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Abstract. Quantitative information on the error properties of
global satellite-derived burned area (BA) products is essen-
tial for evaluating the quality of these products, e.g. against
modelled BA estimates. We estimate theoretical uncertainties
for three widely used global satellite-derived BA products
using a multiplicative triple collocation error model. The ap-
proach provides spatially unique uncertainties at 1◦ for the
Moderate Resolution Imaging Spectroradiometer (MODIS)
Collection 6 burned area product (MCD64), the MODIS
Collection 5.1 (MCD45) product, and the European Space
Agency (ESA) Climate Change Initiative Fire product ver-
sion 5.0 (FireCCI50) for 2001–2013. The uncertainties on
mean global burned area for three products are 3.76±0.15×
106 km2 for MCD64, 3.70± 0.17× 106 km2 for FireCCI50,
and 3.31±0.18×106 km2 for MCD45. These correspond to
relative uncertainties of 4 %–5.5 % and also indicate previ-
ous uncertainty estimates to be underestimated. Relative un-
certainties are 8 %–10 % in Africa and Australia, for exam-
ple, and larger in regions with less annual burned area. The
method provides uncertainties that are likely to be more con-
sistent with modelling and data analysis studies due to their
spatially explicit properties. These properties are also in-
tended to allow spatially explicit validation of current burned
area products.

1 Introduction

Several global satellite-derived burned area (BA) products
have been generated for the past two decades. These prod-
ucts, generated from coarse spatial resolution (250–1000 m)
satellite imagery, have provided vital information to fire-

related disciplines (Mouillot et al., 2014). They have pro-
vided new information on global pyrogeography and changes
in fire occurrence (Archibald et al., 2013; Andela et al.,
2017), been used to calibrate and validate fire models within
dynamic global vegetation models (DGVMs) (Thonicke
et al., 2001; Hantson et al., 2016), as well as to drive “bottom-
up” estimates of fire emissions (Seiler and Crutzen, 2008;
van der Werf et al., 2017). Despite such value, the true infor-
mation content of such datasets is still to be fully quantified.
The trust that users can place into these products can be im-
proved by providing estimates of product uncertainty. This
entails providing a quantitative statement about the lack of
knowledge of the true burned area – described by a probabil-
ity density function (PDF) characterising the range and like-
lihood of possible values (IPCC, 2008; ISO/BPIM, 2008).
Burned area products display large intra- and interannual dif-
ferences in the magnitude and timing of fire activity (Giglio
et al., 2010; Padilla et al., 2015). Humber et al. (2018) indi-
cated that the range of total recorded burned area for 2005–
2011 varied by 90 % between four global satellite-derived
burned area products. These ranges imply considerable un-
certainty in the global burned area satellite record. Previ-
ous burned area product intercomparison initiatives have at-
tempted to explore and explain the spatial and temporal
differences observed between different products. Large dif-
ferences between product estimates have been highlighted
in tropical regions, boreal Eurasia, and sub-Saharan Africa
(Giglio et al., 2010; Humber et al., 2018). These divergences
have been interpreted to be driven by differences in the ob-
serving properties of the satellites used to create products,
as well as the mapping algorithms used within each prod-
uct. A key determinant on the accuracy of burned area de-
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tection originates from the spatial mapping scale of prod-
ucts, with evidence that products produced from higher-
resolution observations have reduced omission errors (Roy
and Boschetti, 2009). Others have highlighted the importance
of the temporal revisit time of the utilised satellite instru-
ment (Boschetti et al., 2004). Similarly, the role of persistent
cloud cover in some regions has been highlighted, with large
divergences between burned area estimates in southeastern
Asia ascribed to differences in algorithm observational re-
quirements (Humber et al., 2018). Differences in algorithm
decisions and assumptions have also been emphasised, with
evidence that even non-vegetated areas (i.e. deserts) display
burning for some products (Giglio et al., 2010).

While these intercomparison and validation exercises have
provided insight into product performance, the global estima-
tion of product uncertainties from such exercises is difficult.
Even the largest and most sophisticated validation datasets
correspond to only a small sampling of global fire activity,
and it is not clear whether this is sufficient information to
build an understanding of uncertainties at global and decadal
scales. Uncertainty quantification (UQ) has been requested
by users of burned area products for several years (Mouil-
lot et al., 2014; Rabin et al., 2017). Fire modellers have in-
dicated that the discrepancies between products and lack of
systematic uncertainty information have restricted efforts for
improving models. Poulter et al. (2015) considered the sen-
sitivity of a dynamic global vegetation model to the driving
satellite burned area product used. They indicated that the
model displayed large sensitivities to deviations between the
satellite products, and greater UQ would help to drive im-
provements in model development and benchmarking. Con-
cerns have also been expressed about the calibration of fire
models against burned area products which lack the neces-
sary uncertainty information to evaluate model performance
in a systematic manner against the observations (Knorr et al.,
2014; Yue et al., 2014).

This paper addresses the requirement for uncertainties on
global satellite-derived burned area by estimating the uncer-
tainties of three widely used burned area products. Section 2
outlines the sources of uncertainties in burned area products
and previous estimates of uncertainties. Section 3 then de-
scribes the uncertainty estimation procedure used here. Sec-
tion 4 presents the results of the uncertainty model and com-
pares the uncertainty estimates against two other available
estimates of burned area uncertainties. Section 5 considers
the assumptions of the error model used, and Sect. 6 dis-
cusses potential mechanisms for the reported uncertainties.
Section 7 concludes the paper.

2 Uncertainties in burned area products

2.1 Sources of uncertainty

The production of global records of burned area involves
the processing of considerable volumes of coarse-resolution
satellite observations. Burned area products lie at the top of a
measurement process involving the transformation of the ini-
tial satellite measurements to higher-level burned area infer-
ences (Merchant et al., 2017). Uncertainties enter this mea-
surement process at all levels. The initial satellite measure-
ments are not error-free and these uncertainties are thus prop-
agated through the burned area retrieval algorithm. In addi-
tion, the detection of changes and the attribution to burning
naturally involve an uncertain inference on the state of the
land surface.

The optical surface reflectance and thermal measurements
used to map burned area have inherent uncertainties due
to the measurement process. The optical surface reflectance
products, for example, are themselves derived geophysical
variables which involve the application of retrieval algo-
rithms (e.g. atmospheric correction), introducing additional
uncertainties into the measurement (Vermote et al., 2002).

The sampling provided by Earth-orbiting sensors con-
tributes additional uncertainties. Satellite instruments collect
measurements of an area of the land surface infrequently in
time and from different acquisition geometries of the Sun and
sensor. Variations in sampling geometry alter both the ground
area sampled by the sensor and the apparent reflectance sig-
nal. The wide-swath instruments typically used to produce
burned area products provide the temporal sampling neces-
sary to detect the ephemeral signal of fire on the land sur-
face. However, large variations in the sampling geometries
from these sensors complicate the detection of changes in
the land surface related to fire (Roy et al., 2005). Zhang et al.
(2003) found that changes in the viewing geometries between
pre- and post-fire reflectance resulted in enhanced difficulty
of identifying burned areas in boreal forests. Similarly, varia-
tions in the area sampled led to a significant proportion of the
recorded signal originating from outside of the pixel. Huang
et al. (2002) indicated that the blurring due to the sensor point
spread function (PSF) reduced the accuracy of land cover
classifications by around 5 %.

The temporal sampling of the land surface is a key fea-
ture in the ability to resolve burned areas. Most significant
for burned area mapping is the relationship between obser-
vation opportunity and the persistence of the burn signal on
the land surface. This persistence is determined by the char-
acteristics of the post-fire recovery of vegetation, as well as
the dissipation of ash and char from the burn site. In boreal
forests, an observable signal may last many years, savannas
typically register a persistent signal for only a few weeks, and
the subsequent ploughing of croplands may remove evidence
for burning within a week (Trigg and Flasse, 2000; Sukhinin
et al., 2004; Hall et al., 2016). The timely observation of the
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land surface pre- and post-fire then serves as a key determi-
nant on the successful detection of burned areas. Melchiorre
and Boschetti (2018) indicated that the median global per-
sistence of an observable burn signal is 29 d, and that within
48 d 87 % of global burned area is undetectable.

The procedures and assumptions built into detection al-
gorithms also determine the error properties of individual
products. Burned area products display regional disparities
in performance that are in line with differences in fire char-
acteristics (Padilla et al., 2015). Developers of burned area
products have previously highlighted limitations within their
algorithms. Simon et al. (2004) indicated that parameters
within their algorithm may lead to commission/omission er-
rors in different regions. Roy et al. (2005) suggested that their
algorithm may miss fires which display a rise in post-fire re-
flectance. And Giglio et al. (2009) suggested that the assump-
tion of a decline in a post-fire vegetation index within their
algorithm is not met in around 20 % of fires over validation
data from northwestern Australia.

2.2 Present uncertainty estimates

Previous estimates of product uncertainties have been largely
driven by validation initiatives. In these analyses, product
commission and omission errors have been computed in
comparison to reference datasets, which are typically gen-
erated by the manual or semi-automated mapping of area
burned from higher-resolution images. The extents of these
validation exercises range from regional comparisons against
a few selected sites to larger global validation designs (Roy
and Boschetti, 2009; Padilla et al., 2015, 2017; Boschetti
et al., 2016). The derived validation statistics are then in-
terpreted as providing estimates of the uncertainties of the
product in light of these commission/omission statistics.
The clearest example of this is the estimate of burned area
standard error σA provided in the Global Fire Emissions
Database (GFED) 4 product (Giglio et al., 2010):

σ 2
A = cBA, (1)

where A is the aggregated burned area in the grid cell. cB
serves as an uncertainty coefficient which scales the stan-
dard error based on an analysis of residuals against Landsat-
validated burned area.

A natural concern that arises from these approaches is the
quality of the sampling provided by such validation datasets.
Even larger and more systematic validation efforts may still
provide only a limited sampling of the true uncertainties. For
example, the validation of products against 103 validation
sites by Padilla et al. (2015) is derived from active fire ob-
servations, which display their own issues and uncertainties
(Giglio et al., 2006a). Similarly, the challenge of generating
sufficient validation data to enumerate global uncertainties in
burned area is considerable. The estimated uncertainties pro-
vided by GFED4 are derived from three unique values for cB
(covering Siberia, southern Africa, and the western United

States), and regions not sharing sufficient similarities with
these are given a median value of cB (Giglio et al., 2010).
An additional limitation of the regional enumeration of cB
is that it must replicate contributions from additional uncer-
tainty sources. These will be features such as variations in
cloud cover obscuring burned area detection and uncertain-
ties arising from variations in the distribution and local mix-
ture of vegetation type. This variability will alter the value of
cB within each region.

An exception to this approach is provided by the European
Space Agency (ESA) Climate Change Initiative Fire prod-
uct version 5.0 (FireCCI50) which provides per-pixel esti-
mates of uncertainty in the detection of burned areas (Chu-
vieco et al., 2018). These uncertainties are computed by con-
sidering a number of features of the detection problem such
as the number of observations available and the magnitude
of the reflectance change signal. These pixel-level uncertain-
ties are then aggregated into the lower-resolution FireCCI50
product to provide per 0.25◦ grid cell standard errors. The
validity of these standard errors will be dependent upon the
quality of the per-pixel uncertainty estimates (in terms of
modelling the true uncertainty) and the aggregation process
from pixel to coarser grid cell scales (Bellprat et al., 2017).

In the absence of product-provided uncertainty estimates,
others have also derived estimates of uncertainties. Le Page
et al. (2015) proposed uncertainties of 25 %–50 % in burned
area as provided by GFED4 based on an inspection of the
GFED data. Most frequently, the range in burned area re-
ported by different products has been used to provide up-
per and lower bounds on global burned area (Knorr et al.,
2012; Poulter et al., 2015; Rabin et al., 2017; Forkel et al.,
2019). The large uncertainty in global burned area implied by
this figure contributes considerably to emission uncertainties
(Knorr et al., 2012). It also introduces additional problems
into the evaluation of the performance of fire models against
satellite-derived observations (Rabin et al., 2017).

3 Materials and methods

3.1 Burned area datasets

The present study estimates theoretical uncertainties for three
global burned area products. The Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Collection 6 burned area
product (MCD64C6) provides a global record of burned area
for the MODIS period (i.e. 2000–present). The algorithm
uses active fire observations to refine a classifier based on the
application of a temporal change spectral index derived from
MODIS short-wave infrared channels 5 (1230–1250 nm) and
7 (2105–2155 nm) (Giglio et al., 2018).

The MODIS Collection 5.1 burned area prod-
uct (MCD45C5.1) was produced with a different algorithm
and provides a global record of burned area for a reduced pe-
riod covering 2000–2016. The product uses a multi-temporal
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modelling algorithm which flags for changes in the land
surface based on differences between predicted and observed
reflectance. The algorithm then filters changes to those that
match the expected reflectance characteristics of burned
surfaces in the near-infrared (841–876 nm) and short-wave
infrared (1230–1250 nm) reflectance. The algorithm does
not utilise active fire observations (Roy et al., 2005).

The ESA FireCCI50 product provides global burned area
for 2001–2016. The algorithm uses changes in MODIS near-
infrared (841–876 nm) surface reflectance inside a classifier
that, like MCD64C6, is locally trained with active fire ob-
servations from the MODIS sensors (Chuvieco et al., 2018).
The product is novel in that it provides burned area at a spa-
tial resolution of 250 m compared to the 500 m spatial reso-
lution of the other two products. This limits the algorithm to
use only the red and near-infrared spectral bands.

The MCD45C5.1 product has now been deprecated by the
Collection 6 MCD64 algorithm. The operational 1 km Coper-
nicus burned area product was also considered; however, is-
sues have been found in the product which has resulted in
the product being withdrawn for reprocessing (Copernicus
Global Land Service, 2019). The newer 300 m Copernicus
burned area product covers a more limited temporal span
from 2014 to the present. In terms of dataset selection, the
three chosen products represent the longest available com-
bined satellite record.

3.2 Computation of uncertainties

Stoffelen (1998) first proposed triple collocation (TC) as
a method to estimate uncertainties in three collocated data
products. The method has now been used across a con-
siderable range of remote-sensing-derived geophysical vari-
ables including soil moisture, precipitation, leaf area index,
and fraction of photosynthetically absorbed radiation (Fang
et al., 2012; Roebeling et al., 2012; D’Odorico et al., 2014;
Gruber et al., 2016). Consider three observational records
X1,X2,X3 of a variable with an unknown but true value T .
The TC error model specifies that each observational record
may be related to the truth via a linear measurement equa-
tion:

X1 = α1+β1T + ε1 (2)
X2 = α2+β2T + ε2 (3)
X3 = α3+β3T + ε3, (4)

where α and β represent additive and multiplicative biases,
respectively. ε denotes the residual (random) errors of the
relation and is considered here to be normally distributed.

As posited, the three measurement equations indicate a
system that is underdetermined. However, by making three
assumptions, the system can be solved to provided estimates
of the random errors of each product. First, each product is
assumed to have zero mean residual errors (E[ε] = 0). Sec-
ond, the errors of each product are assumed to be uncorre-

lated (but not necessarily independent) with each other. Fi-
nally, the random error distribution is assumed to be uncor-
related with the true value T , as systematic errors are incor-
porated into β. The last assumption is not met for geophysi-
cal variables which show random errors that are functionally
related to the magnitude of the signal (Tian et al., 2013).

Figure 1 shows mean annual burned area of the three
products against individual product estimates. The shaded
area represents the standard deviation between the products
binned by the mean of the three products. It can be observed
that the deviations between the products grow with the mag-
nitude of burned area reported. This indicates that the con-
straint imposed on the burned area becomes more uncertain
with the magnitude of burned area detected. This occurs be-
cause the random errors in burned area are heteroscedastic
(Giglio et al., 2006b). The TC model in Eqs. (2–4) assumes,
however, that the random errors ε are homoscedastic – in that
the error variance model ε =N (0,σ 2) is not a function of
the true (unobserved) burned area. This feature of the errors
is common to several other geophysical variables (e.g. pre-
cipitation, aboveground biomass) (Tian et al., 2013; Alemo-
hammad et al., 2015; Gonzalez de Tanago et al., 2018).

In log space, however, the differences between products
do not increase with the logarithmic burned area and are
closer to being homoscedastic. Alemohammad et al. (2015)
proposed that for heteroscedastic datasets, an alternative TC
error model is suitable in which the random error is a multi-
plicative signal on the truth T . Instead, the error model for X
can be related as

X = αT βeε, (5)

where α is a multiplicative error, β is the deformation error,
and eε is the residual (random error). Taking the natural log-
arithm of Eq. (5) leads to an additive measurement model:

ln(X)= α+βln(T )+ ε, (6)

with the assumption that, in the log space, the random er-
rors are normally distributed: ε =N (0,σ 2). Representing
x = ln(X) and t = ln(T ), Eq. (6) is equivalent to

x = α+βt + ε, (7)

which provides a linear system equivalent to Eq. (2). Given
the same assumptions of the classical TC method, the resid-
ual error estimates of each product (in log space) can be de-
rived from the following manipulations of the sample co-
variance matrix C of the three log-transformed products
(McColl et al., 2014):
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Figure 1. Differences between the burned area reported by the three products and the mean of the three products. Also shown is the standard
deviation of the products (grey) binned by the mean burned area of the three products. Increasing standard deviation with the magnitude of
burned area implies heteroscedastic errors, while log-transformed burned areas have errors which are more homoscedastic.

σ 2
1 = C11−

C12C13

C23
(8)

σ 2
2 = C22−

C12C23

C13
(9)

σ 2
3 = C33−

C13C23

C12
. (10)

A requirement of the TC method is that the three datasets
explicitly cover the same temporal and spatial domain and
are of the same variable (Yilmaz and Crow, 2014). To achieve
this, the three burned area datasets were aggregated to a
shared temporal and spatial grid. The three products were ag-
gregated from the original pixel resolution products to a com-
mon sinusoidal grid g with a resolution of 1◦ at the Equator.
For each 16 d period between January 2001 and December
2013, the burned area reported by each product within the
cell g(t,x,y) was aggregated to form a full temporal record
for each cell through time of length Nt. The temporal span of
the datasets provided potentially Nt = 286 observations. A
feature of solving the multiplicative error model in log space
is that any product that reports no burned area will prevent the
estimation of the covariance matrix C. As a result, any 16 d
period where at least one product reported no reported burned
area was excluded. This meant that approximately 40 % of
cells globally had no agreed burned area between the prod-
ucts and therefore do not have error estimates. Nevertheless,
the major fire regions are well sampled across the record (see
Fig. 2). The TC method is able to sample the majority of the
reported fire activity by the products. Total burned area over
the study period for cells which do not have associated un-
certainties is less than 0.5 % of the total burned area of each
product.

3.2.1 Annualised uncertainties

Beyond product standard errors, annualised uncertainties on
the total burned area are also of particular interest to the users
of burned area products. To produce 16 d uncertainties in
the burned area for each product, reconsider the error model
specified in Eq. (5). The random errors back-transformed into
burned area are defined by a log-normal distribution specified
as log normal (µ= 0,σ 2). Therefore, the distribution of 16 d
burned area, P(X), can be defined in reference to Eq. (5) as

P(X)=Xoe
µ+σZ, (11)

where Xo is the observed burned area for the product and Z
the standard normal distribution. To produce an annual un-
certainty estimate, each 16 d burned area distribution P(X)
was sampled from and integrated over the year to provide
a distribution of annual burned area for each grid cell. The
independence assumption of individual observation errors in
this scheme is also a requirement of the TC method (Gruber
et al., 2016). To summarise the annual distribution, it was
then approximated as a normal distribution based on match-
ing the moments of the samples. Figure 3 shows an example
of the procedure for producing 16 d and annualised uncer-
tainties for an area covering northern Australia. Large abso-
lute uncertainties are associated with the peak in the burning
season here.

Given the regional variability in absolute burned area, the
relative magnitude of the annual uncertainties to the reported
burned area of each product was also considered. The relative
uncertainty in mean annual burned area is defined by

rel. unc.%= 100×
σyear

BAyear
, (12)

where BAyear is the total burned area reported by the prod-
uct for the grid cell for each individual year.
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Figure 2. Number of valid collocations for 2001–2013.

Figure 3. The 16 d and annual uncertainties for a grid cell covering northern Australia. (a) The multiplicative error model provides unique
uncertainties on each 16 d observation for each product (95 % confidence intervals shown). (b) To produce an annual uncertainty on the
reported burned area, these are aggregated to produce an annual distribution which is then approximated as a normal distribution.

3.2.2 Regional and global uncertainties

Given that we may expect the performance of each product to
vary with the local fire behaviour, we considered the uncer-
tainty estimates with regard to the International Geosphere-
Biosphere Programme (IGBP) land cover type classifica-
tion provided in the MODIS Collection 6 land cover prod-
uct (MCD12Q1.006) (Friedl et al., 2010). We simplified the
University of Maryland (UMD) land cover classification into
five more primary categories of (1) forest including all for-
est types, (2) croplands, (3) shrublands including both open
and closed shrublands, (4) savannas, and (5) grasslands. The
simplified land cover product was then aggregated to the si-
nusoidal 1◦ resolution grid by considering the dominant land
cover type in each cell. We also considered product errors
within the 14 fire regions specified by GFED which have
been previously used for regional comparisons of burned area
products (Giglio et al., 2013)

A complicating feature of the aggregation to the regional
scales is that the spatial correlation of the uncertainties at the
grid cell level is unknown. It would generally be expected

that the uncertainties in adjacent grid cells may be similar due
to correlations in the driving features of the uncertainties, e.g.
land cover, cloud statistics and algorithmic limitations. The
integration of grid-cell-level uncertainties via an independent
quadrature summation would imply a strong constraint on
there being no spatial correlation in the uncertainties (Bell-
prat et al., 2017). Instead, to produce the regional estimates,
16 d burned area for each product was aggregated for the
whole region or land cover stratification and the TC error
model then applied. This allows for the effective spatial error
correlation in the products to be present in the regional un-
certainties while requiring no additional assumptions about
the error structure.

4 Results

Figure 4 displays global maps of the residual errors (in
log space) for each product. Spatial patterns in uncertain-
ties show general similarities at broad scales. The patterns
are also different from the spatial distribution of burning, in-
dicating that systematic errors are not leaking into the ran-
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dom errors. The largest random errors for each product are
located in eastern China, corresponding to regions of agri-
cultural fires. Here, errors are greater than 1 for all products,
which indicates a random error of greater than 100 % in the
detected burned area. This would indicate that the level of
agreement between the products is lower than the precision
of the products.

Local patterns of the errors then diverge for each prod-
uct. MCD45 has larger random errors in central and east-
ern Europe, in regions with predominantly agricultural fires.
The lowest uncertainties are found in savanna ecosystems of
Southern Hemisphere Africa and northern Australia. MCD64
shows the largest uncertainties in agricultural and tundra re-
gions of eastern Eurasia. It also has the largest uncertainties
in western Africa, in areas where deforestation fires are com-
mon. MCD64 has larger uncertainties in savannas relative
to MCD45 and lower random errors in areas with agricul-
tural burning. FireCCI has smaller errors in agricultural re-
gions of eastern Eurasia compared to the other two products.
FireCCI also has smaller random errors in regions of agri-
cultural burning and deforestation areas around the Amazon
compared to MCD45 and MCD64.

Figure 5 displays global maps of mean annual burned
area and associated uncertainties for the three products. Be-
tween the products, similar spatial distributions in burned
area and TC-estimated uncertainties can be observed. The
heteroscedastic nature of burned area uncertainties is appar-
ent with standard uncertainties scaling with the magnitude
of burned area. Absolute uncertainties for each product are
largest in sub-Saharan Africa and northern Australia which
corresponds to regions with the greatest burned area. Greater
disagreement in the magnitude of burning occurs in regions
with less frequent burning or typically compounding factors
on detection. In equatorial Asia, MCD64 and FireCCI50 de-
tect, respectively, 1310 % and 940 % more burned area than
MCD45. Greater detection by MCD64 here has been associ-
ated with the use of active fires (Humber et al., 2018). These
higher estimates are also better constrained with relative un-
certainties of 35 % and 36 %, respectively, for FireCCI50 and
MCD64, compared to a higher relative uncertainty of 70 %
on the MCD45 burned area. FireCCI50 detects 66 % more
burned area in the agricultural burning regions of central and
eastern Europe than MCD64 and 48 % more than MCD45.
However, the large uncertainties on these estimates indicate
them to be consistent within the uncertainties: with relative
uncertainties of 141 % on FireCCI50, 168 % on MCD45, and
95 % on MCD64. Regions where MCD45 reports no burn-
ing prevents the estimation of TC uncertainties due to the re-
quirement of the multiplicative error model used here. This
is most noticeable in equatorial Asia and South America.

Globally, MCD64 reports the greatest mean annual burned
area (3.76±0.15×106 km2). This is followed by FireCCI50
which reports 3.70± 0.17× 106 km2 and MCD45 3.31±
0.18× 106 km2. In terms of relative uncertainties, MCD64
has the smallest relative uncertainty of 3.9 %, FireCCI50

has 4.5 %, and MCD45 has the largest uncertainty (5.5 %).
MCD64 and MCD45 provide consistent estimates of mean
annual burned area for 76 % of grid cells with TC-estimated
uncertainties. In these locations, estimates from both prod-
ucts are within the range of standard uncertainties provided
from the TC method. MCD64 and FireCCI50 agree across
a slightly broader spatial extent, with 80 % of available cells
agreeing within the uncertainties of each product. MCD45
and FireCCI50 have the lowest agreement of the three prod-
ucts, with consistent estimates across 72 % of TC cells. Fig-
ure 6 shows locations where all three products agree within
their standard uncertainties for mean annual burned area.
Overall, all three products agree within their uncertainties
for 60 % of available TC cells. Within a broader distribution
of two standard errors, the three products agree across 85 %
of the valid cells. Regions where the products do not agree
within 2 standard deviations are concentrated in equatorial
Asia, the northern Amazon region, the southwestern United
States, and parts of the Indian subcontinent.

Figure 7 shows a regional breakdown of mean annual
burned area and uncertainties stratified by land cover. Glob-
ally, burned area estimates are most uncertain for cropland
and shrublands for all products. All three products perform
comparatively better in savannas and grasslands and less well
in forested biomes. For nearly all land covers, MCD45 has
the largest relative uncertainties of the three products. It has
the largest uncertainties in shrublands, with a relative un-
certainty of 25 %, followed by FireCCI50 (13 %) and then
MCD64 (8 %). The uncertainty for the MCD45 product in
shrublands is contributed to in large part by a poor con-
straint on burning in Australian (AUST) shrublands where
the relative uncertainty exceeds 40 % (1.29±0.56×105 km2),
compared to 15 % and 8 % for the FireCCI50 and MCD64
products, respectively. FireCCI50 uncertainties in shrublands
are driven by large uncertainties on comparatively small re-
ported shrubland burned area in Central America (CEAM)
of 765±1846 km2 and temperate North America (TENA) of
1175± 2115 km2. This contrasts with much smaller uncer-
tainties on a similar reported burned area from MCD64 in
TENA 1172± 449 km2.

All products have a poor constraint on global cropland
burning with relative uncertainties of 8 %–10 %. MCD45
generally has the largest relative uncertainties on crop-
land burning across all fire regions, with confidence in-
tervals larger than the magnitude of reported burned area
for Europe (EURO), boreal Eurasia (BOAS), and equatorial
Asia (EQAS). Exceptions are found in TENA and southeast
Asia (SEAS), where MCD45 reports the most cropland burn-
ing and also has the lowest relative uncertainties.

An interesting feature occurs in boreal forest ecosystems,
where MCD45 and FireCCI have smaller uncertainties in
boreal Eurasian (BOAS) forests compared to boreal North
American (BONA) forests. Uncertainties for MCD45 are
around 2 times larger in BONA forests and 40 % larger for
FireCCI50 in BOAS as compared to BONA forests. Alter-
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Figure 4. (a, c, e) TC random errors for the three products and (b, d, f) differences between product random errors.

natively, MCD64 has lower relative uncertainties in BONA
compared to BOAS, with uncertainties 70 % larger in boreal
Eurasia.

In the key burning regions of Northern Hemi-
sphere (NHAF) and Southern Hemisphere Africa (SHAF),
MCD45 typically has the most constrained estimate of
burned area. The three products provide consistent estimates
in grasslands and savannas in both regions, with reported
burned area for each product agreeing within the uncertain-
ties estimated for all products. The uncertainties are still
considerable, however, with relative uncertainties for all
three products largest in savannas and grasslands. In these
land covers, relative uncertainties exceed 13 % in NHAF and
8 % in SHAF. This leads to broad standard errors on each
product in NHAF, with reported mean annual burned area of
1.03±0.19×106 km2 for MCD64, 1.07±0.13×106 km2 for
MCD45, and 0.99± 0.27× 106 km2 for FireCCI50. Table 1
summarises the mean annual burned area and uncertainties
by fire region.

4.1 Comparison against other uncertainty estimates

4.1.1 GFED4 uncertainties

We contrast the uncertainties from the TC method with two
other available uncertainty estimates. First, in relation to the

MCD64 product, we consider the uncertainties provided with
the GFED4 burned area product. The GFED4 burned area
and uncertainty are derived exclusively from the MCD64
product for the period considered here. GFED4, however,
utilised the older MCD64 Collection 5.1 product, which de-
tects significantly less global burned area than the present
Collection 6 product (Giglio et al., 2018). Nevertheless, in
the absence of other uncertainty estimates, it is sensible to
consider the relative uncertainties for the GFED4 product
against the TC estimates. To align the uncertainties with
those provided by the TC method, the total annual burned
area uncertainties were considered. To produce annual un-
certainties for GFED4, the monthly variances provided by
the GFED4 product were added in quadrature.

Figure 8 shows global differences between mean annual
relative uncertainties in GFED4 vs. TC-derived uncertain-
ties. TC uncertainties generally exceed GFED uncertainties
in most regions. The global median for TC uncertainties is
38 % and GFED 34 %; however, mean global GFED un-
certainties exceed those provided by the TC method. Mean
global GFED uncertainties are 65 % compared to 45 % pro-
vided by the TC method, though this figure is skewed by a
greater range in the GFED uncertainties (GFED interquartile
range (IQR): 15 %–80 % vs. TC IQR: 26 %–57 %). Areas of
higher TC uncertainties are found in the agricultural burning
regions of northern China and eastern Russia, where TC un-

Biogeosciences, 16, 3147–3164, 2019 www.biogeosciences.net/16/3147/2019/



J. Brennan et al.: Theoretical uncertainties for global satellite-derived burned area estimates 3155

Figure 5. (a, c, e) Mean annual burned area (km2) and (b, d, f) associated standard errors of mean annual burned area (km2).

Figure 6. Consistency of mean annual burned area for the three products. Light brown regions correspond to regions where all three products
agree within 1 standard error. Brown regions correspond to agreement within 2 standard errors. Red regions indicate areas which do not
agree within 2 standard errors.

certainties exceed GFED by 70 %–100 %. TC uncertainties
also exceed GFED uncertainties in western Africa (90 %) and
areas of North America, especially in boreal forest regions
of eastern Canada. GFED uncertainties also exceed TC un-
certainties in several regions. For example, GFED uncertain-
ties are larger in boreal Eurasia (40 %–60 %), eastern India
(30 %–70 %), and parts of South America (35 %–65 %).

We conceive two probable causes for differences between
the two uncertainty estimates. Primarily, GFED4 is based on
an older collection of the MCD64 product which detected
globally around 26 % less burned area than the present Col-
lection 6 product (Giglio et al., 2018). An equally important
consideration is that the uncertainty assumptions of the two
methods are different. For the GFED uncertainties, Giglio
et al. (2010) indicated that these are likely to be conservative
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Figure 7. Mean annual burned area and uncertainties (km2 yr−1) for the fire regions stratified by land cover: (BONA) boreal North America,
(TENA) temperate North America, (CEAM) Central America, (NHSA) Northern Hemisphere South America, (SHSA) Southern Hemisphere
South America, (EURO) Europe, (MIDE) Middle East, (NHAF) Northern Hemisphere Africa, (SHAF) Southern Hemisphere Africa, (BOAS)
boreal Asia, (CEAS) central Asia, (SEAS) southeast Asia, (EQAS) equatorial Asia, (AUST) Australia and New Zealand.
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Table 1. Mean annual burned area (×103 km2), standard uncertainty (×103 km2), and relative uncertainty (%) for the products by fire region.

Product Burned area (×103 km2) Standard uncertainty (×103 km2) Relative uncertainty (%)
Region FireCCI50 MCD45 MCD64 FireCCI50 MCD45 MCD64 FireCCI50 MCD45 MCD64

AUST 514.39 394.02 476.27 37.19 73.84 33.43 7.23 18.74 7.02
BOAS 94.47 64.70 86.26 53.96 20.87 66.34 57.12 32.26 76.90
BONA 22.37 14.63 20.61 11.97 9.85 13.57 53.53 67.33 65.87
CEAM 22.75 13.75 25.68 9.43 8.25 5.95 41.47 60.02 23.16
CEAS 209.51 190.49 194.89 53.58 42.11 30.49 25.58 22.10 15.64
EQAS 9.18 0.88 12.47 3.22 0.61 4.52 35.08 69.25 36.29
EURO 13.92 11.63 10.52 11.87 13.23 4.94 85.31 113.81 46.94
MIDE 10.01 16.22 12.55 5.70 9.57 0.95 57.00 59.03 7.56
NHAF 987.23 1077.43 1032.15 266.58 126.32 188.68 27.00 11.72 18.28
NHSA 51.68 10.50 45.14 7.27 12.66 10.83 14.07 120.65 23.99
SEAS 119.73 91.29 117.40 59.26 38.28 67.35 49.49 41.93 57.37
SHAF 1397.68 1227.17 1413.56 103.21 145.44 167.46 7.38 11.85 11.85
SHSA 215.15 169.19 279.61 5.44 48.83 42.77 2.53 28.86 15.29
TENA 31.68 25.77 24.42 4.05 4.45 3.39 12.78 17.26 13.90
WORLD 3701.72 3309.44 3755.80 165.55 183.38 146.05 4.47 5.54 3.89

Figure 8. Differences in relative uncertainties between GFED4- and TC-estimated relative uncertainties.

due to the potential cancelling of omission and commission
errors in the total reported burned area, with the effect being
that GFED uncertainties are also likely overestimated for the
MCD64 Collection 5.1 product. The TC method accounts for
any potential cancelling of errors by focusing on the observed
burned area irrespective of the error source.

4.1.2 FireCCI50 product uncertainties

The FireCCI50 climate model grid (CMG) product also pro-
vides standard errors per grid cell at the coarse spatial reso-
lutions considered here. These are produced from an aggre-
gation of individual uncertainties in the 250 m pixel product
to produce fortnightly standard errors in burned area. In the
same manner as with the GFED4 uncertainties, we produce
annual uncertainties from the FireCCI50 product by adding
the uncertainties in quadrature for each fortnightly product.

The uncertainties provided with the FireCCI50 product
represent the first attempt to provide a full uncertainty trace-
ability chain for burned area datasets. We find that the re-
ported uncertainties are considerably smaller than those pro-
vided by the TC error model as well as the uncertainty es-
timates provided by GFED4. Figure 9 shows a comparison
of relative uncertainties for TC-derived uncertainties and the
uncertainties provided with the FireCCI50 product. TC un-
certainties exceed product uncertainties in 98 % of the valid
grid cells. Globally, the median relative uncertainty implied
by the product is 2 % compared to 41 % from the TC un-
certainties. The product uncertainties have a much smaller
global range (IQR: 1 %–5 %) compared to the TC estimate
(IQR: 27 %–58 %). The differences between TC uncertain-
ties and product uncertainties are largest in cropland areas
of northern China (150 %–200 %), eastern Russia (50 %–
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100 %), and eastern India (60 %–120 %). TC uncertainties
are also around (70 %–100 %) larger in regions of the west-
ern United States.

Figure 10 shows an example of the pixel-level uncertain-
ties provided with the FireCCI50 product. Reference burned
area is overlaid from the analysis of two Landsat acquisi-
tions. We see that the product correctly detects the larger
burn scars in the image extent. For these larger burn scars,
the provided confidence is 70 %–100 %. However, smaller
burn scars which are not classified as burned by the algo-
rithm show burn probabilities which are similar to the un-
burned background (20 %–40 %). These values do not corre-
spond well with the likely fire signal at these locations, with
the apparent pattern in unburned confidence values arising
from the interpretation of the composited observations used
within the algorithm.

5 Considerations of the TC error model

As previously indicated in Sect. 3.2, the TC error model has
several key assumptions which must be considered. An ini-
tial requirement of the TC method is that the three products
correspond to three temporally and spatially collocated data
products. Here, this was achieved by considering the prod-
ucts at coarse spatial and temporal scales. The aggregation
of daily pixel products to 16 d windows should help to re-
duce the influence of differences in reporting dates of fires
between products. Similarly, the aggregation to a 1◦ spatial
resolution grid reduces the chance of highly local differences
in reported burned area and therefore should provide more
robust estimates for each product. Nevertheless, due to the
requirements of the TC method, around 40 % of global land
cells do not have uncertainties – although this figure includes
desert regions. Zwieback et al. (2012) indicated that the rel-
ative error in uncertainty estimates from the TC method can

be approximated by
√

5
n

, where n is the valid number of col-
located observations used to compute the product covariance
matrix. Users should be aware that the accuracy of uncer-
tainties in regions with less frequent burning will therefore
be lower than those regions with longer fire seasons. Given
the available temporal span of the products, the mean global
relative uncertainty in TC error estimates is expected to be
around 33 %.

The most significant assumption of the TC method for
the presented analysis is that the products do not have er-
ror cross-correlations (ECCs) (Zwieback et al., 2012; Gruber
et al., 2016). ECC structures between burned area products
may occur due to (1) the use of the same satellite instru-
ments, (2) shared observation opportunity at the 1◦ spatial
scale, and (3) similarities in the retrieval algorithms. We now
consider each. A key concern is that the three products all
utilise observations from the MODIS instruments. All three
products utilise MODIS surface reflectance measurements,
with FireCCI50 and MCD64 additionally using MODIS ac-

tive fire detections. In terms of the second ECC source, grid
cell uncertainty estimates may also be affected by the general
observational opportunity available within the TC cell. Ac-
tive fire products have a better sampling at higher latitudes
relative to the Equator (Giglio et al., 2006b), and persistent
cloudiness may introduce additional error correlations be-
tween the products. Finally, similarities within the mapping
algorithms may introduce additional ECC sources. For exam-
ple, similar thresholds on fire-related changes in reflectance
may cause error correlations between the products. In regard
to each source of potential ECCs, we judge that product un-
certainties are most significantly determined by algorithmic
decisions. This is because the three algorithms use consider-
ably different decision structures for mapping the pixel-level
burned areas. For example, while MCD64 and FireCCI41
both use active fire observations, the two algorithms utilise
distinct expectations of fire properties in different spectral
regions. Similarly, several intercomparison activities of these
three products have indicated considerable differences be-
tween estimates at both the pixel-level product and regional
burned area estimates (Padilla et al., 2015; Humber et al.,
2018).

We also stress that the uncertainties estimated with the TC
method likely represent a lower bound on the true uncertain-
ties of these products. The TC measurement model can only
explicitly estimate random errors but not systematic errors
(i.e. bias) present in the data products from fires which are
undetectable. The underestimation bias observed for these
coarse-resolution products in validation studies indicates that
the products likely have considerable systematic errors. Chu-
vieco et al. (2018) have estimated that the FireCCI50 product
has global omission errors of 70 % and MCD64C6 of 62 %,
which are partially balanced by commission errors of 50 %
and 35 %, respectively. Roteta et al. (2019) also indicated
that a higher-spatial-resolution 20 m burned area product pro-
vided 80 % more burned area than the MCD64C6 product for
sub-Saharan Africa, which while not providing a true valida-
tion indicates considerable biases in coarse-resolution prod-
ucts. Users should therefore be aware that the likely system-
atic biases in coarse-resolution products mean that the TC
uncertainties provide a lower bound on the true uncertainty.

6 Discussion

This study has estimated theoretical uncertainties for three
global satellite-derived burned area datasets. This study pro-
vides an update on ongoing efforts to provide quantitative un-
certainties for remotely sensed global burned area estimates
initiated with GFED4 (Giglio et al., 2006b) and continued
within the FireCCI products (Chuvieco et al., 2018). Within
the four-stage validation scheme developed for land remote
sensing products developed by the Committee on Earth Ob-
servation Satellites (CEOS) Land Product Validation (LPV)
group, the majority of current burned area products have only

Biogeosciences, 16, 3147–3164, 2019 www.biogeosciences.net/16/3147/2019/



J. Brennan et al.: Theoretical uncertainties for global satellite-derived burned area estimates 3159

Figure 9. Differences in relative uncertainties between product uncertainties for FireCCI50- and TC-estimated relative uncertainties.

Figure 10. Example of the pixel-level uncertainties (burned confidence) provided with the FireCCI50 product. The area covers northern
Zimbabwe for the period September 2008. Landsat-derived burned area is overlaid.

achieved stage-3 validation (Morisette et al., 2006; Boschetti
et al., 2009, 2016; Padilla et al., 2017; Chuvieco et al., 2018).
Meeting the stage-4 requirement for statistically robust and
validated uncertainties remains an open challenge for the
burned area community. While new large-scale validation
datasets of burned area have been recently developed (Padilla
et al., 2017; Chuvieco et al., 2018), these provide regional-to-
global commission/omission error statistics which need to be
interpolated with a statistical model of the measurement pro-
cess to provide explicit spatiotemporally dense uncertainties
(such as is done in GFED4). Specifying and then parameter-
ising such models spatially and temporally is a considerable
challenge. Instead, the presented TC error model provides a
data-driven method to independently and automatically esti-
mate uncertainties in three global burned area products post
hoc, and in a manner suitable for inclusion as part of stage-4
validation campaigns.

A feature of the TC analysis shown here is the large rela-
tive uncertainties across croplands and shrublands globally.
The large relative uncertainties in shrubland burning have
not been previously highlighted for global satellite burned

area products. A potential mechanism for this is a detection
threshold associated with the limited and discontinuous fuel
bed in shrublands. The limited vegetation density in shrub-
lands will limit the magnitude of the radiometric burn signal
pre-to-post fire – limiting the change signal the algorithms
use to classify burning. Combing the limited vegetation sig-
nal with the general sparseness of vegetation ground cover in
shrublands will lead to this “patchiness” of the burn signal
which when observed at 500 m will fall around the detec-
tion thresholds of the mapping algorithms considered here
(Roy and Landmann, 2005). The large relative uncertainty
for MCD45 recorded in Australian (primarily xeric) shrub-
lands is potentially a feature of the limited performance of
the algorithm over surfaces with bright soils (Roy et al.,
2005; de Klerk et al., 2012). This is an interesting feature
that represents a promising area for future research. Cropland
burning has been a persistent problem for coarse-resolution
burned area products. Particular features which obscure de-
tection in croplands are the transient nature of the burn sig-
nal before ploughing, and the highly fragmented nature of
burning on the land surface. Given these circumstances, the
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ability to detect cropland burn scars from MODIS resolu-
tion data has been previously questioned (Hall et al., 2016).
Zhu et al. (2017) indicated omission errors for the MCD64
product greater than 60 % for small cropland fires. Similarly,
MCD45 has been reported to considerably underreport crop-
land burning globally (Roy et al., 2008). However, discrep-
ancies between the products are likely to still be driving the
TC uncertainties, for example, observed commission errors
by MCD64 for harvesting in Eurasia and MCD45 in Aus-
tralia (Giglio et al., 2009; Humber et al., 2018). It remains
an open question whether the higher spatial resolution avail-
able in the FireCCI50 products improves performance over
croplands, with some evidence that it might (Chuvieco et al.,
2016). The FireCCI50 product detects the greatest magnitude
of cropland burning globally and has the smallest relative un-
certainties of the three products. Future studies may be better
able to indicate whether the increase in spatial resolution has
produced this.

Previous validation activities have indicated that satellite-
derived burned area products typically perform best in re-
gions where fire activity is more prevalent (Padilla et al.,
2015). We also find that the smallest relative uncertainties are
typically found in the frequently burning savannas and grass-
lands of Africa, Australia, and South America. Nevertheless,
relative uncertainties in burned area estimates for these re-
gions were found to be in excess of 8 %–10 %. Given the pre-
dominance of fire activity in these areas, they contribute con-
siderably to the uncertainty on reported global burned area.
In areas with more infrequent burning or more barriers to
detection, relative uncertainties were found to be higher. In
such circumstances, the particular limitations of each detec-
tion algorithm are most likely to drive the differences ob-
served. For example, differing observational requirements
of the products drive large uncertainties in equatorial Asia
(EQAS) where persistent clouds reduce the mapped area of
all algorithms. The MCD45 algorithm has been found to suf-
fer uniquely in cloudier regions due to the greater sampling
requirement of the algorithm as well as over-restrictive cloud
masking conditions (Roy et al., 2002; Giglio et al., 2010;
Humber et al., 2018). Changes made to the MCD64 Collec-
tion 6 product, including relaxations on cloud masking, have
increased the mapped area in these cloudier regions (Giglio
et al., 2018).

Globally, MCD64 reports the greatest burned area (3.76±
0.15× 106 km2), followed by FireCCI50 (3.70 ± 0.17×
106 km2), and then MCD45 (3.31±0.18×106 km2). In terms
of the global agreement between products, Fig. 11 shows the
distribution of mean annual burned area for the three prod-
ucts. A higher level of agreement between the FireCCI50
and MCD64 products can be observed with the two prod-
ucts, agreeing well within 1 standard deviation. The MCD45
product disagrees most with the MCD64 product and slightly
less with the FireCCI50 product. The three products overlap
within 2 standard deviations. Even so, the degree of discrep-
ancy on global burned area estimates would indicate that the

Figure 11. Constraints on global mean annual burned area
(km2 yr−1) provided by the three products.

previously used confidence bounds (i.e. from the range of
products; Rabin et al., 2017) provide an underestimate in the
global burned area uncertainty.

Estimates of the mean annual burned area from the three
products agree within their respective uncertainties in around
60 % of valid TC estimates. Nevertheless, while estimates
are consistent, regional estimates remain poorly constrained
by the products considered. Uncertainties in excess of 10 %
are found for all products in at least one land cover, includ-
ing uncertainties > 24 % for MCD45 in shrublands, 11 % for
MCD64 in croplands, and 13 % in shrublands for FireCCI50.
Regional uncertainties are often larger than these figures,
with relative uncertainties in excess of 100 % for MCD45
in croplands and grasslands in central America and boreal
Asia, and for forests in Europe and boreal North America.
Uncertainties larger than 100 % for MCD64 are also found in
forests and croplands in boreal and central Asia. FireCCI50
also has relative uncertainties > 100 % for croplands and
forests in Australia, boreal North America, and Europe. As
these products are often also used at national to regional
scales, it is important to consider the reliability of the cur-
rent products at these scales (Roy and Boschetti, 2009; Zhu
et al., 2017; Liu et al., 2019). The uncertainty estimates here
are therefore useful for these users to discern any limitations
of products at the appropriate scale. While the TC-estimated
uncertainties cannot directly provide information on uncer-
tainties at the pixel level, we would also encourage users to
consider the quality assurance (QA) information provided in
these products.

The presented TC uncertainties have many uses. The un-
certainties could, for example, be used to drive develop-
ment and refinement of parameters in DGVMs related to
fire processes or improve optimisation routines for param-
eter selection (Poulter et al., 2015; Forkel et al., 2019).
They could also be used to better constrain uncertainties
on emission estimates derived from “bottom-up” inven-
tory approaches (French et al., 2004; Knorr et al., 2012;
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Randerson et al., 2012; Van Der Werf et al., 2017). Explicit
uncertainties per observation additionally allow for the de-
velopment of more advanced assimilation of the satellite ob-
servations into models through mathematical frameworks in
data assimilation. Similarly, they open up the ability to cal-
ibrate model parameters x against observations of burned
area. For example, assume a DGVM has a fire model that
predicts burned area at a time t (BAmodel(t)) as a function of,
e.g. meteorological drivers, vegetation parameters, and some
fire-related parameters I (e.g. Thonicke et al., 2010; Man-
geon et al., 2016):

H(x,I, t)= BAmodel(t). (13)

Under the assumption that the burned area estimates
are normal, one could derive the (log) likelihood function
L(BAobs | x), which can be written as

L(BAobs | x, t)∝
[H(x,I, t)−BAobs(t)]2

2σTC(t)2
. (14)

Minimisation of this function would result in the parame-
ters that provide a closer fit to the observations, weighted by
how much one could trust these observations.

7 Conclusions

The wide application and interpretation of remote sensing
products of burned area require explicit estimates of the un-
certainties of these products. This paper has presented theo-
retical uncertainties for three global satellite-derived burned
area products. A TC error model was applied to produce
unique, near-global uncertainties for the MCD64 Collection
6, MCD45 Collection 5.1, and FireCCI50 burned area prod-
ucts. While products were found to provide consistent es-
timates in a majority of the sampled global fire extent, the
constraint on burned area in many regions was found to be
poor, with uncertainties in each product exceeding 8 %–10 %
in the most burned regions. Uncertainties on burned area in
regions with less burned area were also found to be consid-
erable. Individual products were shown to have uncertain-
ties exceeding 100 % in specific regions and land covers. The
present study would suggest that previous estimates of uncer-
tainty in global burned area from satellite products appear to
be underestimates. Users of these products should therefore
be aware of the uncertainties both in the limited constraint
on burned area even from multiple products, and the regional
and land-cover-specific differences in product confidence as
provided by these uncertainties.

Data availability. The TC-estimated uncertainties
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