisations of marine aggregates, we carried out 36
sensitivity experiments in which we varied parameters rel-
evant for particle aggregation and sinking. As in previous
studies, the model’s fitness is evaluated by the root mean
square error (RMSE) against observational data of dissolved
inorganic tracers, namely POy, NO3 and O, (Kriest et al.,
2017). This study additionally determines the model fitness
with respect to extent and location of OMZs, following the
approach by Cabré et al. (2015).

To examine the above-mentioned questions, and explore
the effects and uncertainties of a model that simulates particle
dynamics on a global scale for a seasonally cycling stationary
ocean circulation, our main questions are as follows:

1. Does a model that includes explicit particle dynamics
improve the representation of observed PO4, NO3 and
0,7

2. Does a model that includes explicit particle dynamics
improve the representation of observed OMZs, and do
the “best” parameters with respect to this metric agree
with those constrained by dissolved inorganic tracers?

3. What are the effects of uncertainties in the parameteri-
sation of organic aggregates on model results?

4. Can the assumptions inherent in the model confirm ei-
ther of the spatial particle flux length scale maps pro-
posed by Marsay et al. (2015) or Henson et al. (2015)
and Guidi et al. (2015)?

This paper is organised as follows: we first describe the
model and its assessment with regard to dissolved inorganic
tracers and OMZs, including the sensitivity experiments car-
ried out with the model. We then present the outcome of the
sensitivity experiments, with special focus on the metrics de-
fined above. We finally examine and discuss derived maps of
particle flux length scales against the background of maps de-
rived from observed quantities (Henson et al., 2015; Marsay
et al., 2015; Guidi et al., 2015).

2 Model description and methods
2.1 Oceanic transport

In this study, we used the “transport matrix method” (TMM)
(Khatiwala et al., 2005; Khatiwala, 2007, 2018), as an effi-
cient offline method to simulate biogeochemical tracer trans-
port with monthly mean transport matrices (TMs). Addi-
tional fields of monthly mean wind, temperature and salinity
extracted from the underlying circulation model are used to
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simulate air—sea gas exchange of oxygen and to parameterise
temperature-dependent growth of phytoplankton. For our ex-
periments, we used two different types of TMs and forc-
ing fields: one set derived from a coarser-resolution (here-
after called MIT2.8) and one from a finer-resolution version,
based on a data-assimilated circulation (ECCO1.0) (Stam-
mer et al., 2004). The MIT2.8 forcing and transport repre-
sent a resolution of 2.8° x 2.8° and 15 depth layers with a
thickness ranging between 50 and 690 m. ECCO1.0 TMs and
forcing are based on a resolution of 1° x 1° and 23 depth lay-
ers, with a thickness ranging between 10 and 500 m. Further
details about the two setups can be found in Kriest and Os-
chlies (2013).

In general, we used a time step length of 1/2 d for physical
transport and a time step length of 1/16 d for biogeochemical
interactions in the coarse resolution, MIT2.8. Because some
parameter configurations allow a very large particle sinking
speed, which may exceed more than one box per time step, in
MIT2.8 we used a biogeochemical time step length of 1/70d
for all simulations with n = 1.17 (see Table 1), in the finer
resolution, ECCO1.0, we used in all experiments a time step
of 1/80d (see Table 1) but with the exception of three ex-
periments, where we used a length of 1/160d (these are the
experiments for a strong increase of sinking speed with par-
ticle size, given by parameter n = 1.17; see Table 1). Each
model was integrated for 3000 years until tracers approached
steady state. The last year is used for analysis as well as mis-
fit calculations.

2.2 The biogeochemical model
2.2.1 Model of Oceanic Pelagic Stoichiometry

The Model of Oceanic Pelagic Stoichiometry, called MOPS
(Kriest and Oschlies, 2015), is based on phosphorus and
simulates phosphate, phytoplankton, zooplankton, dissolved
organic phosphorus (DOP) and detritus. The unit of each
tracer is given in millimoles of phosphate per cubic metre
(mmol Pm™3). In addition, MOPS simulates oxygen and ni-
trate. The P cycle is coupled to oxygen by using a fixed sto-
ichiometry of R_q,.p = 171.739 and to nitrogen by Rp.Ny =
16.

The stoichiometry of anaerobic and aerobic remineralisa-
tion is parameterised following Paulmier et al. (2009). Rem-
ineralisation of detritus and dissolved organic matter is fixed
to a constant nominal remineralisation rate r and is depen-
dent on oxygen but independent of temperature. If oxygen
concentrations decrease, denitrification replaces aerobic res-
piration, consuming nitrate. If neither oxygen nor nitrate is
sufficiently available, remineralisation stops as the model
does not account for other electron acceptors such as sulfate.
As both forms of remineralisation follow a saturation curve
(Monod type), the realised remineralisation rate may diverge
from the constant nominal remineralisation rate.
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On long timescales, the loss of fixed nitrogen through den-
itrification is balanced by temperature-dependent nitrogen
fixation. Therefore, it should be noted that while phospho-
rus is conserved, the inventory of fixed nitrogen as well as
oxygen is variable and dependent on ocean circulation and
biogeochemistry (Kriest and Oschlies, 2015).

In the basic model without aggregation the sinking speed
of detritus increases linearly with depth. With constant rem-
ineralisation rate r, the particle flux can thus be described
by F (z) « 270 with b= 2 (Kriest and Oschlies, 2008) and
is therefore (for constant r, e.g. in a fully oxic water col-
umn) comparable to the common power-law description of
observed particle fluxes (Martin et al., 1987). The fraction
of detritus reaching the seafloor follows two pathways: one
fraction is re-suspended back into the deepest box of the wa-
ter column, and the other one is buried into the sediment and
therefore responsible for P removal. However, the P budget
remains annually unchanged by the resupply of buried P via
river runoff.

2.2.2 Model for particle aggregation and
size-dependent sinking

Different approaches have been applied to simulate particle
aggregation in the marine environment. A detailed represen-
tation of the particle size spectrum can be accomplished by
explicitly simulating many different size classes, which in-
teract with each other via collision-based aggregation, parti-
cle sinking, remineralisation and breakup (Burd, 2013; Jack-
son, 1990). This flexible approach captures the details of the
size spectrum and its spatio-temporal variation in a very de-
tailed way. However, it is computationally expensive and thus
prohibitive to be applied to large spatial and long temporal
scales.

The aggregation module applied in MOPS parameterises
a continuous log—log-linear size distribution of particles via
the spectral slope ¢ calculated from number and mass of
particles (Kriest and Evans, 2000). The particle size distri-
bution is influenced by size-dependent particle aggregation
and sinking (Kriest, 2002; Kriest and Evans, 2000). Because
aggregation reduces particle numbers (but not mass), and
sinking preferentially removes large particles, number and
mass change independently. By assuming a log—log-linear
size spectrum, the slope ¢ of this spectrum can, at each time
step and grid point, be computed from the particle number
and total particle mass.

The model requires parameters for the power-law relation-
ships between particle diameter, d, and mass, m (m = C d®),
and between particle diameter and sinking speed, w (w =
Bd"), to be specified. In our model experiments, we assign
fixed values for the minimum diameter and mass of a primary
particle of size of dj = 0.002 cm and m; = 0.00075 nmol P.
The exponent for the relationship between size and mass is
set to { = 1.62, as proposed for marine aggregates in Kri-
est (2002), which is in line with more recent findings (Burd

Biogeosciences, 16, 3095-3111, 2019



3098 D. Niemeyer et al.: The effect of marine aggregate parameterisations

Table 1. Model runs of sensitivity study, their parameter combinations and the calculated misfit of tracers (Jrpsg) and OMZs (Jomz) for
MIT2.8 and the ECCO1.0 configurations. The 25 % best simulations with regard to Jrysg and Jopz are highlighted in yellow and the
worst 25 % in red (relative to RMSEECCOL0" 4png oMZECCO1L.0% ). The simulations in between are coloured in two orange gradations (bright
orange is medium good and dark orange is medium bad). The best simulation of each resolution with regard to Jrysg and Jopz is bold.
OMZ is defined as 50 mmol m—3. Parameter 7 denotes the exponent for size-dependent sinking, « the stickiness, w; the minimum sinking
speed, Dy, the maximum diameter for size-dependent sinking and aggregation, and wmax the maximum sinking velocity in the spectral
computations.

Jgh ISE J; FMSE JQMZ J OMZ
MIT2.8 ECCOL0 MIT2.8 ECCOLOD

Run n o Wy Dy Winax
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and Jackson, 2009; Jouandet et al., 2014). For the relation-
ship between size and sinking speed we test two alternative
values for n, namely n = 0.62 and n = 1.17 for the exponent,
and w; between 0.7 and 2.8 md~! for the minimum sinking
speed (see below). Assuming a constant degradation rate, the
average sinking speed of all particles combined would in-
crease with depth due to higher sinking speed of large par-
ticles and their higher proportion in the deeper ocean in-
terior. To prevent instabilities at very large sinking speeds
(very flat size distributions), as in Kriest and Evans (2000)
and Kriest (2002), we restrict the size dependency of sinking
and aggregation to a maximum diameter of Dy. Beyond Dy,
these processes do not vary with particle size any more. In
our model experiments, we let this parameter vary between
1,2 and 4 cm.

Changes in the number of marine particles are dependent
on particle aggregation, described by the collision rate, and
the probability that two particles stick together, «. In our
model experiments we vary « between 0.2 and 0.8. The col-
lision rate depends on turbulent shear and differential sinking
and is parameterised as in Kriest (2002). We assume that the
turbulent shear is high in the euphotic layers and 0 in the
deeper ocean layers.

To avoid complications and non-linear feedbacks, in the
experiments presented here, we assume that plankton mor-
tality and zooplankton egestion as well as quadratic zoo-
plankton mortality produce new detritus particles but do not
change the size spectrum.

By using this setup, the module is similar to parameterisa-
tions of particle size applied in other large-scale or global
models (Gehlen et al., 2006; Oschlies and Kihler, 2004;
Schwinger et al., 2016).

2.3 Model simulations and experiments
2.3.1 MOPS without aggregation

As a reference scenario, we used MOPS as described by
Kriest and Oschlies (2015). The model has been imple-
mented in both global configurations MIT2.8 (hereafter
called noAggM™8) and in the finer resolution, ECCO1.0
(nOAggECCOl'O).

2.3.2 Adjustment of biogeochemical model parameters

Introducing aggregates and a dynamic particle flux profile
to the global model MOPS has a strong impact on biogeo-
chemical model dynamics. Starting from parameter values
of the calibrated model setup (without aggregation) of Kri-
est (2017), we calibrated parameters relevant for phytoplank-
ton and zooplankton growth and turnover as described in Kri-
est et al. (2017) against observed global distributions of nu-
trients and oxygen.

Parameters to be calibrated for this new model were the
light and nutrient affinities of phytoplankton, zooplankton
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quadratic mortality, detritus remineralisation rate, particle
stickiness and the exponent n that relates particle sinking
speed to particle size (see Table 2). After introduction of
particle aggregation, the calibrated nutrient affinity of phy-
toplankton is now much higher, with a half-saturation con-
stant for phosphate of Kpgy = 0.11 mmol PO4 m~3 instead
of 0.5 mmol PO, m~3 in Kriest et al. (2017), very likely be-
cause the optimisation compensates for the higher export
(and lower recycling) of phosphorus and nitrogen. Possibly
for the same reason, detritus remineralisation rate in the opti-
mised model is increased from 0.05 to 0.25d~!. Light affin-
ity of phytoplankton deviates less from the value in the model
without particle aggregation, but the quadratic mortality of
zooplankton is strongly reduced (1.6 (mmolPm~3)~! in-
stead of 4.55 (mmol P m~—3)~1); the latter might be regarded
as an attempt of the optimisation to reduce the export of or-
ganic matter from the euphotic zone. The two parameters
that affect aggregation and particle sinking remained at mod-
erate values of @« =0.42 and n =0.72, i.e. close to those
applied in earlier model experiments with aggregation (e.g.
Kriest, 2002). The residual cost function Jrymsg of this pre-
calibrated model with aggregation was 0.472, i.e. lower than
noAggMITz'8 (Jrmse = 0.529), but somewhat higher than
achieved with a model version optimised against nutrient and
oxygen concentrations (Kriest et al., 2017), which resulted in
a misfit of Jrmsg = 0.439. In the sensitivity experiment de-
scribed below we will examine whether this remaining misfit
can be reduced even further and evaluate the model sensi-
tivity to changes in the parameters of this highly complex
module.

2.3.3 Sensitivity experiments at coarse resolution
(MIT2.8)

In the coarser model configuration of MOPS, MIT2.8, a first
sensitivity study of 36 model simulations with different ag-
gregation parameters was performed (see Table 1). We varied
the values of four aggregation parameters, which control the
rate of aggregation and the sinking behaviour of particles.
The first parameter is the stickiness «, i.e. the probability
that after collision two particles stick together, which was
set to values of 0.2, 0.5 and 0.8, respectively. The second pa-
rameter is the maximum particle diameter for size-dependent
aggregation and sinking, Dy, set to values of 1, 2 and 4 cm.
A small value of Dy, reduces the maximum possible sinking
speed of the detrital pool and vice versa. Parameter w; de-
scribes the sinking speed of a primary particle with values of
0.7, 1.4 and 2.8 md~—!. One effect of a small value of w; is
that it reduces the loss of organic matter from surface layers,
and thus it has a direct effect on the recycling of nutrients at
the surface. At the same time, it also affects the maximum
possible sinking speed of the entire detritus pool. Finally, the
exponent that relates particle sinking to diameter, 7, is set to
values of either 0.62 and 1.17. A high n represents dense par-
ticles and a fast increase of particle sinking speed with size; a
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Table 2. Model adjustment of biogeochemistry with aggregates compared to Kriest et al. (2017) and new parameters in this study.

Parameters that Kriestet al. (2017)  This study  Unit Description

remain fixed

ro2ut 171.7 171.7 mol Oy : mol P Redfield ratio

Subdin 15.8 15.8  mmol NO3 m~3 no denitrification below this level

Nfix 1.19 1.19 pmolNm~3d~! N fixation

ACkbaco2 1.00 1.00  mmol Oy m~3 half-saturation constant for oxic degra-
dation

ACkbacdin 31.97 31.97 mmolNO3 m—3 half-saturation constant for suboxic
degradation

ACmuzoo 1.89 189 147! maximum grazing rate

Parameters that

changed compared to

Kriest et al. (2017)

ACik 9.65 652 Wm2 light half-saturation constant

ACkpo4 0.5 0.106 mmolPm~3 half-saturation constant for PO4 uptake

AComniz 4.55 1.6 m3 (mmol Pd)~! quadratic zooplankton mortality

detlambda 0.05 025 1d7! detritus remineralisation rate

New parameters for the

aggregation model (further

modified in this study)

SinkExp - 0.7164 exponent that relates particle sinking
speed to diameter

Stick - 0.4162 stickiness for interparticle collisions

low value stands for more porous particles, which show only
a weak relationship between size and sinking speed (Kriest,
2002).

2.3.4 Sensitivity experiments at fine resolution
(ECCO1.0)

The occurrence of aggregates, and their transport to the
ocean interior, can furthermore depend on physical dynam-
ics (e.g. Kiko et al., 2017). Therefore, in a second step, we
repeated some of the experiments presented above in the
finer-resolution version ECCO1.0 to investigate possible im-
provements at higher resolution. In particular, we repeated
all MIT2.8 simulations with n = 0.62 in this finer-resolution
configuration. Additionally, we carried out three more sim-
ulations with n = 1.17 but with the smallest D, = 1 cm to
prevent particles from sinking through more than one box
per time step (see Table 1). All simulations together lead
to 30 model runs in the finer-resolution configuration. To
compare the ECCO1.0 simulations directly with results from
MIT?2.8, we re-gridded the result from ECCO1.0 simulations
onto the coarser MIT2.8 grid.

2.4 Model assessment and diagnostics

Because observational data of particle flux are either limited
with regard to space and time (e.g. Gehlen et al., 2006) or
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are combined with assumptions that yield no clear patterns
(Gehlen et al., 2006; Henson et al., 2012; McDonnell and
Buesseler, 2010), this study restricts the model assessment
to observations of nutrients and oxygen, in combination with
the model fit to volume and location of oxygen minimum
Zones.

2.4.1 Root mean squared error of tracers

After a spinup of 3000 years into a seasonally cycling equi-
librium state, the model results are evaluated in terms of an-
nual means of oxygen, phosphate and nitrate. As in previous
studies (e.g. Kriest et al., 2017) the misfit is calculated by the
deviation between simulated results, m, and observed prop-
erties taken from the World Ocean Atlas (WOA), o (Garcia
et al., 2006). The deviations are weighted by volume of each
grid box V;, expressed as the fraction of the total ocean vol-
ume Vt. The sum of the weighted deviations is normalised
by the observed global mean concentration of each tracer:

3 .
JRMSE = Z/:IJ(])

3 1 N Vz
N Zleo_j\/zi=l (mij —0i1) ¥ 3. (1)

In this equation, j = 1, 2, 3 describes the respective tracer
(i.e. PO4, NO3 and Oj). N is the total number of model
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grid boxes and o; is the global average observed concentra-
tion of each tracer (Kriest et al., 2017). Thus, a low misfit
value represents a good agreement between model and ob-
servations (Jrmsg = 0 would be a perfect fit), which enables
a prediction about the model accuracy with regard to these
tracers. The model runs with the lowest Jrmsg in the coarse
and the fine resolution are hereafter called RMSEMIT28" and
RMSEECCOLO™ ‘respectively.

2.4.2 Fit to oxygen minimum zones

To evaluate the extent and location of OMZs, we follow the
approach of Cabré et al. (2015) by calculating the overlap
between modelled and observed (Garcia et al., 2006; here-
after referred to as “WOA”) OMZs. As several marine pro-
cesses are oxygen-dependent but have heterogeneous criteria
for their minimum oxygen threshold, in this study, the OMZs
are calculated for different oxygen threshold concentrations,
C. Therefore, low-oxygen waters are characterised as O <c,
with ¢ ranging from 0 to 100 mmol O m~3. To calculate the
overlap between simulated and observed OMZs, we use the
following equation (Sauerland et al., 2019):

_ V() _ V()
Vo) V() + Vo(e)— V(o)

@

In this equation, V" (c) is the volume of overlap of sub-
oxic waters between model and observations, with regard to
the defined oxygen threshold concentration c. This overlap
is divided by the union (total volume of low-oxygen waters
occupied in the model or in the observations) and results in
a value between 0, equal to zero overlap between model and
observations, and 1, which represents an optimal overlap. To
adjust the scale to Jrmsg, we calculated the following:

Jomz =1-C. 3

In this equation, Jomz varies between 0 and 1. Conse-
quently, the scale of Jomz is equivalent to the scale of JRMSE,
which implies that a low misfit corresponds to a good agree-
ment between model and observational data and vice versa.
The model simulations with regard to the lowest Jomz are
called OMZMIT28" 3nd OMZECCOLO" hereafter. In calculat-
ing the overlap, we distinguish between the global ocean and
the Pacific as well as the Atlantic Ocean.

2.4.3 Estimation of particle flux length scale b

To investigate, if, and how, the model reproduced observed
maps of the particle flux length scale, b, that relates parti-
cle flux and depth via F (z) xz~? and derived from data
by Marsay et al. (2015) and Guidi et al. (2015), we log-
transformed F(z), the simulated annual average flux of par-
ticulate organic matter as a function of depth, and carried out
a linear regression of these values. The highest b values cor-
respond to short particle flux length scale, i.e. many small
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particles, and thus a low sinking speed, shallow reminerali-
sation and high oxygen consumption in shallow waters. For
the reference models without aggregation these global maps
should, in areas with shallow mixed layers, show spatially
uniform values, as imposed by the model’s prerequisites. De-
viations from uniform values can be ascribed either to oxi-
dant limitation of remineralisation (see above model descrip-
tion) or to physical processes such as mixing or upwelling,
which can result in an additional vertical transport of parti-
cles.

The parameterisation of the aggregation model assumes a
constant sinking speed for an upper size limit Dy, (see above),
and therefore average particle sinking speed will remain con-
stant below some depth. Also, the assumption of a particle
size spectrum, size-dependent sinking and constant reminer-
alisation will result in particle flux profiles that do not fully
agree with those predicted by a power law (see Kriest and
Oschlies, 2008). Thus, because the aggregation model’s pre-
requisites do not fully agree with a continuous increase of
sinking speed with depth, we confine the regression of log-
transformed particle flux to a vertical range between 100 and
1000 m, where the aggregation model still shows an increase
of average sinking speed with depth (see also Kriest and Os-
chlies, 2008).

3 Results

3.1 Global patterns of particle flux profiles

As could be expected, noAggECCO1-0 shows almost no spa-
tial pattern of b, with values around the prescribed nomi-
nal value of b = 0.858 (global mean: 0.64; Fig. 1a; please
note the different scaling in a and d) indicating long par-
ticle flux length scales and deep remineralisation. Regions
with particularly low diagnosed b values (<0.2) result either
from decreased remineralisation in OMZs (e.g. eastern trop-
ical Pacific OMZ) or are found in areas of deep mixing (in
the model mainly high latitudes or western boundary cur-
rents), where vertical mixing increases the inferred particle
flux length scales. However, for the best simulation with re-
gard to the sum of Jrmsg and Jopz of the aggregation model
(called ECCO1.0* hereafter) we find the highest b values,
corresponding to short particle flux length scales, or shal-
low remineralisation, in the oligotrophic subtropical gyres.
In contrast, b is the smallest in the equatorial upwelling and
in the shelf regions (Fig. 1d and g). This pattern is in accor-
dance with the observed spatial pattern derived by Marsay et
al. (2015). In our model, this very deep flux penetration (b
close to 0) in the equatorial upwelling can be explained with
low oxygen concentrations, which reduce the remineralisa-
tion rate. In contrast, when deriving the particle flux length
scale from a similar model but with oxygen-independent
remineralisation (Kriest and Oschlies, 2013), we find a b
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close to the prescribed b value of 0.858 (Fig. S1 in the Sup-
plement).

In the subtropical and the equatorial region, the spatial
variance (marked transparent red; Fig. 1g) of model-derived
b values is quite high, which is caused by spatial varia-
tions in the physical environment, i.e. permanently stratified
subtropical gyres and upwelling regions with low oxygen
and reduced remineralisation. However, besides ECCO1.0*
the four best model simulations with respect to the sum of
JrMsE and Jowmz (simulation nos. 14, 17, 28 and 29; Table 1)
show essentially the same pattern of b (Fig. S2), although
these four simulations include quite different parameterisa-
tions (see Table 1).

Regions with high b values are characterised by a high
spectral slope of the size distribution and therefore a high
abundance of small particles, leading to slow sinking speeds
(Fig. 7) and low export rates in ECCO1.0* (Fig. If).
ECCOI1.0* simulates the highest export rates at high lati-
tudes and in the upwelling region and the lowest export rates
in the subtropical gyres (Fig. 1f and i). Although the spatial
pattern of export rates is similar for both model simulations
with and without aggregation, ECCO1.0* shows a 1.6-fold
higher global mean export rate (10.1 mmol Pm~2a~!) than
noAggECCO1L0 (6.1 mmolPm~2a~!). In ECCO1.0* export
rates show a higher regional variability than in noAggF¢C01-0
(Fig. Ic, f and 1), which is due to blooms in the high lati-
tudes during summer season accelerating the size-dependent
aggregation and thus the export signal.

The oxygen concentration at a depth of 100 m shows the
same global pattern in both simulations, with high oxygen
concentrations at high latitudes and decreasing concentra-
tions towards the Equator (Fig. 1b and e). However, the
oxygen concentration at high latitudes is slightly higher in
noAggECCOL0 than in ECCO1.0* (Fig. 1h). Moreover, the
global suboxic volume (for a criterion ¢ = 50 mmol m—3) in
ECCO1.0* (7.3 x 10" m?) is larger than in noAggFCCO1-0
(3.7 x 100 m?). Comparing our model results with the
dataset of Garcia et al. (2006), which yields a volume of
5.6 x 1010 m?3, we find an underestimation of the suboxic vol-
ume for noAggFCCO1-0 by 34 % and an overestimation for
ECCO1.0* by 30 %.

3.2 Representation of oxygen minimum zones

The finer-resolution and data-assimilated circulation of
ECCOL1.0 in general improves the representation of OMZs in
comparison to MIT2.8 with regard to the overlap of OMZs
for a criterion of 50 mmol m—3 (Fig. 2). Both simulations
without explicit particle dynamics, namely noAggMT28 and
noAggFCCOL0 clearly underestimate the extent of the OMZ
at a depth of 500 and 1000m for an OMZ criterion of
50 mmol m~3 in the Pacific basin (Fig. 2). The simulations
including particle dynamics that are the best with respect to
the OMZ metric, OMZM!T28" and OMZFCCOL0" exhibit a
larger OMZ area for both resolutions (Fig. 2). Despite the
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improved representation of OMZs, all models including the
particle aggregation module still tend to merge the OMZs
of the Northern Hemisphere (NH) and the Southern Hemi-
sphere (SH) at a depth of 500 m, which does not agree with
the well-separated northern and southern OMZ shown by the
observations (Figs. 2 and S3 in the Supplement). As reflected
in a plot that shows the extent of OMZ in the NH and SH,
similar to Fig. 1a and 1b of Cabré et al. (2015), all models
fail to represent the double structure of OMZ north and south
of the Equator. However, in our model the northern Pacific
OMZ is fitted quite well (Figs. 2 and S3).

Aggregation improves the representation of OMZs with
respect to a criterion of ¢ =50mmolm™ compared to
the simulations without aggregation for both resolutions
in the NH, but not in the SH (Fig. 3). In noAggFCCO1.0
the OMZ simulated in the NH is too small and too shal-
low (Fig. 3a). Even though OMZECCOLO® tends to under-
estimate the suboxic area between ~ 700 and 1300 m, it
shows a considerably higher overlap of model results and ob-
servations compared to noAggF“O10 (Fig. 3b). However,
in the SH noAggFCCO10 represents the OMZs better than
OMZECCOLO*, which tends to overestimate the suboxic area
in this hemisphere. In addition to differences caused by par-
ticle dynamics, circulation affects the performance in the two
hemispheres: OMZECCO1.0* represents the highest overlap
between ~ 100 and 500 m depth in the SH, but this is sur-
passed by OMZMIT28" petween 500 and 900 m depth. In the
NH, OMZECCOLO" outcompetes OMZMIT28" between 300
and 900 m depth as far as overlap is concerned (Fig. 3b).

However, the improvement of the representation of OMZs
in the simulations with aggregation depends on the criterion
for OMZs. As could be expected, a higher oxygen thresh-
old for the OMZ criterion enhances the overlap between
model simulations and observational data (Fig. 4). As for the
fixed criterion of 50 mmol m~3, globally and in the Pacific
the better circulation and finer resolution of ECCO1.0 im-
proves the overlap for varying OMZ criteria in comparison
to MIT2.8 (Fig. 4a and c¢). While the OMZECCOL0" gimy-
lation reaches globally a maximum overlap of 65.9 % (for
¢ = 100 mmol m—3), OMZMIT28" cylminates only in a max-
imum of 58.7 % for the same criterion.

In the Pacific basin OMZECCOL0" reaches an agree-
ment with observations of 19.9 % overlap for a criterion of
20 mmol m~3 (Fig. 4¢). The overlap then increases strongly
until the 100 mmolm~3 criterion (68.2%). It is notewor-
thy that globally and in the Pacific area noAggFccO!0 oyt-
performs all models for a criterion of 20 mmol m~3, where
it shows an agreement of almost 31 %. The Atlantic basin
shows an inverse trend (Fig. 4b): here, OMZMIT28" repre-
sents the OMZ better than OMZECCO1-0" (26 % and 12.2 %,
respectively, for a criterion of 70 mmol m~3). Further, in this
region, the ECCO1.0 model that performs best with respect
to RMSE (RMSEECCOI'O*) outperforms OMZECCOLO" gyer
the full range of criteria (Fig. 4b). Thus, there are large re-
gional differences in the model’s response to different circu-
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Table 3. Number of simulations with different parameters for Dy,
a and wq for the porous (n = 0.62) and dense (n = 1.17) particles
which outperform the corresponding other size. The numbers are
given with respect to two different criteria, JrRpsg and Jomz-

n=0.62 n=1.17 Resolution
JRMSE 6 3 MIT2.8
Jomz 8 1 MIT2.8
JRMSE 2 1 ECCOI1.0
Jomz 2 0 ECCOL1.0

lations and particle dynamics. Because the dataset of obser-
vations used for comparison does not contain any concentra-
tions below 30 mmol m 3 in the Atlantic, all models show no
overlap at all in this basin.

In summary, the improvement of model fit with regard to
Jomz depends not only on particle dynamics but also on the
definition of OMZs (i.e. the OMZ criterion c), the model res-
olution as well as the region considered (Figs. 2, 3, 4).
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3.3 Sensitivity of nutrient and oxygen distributions to
aggregation parameters

Table 3 shows that in six cases out of nine (MIT2.8), a model
that represents porous particles (n = 0.62) outperforms the
corresponding model with a sinking speed that describes
rather dense, cell-like particles ( = 1.17). The same applies
for the higher resolution (ECCO1.0), where in two cases out
of three a porous parameterisation improves the fit with re-
gard to Jrmsk (see Table 1). Also, both Jrmsg and Jomz of
the “dense” parameterisations are never among the best five
models with respect to either metric (see Table 1). Thus, in
the following we focus on model simulations with n = 0.62.

Among the sensitivity experiments performed, the best
model with respect to Jrmsg (hereafter referred to as
RMSEMIT28%) ig characterised by an intermediate stickiness
a of 0.5, the largest diameter for size-dependent aggrega-
tion and sinking, D, of 4 cm and a minimum particle sink-
ing speed w; of 2.8md~!, representing a rather fast or-
ganic matter transport to the ocean interior. However, many
other models with medium stickiness perform about equally
well (Fig. 5b). Models with lower stickiness perform best
with slow minimum sinking speed w; and a large maximum
size Di, =4 cm for size-dependent sinking and aggregation

Biogeosciences, 16, 3095-3111, 2019
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Figure 2. Comparison of Pacific Ocean OMZ (O < 50 mmol m_3) between model simulations and observations. Panels (a) and (b) show
the OMZ at a depth of 500 and 1000 m for the coarse resolution, MIT2.8, and panels (c¢) and (d) for the fine resolution, ECCO1.0.

(Fig. 5a). In contrast, a large stickiness (which facilitates
the formation of aggregates in surface layers) requires either
small wj or Dr, which reduces the export of particles out of
the euphotic zone, and into the ocean interior.

Oxygen concentrations contribute most to the global
JrMse (Kriest et al., 2017). The influence of oxygen on
global tracer misfit is dominated by the deep concentrations
(Fig. S4) and thus to a large extent by the large-scale cir-
culation. The OMZs, because of their small regional extent,
contribute less to the global misfit (Kriest et al., 2017). This
is confirmed by Fig. S4d, e and f, showing that, in the eastern
tropical Pacific region, deep (> 300 m) mesopelagic and deep
oxygen concentrations scatter strongly among the different
models (Fig. S4a), despite their good global match in shal-
low waters. Likewise, although global mean profiles of nu-
trients are quite similar among the different circulations, and
agree quite well with observations, their concentrations scat-
ter strongly in the eastern tropical Pacific. Most of the simu-
lations tend to underestimate the oxygen and nitrate concen-
tration in this region (Fig. S4a and c). Oxygen concentrations
that are too low lead to denitrification that is too high and
thus widespread nitrate depletion in the eastern tropical Pa-
cific region, which explains the simultaneous underestimate
of oxidants in this region.

To sum up, a moderate stickiness enhances the chance of a
good model fit to nutrients and oxygen (JrMsE), but there is
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no unique trend for the parameters or combination of param-
eters, with the exception of the exponent that relates particle
sinking speed to its size: here, we find an advantage of a pa-
rameterisation characteristic for porous marine aggregates.
In the optimal scenario, the misfit is less than that of a model
without aggregates, when this is simulated with fixed refer-
ence parameters (noAggM!T28). Because of the small spatial
extent of OMZs, the model fit to nutrient and oxygen con-
centrations is mainly caused by the large-scale tracer distri-
bution, even if some models show a considerable mismatch
to these tracers in OMZs.

The pattern for Jrmsg does not change very much
when applying a different, more highly resolved and data-
assimilated circulation (see Table 1 and Fig. 6). Now, the
optimal model (RMSEECCOLO™ g improved with respect
to JRMSE by about 13 %, but many other almost equally
good solutions can be found with moderate to high sticki-
ness. Introducing aggregates in this coupled model system
does not improve the model fit to nutrient and tracer concen-
trations, as evident from the comparison of RMSEECCO1.0*
(JrMsg = 0.431) against a model without aggregate dynam-
ics (JrMsE = 0.426; Table 1). The lack of improvement can
likely be explained by the fact that the biogeochemical pa-
rameters of MOPS with particle dynamics were adjusted in
the circulation of MIT2.8, and thus they are not optimal
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for varying criteria ¢, ranging from O<c<100mmol m~3) on a
global scale (a), for the Atlantic Ocean (b) and for the Pacific
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for the model when simulated in the physical dynamics of
ECCOL1.0.

The sensitivity to the metric for OMZs differs from the
sensitivity to the metric for nutrients and oxygen. Now, for
the fit to oxygen minimum zones (Jomz), a large stickiness
(@), in combination with Dy, of 2 cm and slow-to-moderate
minimum sinking speed wi, is of advantage (Figs. 5 and
6). Thus, a high rate of aggregation, and a maximum sink-
ing speed of about 50-100md~!, improves the model with
respect to OMZs. This is also evident from comparison
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of the optimal models (OMZMIT28" 3pd OMZECCOL0)
to models without aggregate dynamics (noAggM™?8 and
noAggFCCO1-0) shown in Figs. 3 and 4 and Sect. 3.2. Nev-
ertheless, even the models that perform best with respect
to Jomz underestimate mesopelagic oxygen when averaged
over the eastern tropical Pacific (Fig. S4a).

The sensitivity patterns with regard to Jopmz among both
configurations MIT2.8 and ECCO1.0 diverge considerably
from each other, which is in contrast to the patterns for JRMsE
noted above (compare Fig. 5 with Fig. 6). Thus, model per-
formance with respect to Jomz seems to depend much more
on circulation and physical details than the large-scale dy-
namics reflected in JRMSE.

4 Discussion

In our sensitivity study, we used a similar parameterisation of
particle aggregation as Oschlies and Kéahler (2004) applied
in their biogeochemical-circulation model for the North At-
lantic Ocean. The difference compared to our model consists
in aggregates, which are composed of phytoplankton and de-
tritus, the parameterisation, which is based on dense particles
(dSAM, Kriest, 2002) and a biogeochemical model, which
is different. We found high values for the spectral slope of
the size distribution (i.e. high abundance of small particles)
and thus a low particle sinking speed in the subtropical gyres
(Fig. 7), which corresponds with the findings by Oschlies and
Kihler (2004) and Dutay et al. (2015). This, in turn, leads to
the highest b values in the oligotrophic subtropical gyres and
the lowest ones in the high latitudes and the upwelling re-
gion, in agreement with the pattern as shown in Marsay et
al. (2015). These findings imply that such a b pattern can re-
sult not only from temperature-dependent remineralisation —
as suggested by Marsay et al. (2015) — but also from parti-
cle dynamics and temperature-independent remineralisation.
However, if temperature-dependent remineralisation, as sug-
gested by Marsay et al. (2015) or Iversen and Ploug (2013),
was also included in our model, this would likely enhance
horizontal variations in the particle flux profile, with even
deeper flux penetration in the cold waters of the high latitudes
and upwelling areas. Besides particle dynamics, the low b
values in upwelling regions found in our study (Fig. 1d) are
also caused by the suboxic conditions, which suppress rem-
ineralisation in subsurface waters. Such a tight link between
suboxia and deep flux penetration is supported by the ob-
servations reported by Devol and Hartnett (2001) and Van
Mooy et al. (2002). Therefore, two different processes — par-
ticle aggregation and/or temperature-dependent reminerali-
sation — suggest low b values and deep flux penetration in
the very productive areas of high latitudes. A third process,
which consists in oxygen-dependent remineralisation, is su-
perimposed on these in OMZs, causing the steepest particle
profiles in these areas.
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Figure 5. Sensitivity of Jrimsg (Eq. 1); (a, b, ¢) and Jomz (Eq. 3); (d, e, f) to minimum sinking speed w; and maximum size Dy, for the
coarse resolution, MIT2.8, for three different values of stickiness (a—f), and n = 0.62 (“porous” particles). The colour bar shows Jrymsg and
Jomz (blue — good fit, red — bad fit), normalised by its minimum value across all model experiments. Black arrows indicate an improvement
of JRMSE or Jomz with increasing parameter values, while white arrows show an improvement with decreasing values.

However, it should be noted that although the maximum
sinking speed of our best simulations (101 (no. 17) and
51md~" (no. 26), see Table 1) agrees with observations (All-
dredge and Gotschalk, 1988; Nowald et al., 2009; Jouandet et
al., 2011), the range of b values in our model is almost twice
as large as suggested by most empirical studies (Berelson,
2001; Buesseler et al., 2007; Martin et al., 1987; Van Mooy
et al., 2002). However, as there is no common depth range
to determine the particle flux length scale b, the depth range
spreads over a wide range in various studies and thus im-
pedes the comparability (Marsay et al., 2015), which might
explain some divergence between observations and model re-
sults. In particular, our model simulates too large a fraction
of small particles and therefore too steep a particle size spec-
trum in the subtropical gyres, which causes b values that are
too high in these areas. Other processes that modify the size
spectrum, like grazing by zooplankton, and the subsequent
egestion of large fecal pellets, might also play a role in these
regions. Additionally, the model tends to underestimate the
number of large particles (size range 0.14 to 16.88 mm) in the
surface of the tropical Atlantic Ocean (23° W), compared to
observations (Kiko et al., 2017; Fig. S6). On the other hand,
a first, direct comparison to the UVP 5 dataset (Kiko et al.,
2017, their Fig. 1) exhibits a correct magnitude regarding the
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number of particles within this size range (0.14 to 16.88 mm)
in our model (Fig. S5) along the 151° W section. One possi-
ble explanation for the mismatch at 23° W could consist in
a not sufficiently resolved equatorial current system, which
also will be discussed below. Also, additional biological pro-
cesses, such as the downward transport of organic matter
through vertically migrating zooplankton (Kiko et al., 2017)
or particle breakup of aged, fragile particles at depth (e.g.
Biddanda et al., 1988), could improve the model. However,
introducing this additional complexity is beyond the scope
of this paper. In future studies, consideration of these pro-
cesses, in conjunction with a comprehensive model calibra-
tion against observed particle abundances and size spectra
(e.g. Stemmann et al., 2002), may help not only to improve
the representation of OMZs but also to better constrain the
contributions of individual processes such as aggregation,
vertical migration and temperature-dependent remineralisa-
tion, as well as to validate simulated particle dynamics.
However, model calibration against observed particle dy-
namics has to account for characteristics and limitations of
observations. For example, the size spectrum assumed in our
model is of infinite upper size and also contains particles with
a diameter larger than, for example, 4 cm (the upper limit
for size dependency of aggregation and sinking). While these
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particles exist (e.g. Bochdansky and Herndl, 1992), they are
very rare (in the model, and likely also in the observations)
and might not be observed with standard methods, which
usually rely on a sample size of a few litres. The rare occur-
rence of large particles (and the limited sample size) has, for
example, consequences for estimated size spectra parameters
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(Blanco et al., 1994). Thus, any model calibration against ob-
servations of particle abundance and size has to account for
a proper match between simulated and observed quantities.
As we used on the one hand two different model grid res-
olutions and on the other hand varied model parameterisa-
tions with regard to particle aggregation, changes in the lo-
cation and extension of OMZs and the distribution of tracers
within each resolution are exclusively driven by the aggre-
gation parameters. A good parameterisation of particle ag-
gregation parameters can therefore have a major influence
on the representation of OMZs. Furthermore, a higher model
resolution improves the depiction of equatorial currents and
therefore the oxygen transport (Cabré et al., 2015; Duteil
et al., 2014), which, in turn, results in an improved rep-
resentation of OMZs in the finer-resolution configuration,
ECCO1.0, compared to the coarser resolution, MIT2.8. How-
ever, as physical processes at smaller scales affect the simu-
lated shallow to mesopelagic oxygen and nutrient concen-
trations for the eastern tropical Pacific (Getzlaff and Dietze,
2013), the finer (1° x 1°) resolution of ECCO1.0 is not suf-
ficient to resolve the details of the equatorial current system
(Duteil et al., 2014). This can explain the still high residual
misfit of these simulations and the missing double structure
of OMZs in the eastern tropical Pacific. We therefore suggest
that the difference in improving the representation of OMZs
between NH and SH is more affected by physics than by bi-

ology.
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Furthermore, the results of our sensitivity study confirm
that dense particles do not constitute a realistic representa-
tion of particles, as indicated by Karakag et al. (2009) and
Kriest (2002). Porous particles seem to constitute a more ap-
propriate parameterisation for good model fit with regard to
JruMse and Jomz (Table 1). Although the observed stickiness
ranges between almost 0 and 1 (e.g. Alldredge and McGilli-
vary, 1991; Kigrboe et al., 1990), in our study a moderate
stickiness, o, between 0.5 and 0.8 leads the model towards a
good fit to observed nutrients, oxygen and OMZs.

In summary, our study supports the results of Schwinger
et al. (2016), who found an improved representation of nu-
trient distribution and OMZs when switching from constant
particle sinking to either a power law or particle dynamics,
similar to those presented here. However, the difference be-
tween the two latter schemes in that study were only small. A
more extensive search of the parameter space within a given
circulation may further improve the model. Additionally, we
optimised noAggMT>3 against the same misfit function as
MOPS®P of Kriest et al. (2017) and found that even though
including an aggregation module improves our model, util-
ising an appropriate parameter optimisation would further
enhance our model fit. Thus, without a comprehensive cali-
bration of biogeochemical and aggregation parameters, there
only seems to be a slight advantage when using this more
complex model of particle dynamics.

Finally, we found a steep particle size spectrum in the sub-
tropical oligotrophic region (Fig. 1d), which does not agree
with observational data. Potentially, there are processes tak-
ing place that are not considered in our model, i.e. parti-
cle repackaging and active transport by zooplankton (vertical
migration) (Kiko et al., 2017) based on a modified food web.
Thus, particle aggregation alone so far seems not to be suf-
ficient for a correct representation of the particle size spec-
trum.

5 Conclusion and outlook

Najjar et al (2007) applied different model circulations to
the same biogeochemical model and found that physical pro-
cesses are an important factor for modelling marine biogeo-
chemistry. Our study furthermore showed that also biogeo-
chemical parameterisations — in particular, those related to
particle flux — can have an important impact on the repre-
sentation of dissolved inorganic tracers, in line with earlier
studies (e.g. Kriest et al., 2012; Kwon and Primeau, 2006,
2008). These earlier studies applied and varied a globally
uniform particle flux length scale, whereas it has been sug-
gested that this parameter should vary in space and time (e.g.
Guidi et al., 2015; Marsay et al., 2015). The sensitivity study
presented here constitutes a first approach to systematically
estimate the impact of marine particle aggregation — and thus
a spatially and temporally variable flux length scale — on the
location and extent of OMZs as well as the representation of
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phosphate, nitrate and oxygen under steady-state conditions
in a global three-dimensional biogeochemical ocean model.

We have shown that the assumptions inherent in the model
confirm the general pattern of the spatial map of b values pro-
posed by Marsay et al. (2015) (Fig. 1a and d). This, in turn,
shows that the pattern of Martin’s b can be depicted not only
by a particulate organic carbon flux dependent on tempera-
ture but also by simulating explicit particle dynamics.

We furthermore found that even though there are still a
lot of gaps in understanding several processes (e.g. the vari-
ation of export rates, particle stickiness and particle flux pro-
file over space and time, as well as the link between par-
ticle diameter and sinking speed), the comparisons against
observational data show a trend towards a model improve-
ment by integrating particle dynamics (Table 1). While the
parameterisation of aggregation leads the model towards an
improved fit to OMZs for both model resolutions, this in-
crease in model fit with regard to phosphate, nitrate and oxy-
gen is only detectable in the coarse-resolution MIT2.8, but
not in the finer-resolution and data-assimilated circulation of
ECCO1.0. Moreover, model simulations show that besides
effects of grid resolution, the model fit with regard to JrMSE
and Jomz is mainly driven by the particles’ porosity. Our re-
sults indicate that a best fit to both tracers as well as OMZs
(50 mmol O, m™3 criterion) is achieved by parameterising
porous particles in combination with an intermediate-to-large
maximum particle diameter for size-dependent aggregation
and sinking, a moderate-to-high stickiness ranging between
0.5 and 0.8, and an intermediate-to-high initial sinking speed
ranging between 1.4 and 2.8 md~! (Fig. 5). The strong sen-
sitivity of the model fit to aggregation parameters may point
towards the importance of a spatially and temporally varying
flux length scale; however, they also show that the dynamics
of the model depend strongly on the assumptions we make
with respect to particle properties and processes.

Finally, we have shown that uncertainties in the parame-
terisation of particle aggregation remain, leading to the in-
ference that dissolved inorganic tracers offer only insuffi-
cient observational constraints for global particle parameter-
isation. Therefore, for an accurate representation it will be
necessary to calibrate the model not only against observed
phosphate, nitrate, oxygen distributions and volume and lo-
cation of OMZs (Sauerland et al., 2019) but also against
number and size of particles, using comprehensive datasets
of observations (as in Guidi et al., 2015).

Code and data availability. The source code of MOPS including
the aggregation module coupled to TMM as well as the model out-
put are available at: https://data.geomar.de/thredds/catalog/open_
access/niemeyer_et_al_2019_bg/catalog.html (Niemeyer, 2019).
The source code of the TMM is available at: https://github.com/
samarkhatiwala/tmm (Khatiwala, 2019).
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