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1 Introduction

This document accompanies the paper “Trend analysis of the airborne fraction and sink rate of anthropogenically released
COy” (Bennedsen et al., 2019): We expand on the analyses of the main paper and supply additional results.

Section 2 provides some additional information of the univariate analyses of the main paper. In particular, Section 2.1
contains an analysis of potential statistically influential observations in the data set. Section 3 analyses data that have been
averaged, so as to minimise possible influences from transitory events such as ENSO and volcanic eruptions.

2 Additional results from univariate analyses

In the main paper, we analyse the univariate data series in Tables 1 and 3 (airborne fraction and sink rate, respectively).
However, to save space, we did not provide any graphical information on the estimated trends. These are given here, in Figure
1 (airborne fraction) and Figure 2 (sink rate). The figures can be compared to the ones from the multivariate analyses, see
Figures 1 and 2 in the main paper. The main take-away from these figures is that in the univariate analyses, the underlying
trends are found to be time-varying. This is contrast to the multivariate analyses, where the trends are better described by a
trend that does not vary in time.

Figure 3 plots the trend estimates of the individual sink rates, i.e., of of the ocean sink rate (ko) and land sink rate (kr,), cf.
Equation (5) in the main paper.

Figure 1. Univariate estimation of time-varying trend for AF.
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2.1 Influential data point analysis

To investigate the robustness of the statistical findings of the main paper, we here examine whether there are observations that
are particularly influential on the analyses. We consider two related approaches. First, we calculate Cook’s distance (Cook,
1977, 1979; Atkinson et al., 1997) for each t = 1959, 1960, ...,2016, which is a measure of how influential a particular data
point is. Second, we estimate the slope parameter 3 after deleting the ¢’th observation from the sample (treating it as a “missing
value” in the state-space system) for ¢ = 1959,1960, ...,2016. That is, for each year in the sample, we obtain an estimate (3, ;



Figure 2. Univariate estimation of time-varying trend for sink rate, ks.
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Figure 3. Univariate estimation of time-varying trend for land sink.
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for each ¢ = 1959,1960,...,2016, by treating the ¢’th observation as missing and then estimating the slope parameter using the
maximum likelihood approach considered in the main paper.

Figures 4 and 5 present these analyses for the airborne fraction, while Figures 6 and 7 present the analogous results for the
sink rate. From these figures, it is clear that one observation, namely the one at ¢t = 1974, stands out: it has by far the largest
Cook’s distance for both the airborne fraction and the sink rate data (Figures 4 and 6, respectively). It also results in the most
extreme slope parameter estimates (Figures 5 and 7, respectively). However, even this observation at ¢ = 1974 seems to have
only a minor influence on the analysis: indeed, the estimate of 3\ 1974 is well within the confidence bands (dashed lines) of
the full sample estimate for both the airborne fraction data (Figure 5) and for the sink rate data (Figure 7). Similarly, while
the Cook’s distance for this data point is high relative to the other points, it is far below conventional rule-of-thumb thresholds
such as 0.50 or 1.00, which are often used in applied analyses.

Figure 4. Cook’s distance of each observation from the state-space model of the airborne fraction.
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3 Analysis with 5-year averages

To remove possible influences of transitory events (e.g., ENSO and/or volcanic eruptions) on our analyses, we here re-do the
analysis from the main paper, now with data averaged over 5 year periods.! We also averaged the data over 2, 3, and 4 years
and found similar results to what we report below. For brevity, the results from using 2-4 year averages are not presented. They

are available upon request.
We consider two ways of averaging the data: (i) Running averages, which results in overlapping “windows” of data, and (ii)
non-overlapping averages. The former is considered in Section 3.1 and the latter in Section 3.2.

3.1 Running averages

Recall that the data of the original paper runs from ¢ = 1959 to ¢ = 2016, resulting in 58 observations. We now study the data

20 after they have been averaged over a 5-year period using a running window. That is, if the original data are =, we consider the

'We thank an anonymous referee for suggesting this.



Figure 5. Estimates of slope parameter 3 from the state-space model of the airborne fraction after leaving out one observation. Dashed lines
are 95% confidence bands for the full sample estimate.
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Figure 6. Cook’s distance of each observation from the state-space model of the sink rate.
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Figure 7. Estimates of slope parameter 3 from the state-space model of the sink rate after leaving out one observation. Dashed lines are 95%
confidence bands for the full sample estimate.
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averaged data

m 1w~
b ):gzxt—i“’ t = 1958 +m, 1959 +m, ..., 2016,

i=1

where m > 1 is the number of observations used in constructing the averages. For instance, if m = 5, we get the 5-year averages

5
1
i = : > wiip1, t=1963,1963,...,2016,

i=1

resulting in 58 — 4 = 54 observations.

As remarked in the Discussion section of the main paper, such averaging can, unfortunately, make the error structure of the
data quite complicated. We illustrate how this can happen with a toy example: Suppose that the original data are “signal plus
noise”:

T :xr—’—fh

where z is the true (unobserved) value for the underlying data and &; is an iid measurement error term. Let 7 > 2 and consider
the averaged data

B 1 & R
$§m) = szt—iﬁ-l =z; +&,
i=1

where
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are the averaged signal and an error term, respectively. It is clear that the error term & is now serially correlated, which can
invalidate the analysis if the researcher does not take it into account.

With the above caveat in place, we analyse the 5-year averaged airborne fraction (AF) and sink rate (SR) data using a trend
model specification, as explained in Section 3 of the main paper.” The results are shown in Tables 1 and 2 for the airborne
fraction and Tables 3 and 4 for the sink rate. From the tables, we see that the diagnostics are quite bad, indicating that the
proposed model is not able to fit the data well. In particular, we find evidence of positive serial correlation (DW < 2) in the
prediction errors, as we would expect from the discussion of the error structure above.

We conclude that if one wants to analyse the running averages data, another approach than the one considered here is
necessary. In particular, it is important to choose an approach that can take into account the error structure induced by the
averaging. However, constructing such an alternative approach is outside the scope of this note. Instead, we propose to average
the data using non-overlapping windows, thereby hopefully alleviating the serial correlation in the errors. The following section
presents the results from this approach.

Table 1. Univariate analysis of the airborne fraction

Parameter estimates Diagnostics
Fe Gy B s.e.(B) t-stat(B) N R? DW
AFt(l) 0 0.0447 0.00223 0.00584 0.38270 0.3387 -0.0616 1.6657
AFt(Q) 0 0.0444 0.00055 0.00610 0.08987 1.0360 -0.0711 1.8195

Data: 5-year running average AF. See Table 1 in the main paper for the analogous analysis on the original data.

Table 2. Multivariate analysis of the airborne fraction

Parameter estimates Correlation matrix (€) Diagnostics
Panel A: Two individual trends as in Eq. (12) of the main paper.
Ge Gy B se.(B) t-stat(B) AF(M AF®2) N R? DW
AR 0 0.0425 0.00223 0.00584 0.38270 1.0000 0.9999 0.3387 -0.0616 1.6657
AF®) 0 0.0444 0.00055 0.00610 0.08987 0.9999 1.0000 1.0360 -0.0711 1.8195
Panel B: One common trend as in Eq. (13) of the main paper.
Ge Gy B s.e.(B) t-stat(B) AFM AF® N R? DW
AF® 0.0359 0.0393 0.00149 0.00540 0.27679 1.0000 -1.0000 3.6409 -0.6278 1.1458
AF(®) 0.0459 - - - - -1.0000 1.0000 0.8089 -0.9646 0.9314

Data: 5-year running average AF. See Table 2 in the main paper for the analogous analysis on the original data.

2We perform the averaging directly on the global carbon budget data, i.e., on Ef‘N T, Gy, Sto s StL , and C%, and then construct the AF and SR data as
explained in Section 2 of the main paper. We also experimented with first constructing the AF and SR data and then averaging these. The results of the two
approaches were very similar so we only present the results of the former.
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Table 3. Univariate analysis of the sink rate

Parameter estimates Diagnostics
e on E s.e.(g) t-stat(E) N Ri DW
A 0 0.0022 -0.00008 0.00030 -0.27290 4.3025 -0.0710 1.7625
k§2> 0 0.0020 -0.00017 0.00027 -0.63234 0.0726 -0.0637 1.7127

Data: 5-year running average SR. See Table 3 in the main paper for the analogous analysis on the original data.

Table 4. Multivariate analysis of the sink rate

Parameter estimates Correlation matrix (€) Diagnostics
Panel A: Two individual trends as in Eq. (14) of the main paper.
Ge &y B s.e.(B) t-stat(B) AFQ) AF®2) N R DW
[Ae 0 0.0022 -0.00008 0.00030 -0.27290 1.0000 1.0000 4.3025 -0.0710 1.7625
k?) 0 0.0020 -0.00017 0.00027 -0.63235 1.0000 1.0000 0.0726 -0.0637 1.7127
Panel B: One common trend as in Eq. (15) of the main paper.
Ge &y B s.e.(B) t-stat(B) AFQ) AF®2) N R2 DW
A 0.0024 0.0019 -0.00014 0.00026 -0.53638 1.0000 -1.0000 0.6056 -0.9981 0.8756
k?) 0.0015 - - - - -1.0000 1.0000 5.6559 -0.6044 1.1971

Data: 5-year running average SR. See Table 4 in the main paper for the analogous analysis on the original data.

3.2 Non-overlapping averages

We here consider averaged data, but where the averaging is done using non-overlapping windows. That is, if x; is again the
original data series, we define

m

D wip1,  t=1958+m,1958+2m,...,2016,

i=1

1

(my _ 1
m

Ty

i.e., we divide the data into bins (“windows”) of size m and then take the average in each bin3

The advantage of this approach to averaging the data is, as discussed above, that we expect the errors to be more nicely
behaved. In particular, we do not expect them to be as serially correlated in this case. The downside of the approach is of
course that we will have fewer observations available for the subsequent statistical analysis. For instance, in the case of 5-year
averages that we consider here, each averaged data series consists of only 12 observations.

The results are shown in Tables 5 and 6 for the airborne fraction and Tables 7 and 8 for the sink rate. From the tables, we see,
as expected, that the diagnostics are better than what was seen in the case of overlapping averaging windows. Interestingly, the
two main conclusions from the main paper hold also in the case of the averaged data: (i) We find no statistical evidence of an
increasing airborne fraction (Tables 5 and 6) but we do find statistical evidence of a decreasing sink rate (Panel B of Table 6).
(i1) The latter conclusion is only reached when all the data are combined into one model with a common trend, compare Panel
A and Panel B of Table 6.

Figures 8 and 9 show the trend estimates of the airborne fraction and sink rate data, respectively, in the case of averaged data
using non-overlapping windows.

3Because the original data set consists of 58 observations, it might not be possible in practice to have exactly m observations in each bin; in this case the
first bin will have less observations allocated to it. For instance, in the case of 5-year averaging, the first bin will consist of 3 observations (representing the
years 1959, 1960, and 1961) and the other bins will have 5 observations allocated to them (i.e., the second bin consists of the years 1962-1966, the third bin
1967-1971, etc.).



Table 5. Univariate analysis of the airborne fraction

Parameter estimates Diagnostics
e on B s.e.(8) t-stat(3) N R§ DW
AFt(l) 0.0574 0.0067 0.00517 0.00523 0.98975 0.3594 0.3465 2.0985
AFt(Q) 0.0481 0.0450 0.00083 0.01449 0.05721 0.1227 0.1018 2.0714
Data: 5-year non-overlapping average AF. See Table 1 in the main paper for the analogous analysis on the original data.
Table 6. Multivariate analysis of the airborne fraction
Parameter estimates Correlation matrix (€) Diagnostics
Panel A: Two individual trends as in Eq. (12) of the main paper.
Ge &n B s.e.(B) t-stat(53) AR AF®@) N R? DW
AF®) 0.0473 0.0335 0.00538 0.01087 0.49443 1.0000 0.9456 0.7162 0.4872 2.5460
AF®) 0.0394 0.0541 0.00122 0.01666 0.07344 0.9456 1.0000 0.3027 0.0821 2.3698
Panel B: One common trend as in Eq. (13) of the main paper.
Ge &y 8 s.e.(8) t-stat(B) AR AF(?) N R2 DW
AF®) 0.0535 0 0.00361 0.00364 0.99164 1.0000 0.1975 0.4802 0.3698 2.2944
AF®) 0.0596 - - - - 0.1975 1.0000 0.7454 0.5965 2.6334
Data: 5-year non-overlapping average AF. See Table 2 in the main paper for the analogous analysis on the original data.
Figure 8. Multivariate estimation of time-varying trend for AF. Data: 5-year averages (no overlap)
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Table 7. Univariate analysis of the sink rate

Parameter estimates Diagnostics
e oy B s.e.(8) t-stat(53) N Ri DW
k%w 0.0023 0.0029 -0.00037 0.00091 -0.40483 0.1374 -0.0147 2.0028
ks2> 0.0026 0.0011 -0.00073 0.00041 -1.78102 0.0770 0.2431 2.0450
Data: 5-year non-overlapping average SR. See Table 3 in the main paper for the analogous analysis on the original data.
Table 8. Multivariate analysis of the sink rate
Parameter estimates Correlation matrix (€) Diagnostics
Panel A: Two individual trends as in Eq. (14) of the main paper.
Ge Gn B s.e.(B) t-stat(B) AF®) AF®2) N R? DW
k%l) 0.0023 0.0029 -0.00052 0.00088 -0.58373 1.0000 1.0000 0.7418 -0.0204 2.0524
k;s2) 0.0025 0.0015 -0.00078 0.00049 -1.57493 1.0000 1.0000 0.0552 0.4228 2.2251
Panel B: One common trend as in Eq. (15) of the main paper.
Ge &n B s.e.(B) t-stat($3) AF®) AF®) N R2 DW
k%l) 0.0032 0 -0.00068 0.00020 -3.41506 1.0000 0.3340 0.1292 0.6888 2.9392
k;s2) 0.0027 — — — — 0.3340 1.0000 1.0816 0.1869 1.8314
Data: 5-year non-overlapping average SR. See Table 4 in the main paper for the analogous analysis on the original data.
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Figure 9. Multivariate estimation of time-varying trend for sink rate, ks. Data: 5-year averages (no overlap)
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