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Abstract. Tropical peatlands are one of the largest pools of
terrestrial organic carbon (OCterr); however, our understand-
ing of the dynamics of OCterr in peat-draining rivers remains
limited, especially in Southeast Asia. This study used bulk
parameters and lignin phenol concentrations to investigate
the characteristics of OCterr in a tropical peat-draining river
system (the main channel of the Rajang and three smaller
rivers: the Maludam, Simunjan, and Sebuyau) in the west-
ern part of Sarawak, Malaysian Borneo. The depleted δ13C
levels and lignin composition of the organic matter indicates
that the most important plant source of the organic matter
in these rivers is woody angiosperm C3 plants, especially
in the three small rivers sampled. The diagenetic indicator
ratio, i.e., the ratio of acid to aldehyde of vanillyl phenols
((Ad/Al)V), increased with decreasing mean grain size of
sediment from the small rivers. The selective sorption of
acid relative to aldehyde phenols might explain the varia-
tions in the (Ad/Al)V ratio. Elevated (Ad/Al)V values ob-
served from the Maludam’s sediments may also be attributed
to source plant variations. The (Ad/Al)V ratio appears to be
related to the C/N ratio (the ratio of total organic carbon to
total nitrogen) in the Rajang and small rivers. In small rivers,
a quick decline of C/N ratios is a response to the slower
modification of (Ad/Al)V ratios due to better preservation
of lignin phenols. An accumulation of lignin phenols with
higher total nitrogen percentages (TN%) in the studied sys-
tems was observed. Most of the OCterr discharged from the
Rajang and small river systems was material derived from
woody angiosperm plants with limited diagenetic alteration

before deposition and thus could potentially provide signifi-
cant carbon to the atmosphere after degradation.

1 Introduction

Tropical peatlands are one of the biggest terrestrial organic
carbon pools, accounting for about 89 000 Tg (Moore et al.,
2013; Rieley et al., 1996, 2008). It is reported that about 77 %
of the carbon stored in all tropical peatlands is derived from
Southeast Asia, which equals 11 %–14 % of the total carbon
pool stored in all peat. However, increasing anthropogenic
disturbance in the form of land-use change, drainage and
biomass burning are converting this peat into a globally sig-
nificant source of atmospheric carbon dioxide (Dommain et
al., 2014; Miettinen et al., 2016; Koh et al., 2009; Page et
al., 2011). The rivers draining these peatlands are typically
rich in lignin phenols and humic substances and are often
referred to as “blackwater” rivers (Baum et al., 2007; Cook
et al., 2017; Moore et al., 2011). However, knowledge of the
fate of terrigenous organic matter in such peat-draining rivers
and estuaries remains limited (Gandois et al., 2014; Hall et
al., 2015; Lourençato et al., 2019).

The transport, degradation, and sequestration of terres-
trial organic carbon (OCterr) in river systems are important
because of their roles in constraining carbon cycle budgets
(Aufdenkampe et al., 2011; Battin et al., 2009; Feng et al.,
2016; Spencer et al., 2010; Wu et al., 2018). In terms of
transport within fluvial systems, OCterr is subject to various
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natural processes, such as photo bleaching, microbial degra-
dation, and selective preservation, as well as anthropogenic
activities, e.g, dam construction, irrigation systems, and land-
use change (Bao et al., 2015; Hernes et al., 2017; Spencer
et al., 2010; Wu et al., 2015, 2018). Thus, it can be diffi-
cult to distinguish OCterr behavior from dynamics within a
fluvial system. Multiple geochemical approaches have been
applied to elucidate the composition and fate of OCterr in
riverine and coastal sediments, including C/N ratios, δ13C
composition, and the distribution and composition of specific
biomarker compounds, such as lignin phenols and plant wax
n-alkanes (Bao et al., 2015; Drenzek et al., 2007; Goñi et
al., 2005; Hernes and Benner, 2002; Jex et al., 2014; Ward
et al., 2013). Lignin, which constitutes up to 30 % of vas-
cular plant biomass, is a unique biomarker of OCterr. Al-
though highly degraded soil organic matter may be devoid
of any apparent lignin, it is another important contributor to
OCterr (Burdige, 2005; Goñi and Hedges, 1995; Hedges and
Mann, 1979). The monomeric composition of lignin phenols
(S, V, C series) provides useful information about the biolog-
ical source (woody versus nonwoody and angiosperm versus
gymnosperm) and the oxidation stage of lignin in natural en-
vironments (Benner et al., 1984; Hedges et al., 1985; Dittmar
and Lara, 2001; Tareq et al., 2004; Thevenot et al., 2010).
Most studies designed to understand the sources, composi-
tions, and transport of exported OCterr to determine its im-
pact on the carbon cycle have been carried out in large rivers
in the temperate and polar zones (Bao et al., 2015; Bianchi
et al., 2002; Bianchi and Bauer, 2011; Drenzek et al., 2007;
Goñi et al., 1998, 2005; Feng et al., 2016; Wu et al., 2015,
2018). In contrast, lignin signatures from tropical environ-
ments have received less attention, especially in small river
systems (Alin et al., 2008; Alkhatib et al., 2007; Dittmar and
Lara, 2001; Goñi et al., 2006; Hedges et al., 1986; Spencer
et al., 2010; Sun et al., 2017; Pradhan et al., 2014).

The export of OCterr in tropical river systems is typically
constrained by natural rainfall, typhoons, floods, and tectonic
activity (Alin et al., 2008; Aufdenkampe et al., 2007; Bao et
al., 2015). Elevated soil turnover rates, coupled with short
water residence times in small tropical river catchments, lead
to the accelerated transformation of terrestrial organic matter
(OM), especially during high-discharge events (Bao et al.,
2015; Goldsmith et al., 2008; Kao and Liu, 1996). Anthro-
pogenic processes such as deforestation have been proven to
be a major cause of altered hydrology and OM compositions
in tropical river systems (Houghton et al., 2000; Jennerjahn
et al., 2004, 2008; Pradhan et al., 2014). The current paucity
of information about OCterr characteristics, and its export
by rivers from tropical peat-draining rivers remains a major
gap in our understanding of OCterr biogeochemical cycling
in rivers from tropical Southeast Asia. Previous studies have
reported that peatland-draining rivers in Sumatra and Bor-
neo contained the highest values of dissolved organic carbon
(DOC) in rivers globally (3000–5500 µmol L−1) and most of
the terrestrial DOC delivered into the sea (Wit et al., 2015).

To understand the biogeochemical processing of OCterr in
Southeast Asia, more work is needed on the dynamics of
OCterr in the fluvial systems of this region.

Here we present what is, to our knowledge, the first anal-
ysis of OCterr concentration and behavior in four rivers and
estuarine regions in the western part of Sarawak, Malaysian
Borneo. We examined the OCterr characteristics using the
lignin phenol composition from various samples (e.g., plants,
soils, and sediments) from a major river, the Rajang, and
three adjacent small rivers (the Maludam, Simunjan, and Se-
buyau) to resolve the sources and transformation processes in
the wet season versus the dry season. We further compared
data among the four rivers to determine the ultimate fate of
lignin and the potential controls on its distribution. Our re-
sults also indicate that lignin composition links to sources
and modifications along the river–peat and soil–estuary con-
tinuum and reveal its response to peat degradation.

2 Materials and methods

2.1 Study region and sample collection

Samples were collected during three field expeditions to
Sarawak in August 2016 (only the Rajang), early March 2017
(the Rajang and the three small rivers), and September 2017
(only the small rivers; Fig. 1). During the 2017 expeditions,
typical plants (Table S2 in the Supplement) and soil samples
were also collected for the comparison study.

The Rajang River drainage basin covers an area of about
50 000 km2. Elevations exceed 2000 m, and hill slopes are
steep, generally in excess of 258 m in the interior high-
lands and 208 m in lower areas (Martin et al., 2018). The
three small rivers (the Maludam, Simunjan, and Sebuyau)
are blackwater rivers that drain extensive peatlands (Fig. 1).
The drainage basin of the Maludam is about 91.4 km2, and
the majority of the river located in the Maludam National
Park is covered with 10 m thick peat (Müller et al., 2015).
The other two rivers are highly disturbed by human activity
with intensive oil palm and sago plantations. For the Rajang,
it is separated into two parts by Sibu Town, and its upper
reaches mainly drain mineral soils, while its lower reaches
develop multiple distributary channels (e.g., the lower Ra-
jang, Serendeng, and Igan; Fig. 1). These channels are also
surrounded by broad peatlands. It is reported that peat greater
than 1 m thick covered 50 % of the delta plain (Staub and
Gastaldo, 2000). However, deforestation and changes in land
use are accelerating the peatland degradation (Fig. 1). More
than 50 % of peatland (11 % of the catchment size) in Rajang
watershed has been occupied by industry plantation (e.g., oil
palm) (Miettinen et al., 2016). Fishery, logging and timber
processing are the traditional industries of local citizens (Mi-
ettinen et al., 2016).

The climate of the study area is classified as tropical ever-
wet, with average rainfall in excess of 3700 mm yr−1. The
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Figure 1. (a) Peat and vegetation distribution in the study region (modified from https://www.cifor.org/map/atlas/, last access: Decem-
ber 2018). (b) Sediment sampling sites along the Rajang and its tributaries. The city of Sibu divides the river into its upper and lower reaches.
(c) Sediment sampling sites along the three small rivers. Locations of samples collected from the Maludam, Sebuyau, and Simunjan are
indicated by squares, circles, and stars, respectively.

average monthly water discharge of the Rajang is about
3600 m3 s−1, with peak discharge (∼ 25 000 m3 s−1) ob-
served during the northeastern monsoon season (December
to March; Staub and Gastaldo, 2000). However, the amount
of suspended sediments delivered from the Rajang basin to
the delta plain demonstrated slight variation (2.0 Mt s−1 dry
season versus 2.2 Mt s−1 wet season) but changed substan-
tially in the amount of sediment delivered from the delta
plain to the South China Sea (Staub and Gastaldo, 2000).
It is estimated that the annual sediment discharge of the Ra-
jang is 30 Mt. The turbidity maximum in the lower Rajang
channels occurred during the low or reduced discharge pe-
riod. It is reported that up to 24 Mt of sediment is deposited
in the delta front, with preserved annual sediment layers on
the order of 1 cm thick (Staub and Gastaldo, 2000). The water
discharge of the Maludam is quite low, only 4.4±0.6 m3 s−1

from the 91.4 km2 catchment (Müller et al., 2015). The river
length of Maludam is 33 km. For the Sebuyau and Simun-
jan, river length is 58 and 54 km, respectively (Martin et al.,
2018). However, hydraulic information for these two rivers is
largely unknown. The three sampling periods were similar to
the end of the northeastern monsoon season (i.e., March, the
end of the wettest season of the year) and were shortly be-

fore the beginning of the northeastern monsoon season (i.e.,
August and September, the end of the drier season).

The surface sediments were sampled at the middle stream
of river using grab samplers from a small boat at each sta-
tion and then 0–5 cm subsamples were collected and frozen
(−20 ◦C) until they were dried for subsequent analyses in the
laboratory. Soil sampling was conducted at the same time
along the Rajang riverbank, where the sites have minimal
human disturbances and short soil cores were collected and
mixed in situ as one composite sample for the depth of 0–
10 cm by getting rid of visible roots and detritus. The vegeta-
tion of the tropical peat swamp forest is dominated by trees,
e.g., Anacardiaceae, Annonaceae, and Euphobiaceae. (Page
et al., 2006). Fresh, typical vegetation (listed in Table S2)
was separately collected from leaves, stems, and roots, as
well as from some detritus that was floating on the surface
layer of the river, for the comparison study. All botanical
samples and soils within the basin were collected at the same
time and stored in a freezer. The hydrological parameters of
the surface river water (e.g., salinity, pH, and temperature) at
each station were determined using an Aquaread® multiple
parameter probe (AP-2000).
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2.2 Chemical analyses

Prior to chemical analyses, all botanical samples, as well as
the soil and sediment samples, were dried at 55 ◦C and disag-
gregated in an agate mortar to form a homogeneous sample.

Grain size characteristics were measured directly from
aliquots of the surface sediment samples using a Coulter
LS 100Q (Coulter Company, USA) after treatment with
5 % H2O2 and 0.2 M HCl to dissolve organic matter and bio-
genic carbonate. The sediment grain sizes are expressed as
the proportions of clay (< 4 µm), silt (4–63 µm), and sand
(> 63 µm), with a measurement error of ≤ 5 % for the entire
dataset. The remaining sediments were ground to 80 mesh
(187.5 µm) for elemental, isotopic, and lignin analyses.

The concentrations of organic carbon and total nitrogen
(TN) were analyzed using a CHNOS elemental analyzer
(Vario EL III) with a relative precision of ±5 %. The weight
percentages of organic carbon were analyzed after remov-
ing the carbonate fraction of vapor-phase acidification. The
weight percentages of TN were also analyzed following the
same procedure but without acidification. The stable carbon
isotopic composition of the decarbonated sediments was de-
termined by a Flash EA1112 elemental analyzer connected
to an isotope ratio mass spectrometer (MAT Delta Plus/XP,
Finnigan). 13C/12C ratios are expressed relative to the Pee
Dee Belemnite (PDB) standard using conventional δ nota-
tion. The analytical precision, determined by replicate anal-
ysis of the same sample, was ±0.2 ‰.

Lignin phenols were extracted using the cupric oxide di-
gestion technique (CuO; Hedges and Ertel, 1982; Yu et
al., 2011). Briefly, the powdered samples were weighed,
placed in O2-free Teflon-lined vessels, and digested in
a microwave digestion system (CEM MARS5) at 150 ◦C
for 90 min (Goñi and Montgomery, 2000). Samples were
then acidified to pH < 2 and phenolic monomers were ex-
tracted into 99 : 1 (volume ratio) ethyl acetate/petroleum
ether, dried, and stored at −20 ◦C until further analy-
sis. Samples were analyzed as trimethylsilyl derivatives
of N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) and
trimethylchlorosilane (TMCS; 99 : 1) by Agilent 6890N
gas chromatography (DB–1 column, FID). The lignin phe-
nol concentration was quantified using calibration curves
based on commercial standards (Sigma Aldrich). A to-
tal of 11 phenol monomers were extracted and catego-
rized into five groups: syringyl (S, syringaldehyde, ace-
tosyringone, syringic acid), vanillyl (V, vanillin, aceto-
vanillone, vanillic acid), cinnamyl (C, p-coumaric acid,
ferulic acid), p-hydroxyl (P, p-hydroxybenzaldehyde, p-
hydroxyacetophenone, and p-hydroxybenzoic acid), and 3,5-
dihydroxybenzoic acid (DHBA). Coefficients of analytical
variation associated with phenol values were < 10 % based
on replicate analysis of the same samples.

Ratios of syringyl-to-vanillyl phenols (S/V) and
cinnamyl-to-vanillyl phenols (C/V) are often used to
indicate the relative contribution of angiosperm and non-

woody tissues versus gymnosperm wood, respectively
(Hedges and Mann, 1979). Since both ratios have been
found to decrease with the preferential degradation of S
and C relative to V phenols, the lignin phenol vegetation
index (LPVI) was developed to be an alternative approach to
evaluate the original of various type of vegetation (Tareq et
al., 2004; Thevenot et al., 2010):

Lignin phenol vegetation index (LPVI)=

[{S(S+ 1)/(V+ 1)+ 1}× {C(C+ 1)/(V+ 1)+ 1}]. (1)

The ratio of P/(V+S) may reflect the diagenetic state of
lignin when the other sources of P phenols (such as protein
and tannin) are relatively constant (Dittmar and Lara, 2001).
The acid-to-aldehyde (Ad/Al) ratios of V and S phenols are
often used to indicate lignin degradation and increases with
increasing lignin oxidation (Otto and Simpson, 2006).

2.3 Statistical analyses

All statistical analyses were carried out using SPSS 10.0
(IBM SPSS Inc., USA) and results were plotted using Ori-
gin software (Origin Lab Inc., USA). Multivariate statistical
approaches such as principle component analysis (PCA) and
cluster analysis (CA) are among the most widely used sta-
tistical methods in determining the significance of specific
parameters, including OC%, TN%, mean grain size, clay%
and silt%, total lignin phenol concentrations, DHBA, and the
ratios of vanillic acid to vanillin ((Ad/Al)V) within a dataset
(Pradhan et al., 2009). Interrelationships among the sampling
points in different rivers were characterized by cluster analy-
sis using Ward’s method (linkage between groups), and simi-
larity measurements were characterized in terms of Euclidian
distance, illustrated in dendrograms. Errors listed in tables
represent standard deviations for the analytical data. Differ-
ences and correlations were evaluated as significant at the
level of p < 0.01.

3 Results

3.1 Hydrological parameters; grain size; and bulk
elemental and stable isotopic composition of
vegetation, soil, and sediment

The hydrological parameters for the study area are summa-
rized in Table S1. The salinity of the lower Rajang system
varied significantly (from 12 ‰ to 32 ‰) because of saline
water intrusion in the estuarine region, but there were lim-
ited pH variations (6.5–7.9). Dissolved oxygen (DO) lev-
els showed significant spatial variations, with the lowest
values (2–3 mg L−1) being recorded in the Igan channel,
where dense peats were observed, and the higher values (4–
6 mg L−1) recorded in the other two channels. The salin-
ity of the Simunjan indicated that freshwater dominated,
whereas the two other small rivers showed saline water in-
fluences. The variation in pH values among the three small
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rivers decreased from the Sebuyau (∼ 6.4), to the Simunjan
(∼ 5.1), and the Maludam (∼ 3.7). The DO concentrations
in the three small rivers varied in a low range (average: 2–
3 mg L−1), with the lowest values in the three systems being
around 1.4 mg L−1.

The compositions of bulk sediments from the Rajang and
the three small rivers are presented in Tables 1 and S1. The
mean grain sizes from the upper Rajang (212± 47 µm) were
much coarser than those from the lower Rajang (40±38 µm)
and the small rivers (22± 16 µm). The finest samples (9±
2 µm) were collected from the Maludam in March 2017.
Generally, the samples collected during the dry season were
coarser than those from the flood season in the Maludam
and Simunjan, but this was not the case for the Sebuyau.
The average organic carbon content shows a significant neg-
ative relationship with mean grain size among these samples
(r2
= 0.67, p < 0.01).

Mean values of total organic carbon (TOC) concentra-
tions were higher in the peat-draining rivers (2.2± 0.58 %,
2.6± 1.23 %, and 2.6± 0.8 % for the Maludam, Sebuyau,
and Simunjan, respectively) compared with the lower Rajang
(1.1±0.5 %), and the lowest values were observed in the up-
per Rajang (0.12± 0.02 %). The highest values of OC were
measured in plant samples and varied from 30 % to 49 %
(Table S2). The mean TOC value in the soil samples was
3.6± 0.6 % (Table S3).

TN content ranged from 0.02 % to 0.17 % in the samples
collected from the Rajang, from 0.09 % to 0.37 % in the small
rivers, and from 0.73 % to 1.65 % in the vegetation and av-
eraged 0.19± 0.02 % for the soil samples (Tables 1, S2, and
S3). Although nitrogen was enriched in the samples from the
peat-draining rivers, they still had higher mean C/N values
(15.8± 3.7) compared with the lower Rajang (11.5± 1.6),
while vegetation samples exhibited low N content and high
C/N (C/N= 56± 34).

The most abundant vegetation collected from the Malu-
dam showed relatively depleted carbon isotope ratios
(δ13C=−31 ‰) that were typical of C3 vegetation (Ta-
ble S2). The detritus samples were also relatively depleted
in 13C (δ13C=−29.2 ‰; Table 1). The isotope ratios of
the peat-draining river’s sediments (average δ13C varied at
−28.2 ‰ to −27.4 ‰) were comparable with the Rajang’s
(average δ13C=−28.6± 0.6 ‰) (Table 3). The δ13C values
of the soil samples are similar to those of riverine sediments
(δ13C=−28.4 ‰).

3.2 Lignin phenol content

The lignin phenols obtained after CuO oxidation are ex-
pressed as 38 (mg (100 mg OC)−1), except for the lignin
yield (68), which is the sum of C+S+V, is expressed as
mg 10 g dw−1, and is presented in Fig. 2 as well as Tables 2
and S1–S3. The highest yields were measured in the veg-
etation samples (300–900 mg 10 g dw−1). The lignin yield
from the soil samples and the three small rivers (average of

∼ 30 mg 10 g dw−1) is also higher than that from the Rajang
samples (average of < 10 mg 10 g dw−1), with the lowest
value observed in the upper Rajang (0.16 mg 10 g dw−1; Ta-
ble 2). There are correlations between 68 and OC% in each
river (r2> 0.5), with the slope decreasing in the following
order Maludam>Simunjan>Sebuyau>Rajang (Fig. 2a).
The variation in 38 from various pools shows a similar
distribution as the 68 values. The average concentrations
for the vegetation, soil, and the four river systems are ap-
proximately 18, 8.3, and 5.4 mg (100 mg OC)−1 for the Ra-
jang; 6.2 mg (100 mg OC)−1 for the Maludam; 7.9 for the Se-
buyau; and 7.4 mg (100 mg OC)−1 for the Simunjan.

The C/V and S/V ratios differ with vegetation type
(Fig. 2b). Angiosperm leaves show high S/V (> 1) and C/V
ratios (∼ 0.8). Angiosperm wood and root samples show
lower C/V ratios (< 0.2). The detritus samples show inter-
mediate S/V ratios (0.6–1.0) and lower C/V ratios (∼ 0.1).
Soil samples have relatively high S/V (∼ 1.1) and low C/V
(∼ 0.07) values. The four rivers show limited variations in
S/V (0.4–0.8) and C/V (0.02–0.08) ratios. The LPVI values
of the fresh plant material range from 113 to 2854 for leaves
and 192 to 290 for wood. The values for detritus range from
36 to 228, and for soil and sediment the values range from 30
to 60 (Table 2).

The ratios of vanillic acid to vanillin ((Ad/Al)V) and sy-
ringic acid to syringaldehyde ((Ad/Al)S) increase slightly
from the vegetation samples to the river samples (Table 2).
The ratios obtained from the vegetation and soil samples
show similar values ((Ad/Al)S=∼ 0.30; (Ad/Al)V=∼
0.35). The ratios from the small river samples range from
0.41 to 0.58 for (Ad/Al)V and 0.30 to 0.36 for (Ad/Al)S.
The values from the lower Rajang are similar to those from
the small rivers, but this is not the case for the upper Rajang,
where higher (Ad/Al)S and (Ad/Al)V values were recorded.
The two ratios are linearly correlated in all sediment samples
(r2
= 0.68, p < 0.05), except for the samples collected from

the Simunjan.
The P/(V+S) ratio is low in the vegetation samples, ex-

cept for the leaf samples (P/(V+S)= 0.22), which reflects
the low P content in most vegetation (Table 2). However, in
some plant samples (Elaeis guineensis Jacq.), we detected
relatively high P content (Table S2). The P/(V+S) ratio
is 0.28± 0.03 for the soil samples, 0.18± 0.4 for the small
rivers, 0.17± 0.02 for the lower Rajang, and 0.51± 0.04 for
the upper Rajang. DHBA is very low in the upper Rajang
(∼ 0.07) but higher in the Maludam in the dry season (aver-
age value of 0.44). Values in the Simunjan in both seasons
are similar to those from the soil samples (∼ 0.38). Higher
values of DHBA were measured in the lower Rajang and the
Sebuyau in the dry season than in the wet season.

3.3 Statistical analyses

The results of cluster and PCA analyses of both bulk geo-
chemical and lignin phenol proxies for all sediments are
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Figure 2. (a) Correlation of OC% with 68 among the various studied systems. (b) Variations in S/V versus C/V of different samples from
the studied systems. Raj: Rajang; Seb: Sebuyau; Sim: Simunjan; Mal: Maludam.

shown in Fig. 3. Four distinct groups were identified based
on the cluster analysis. The Maludam and the tributary of the
lower Rajang (Igan) are grouped together, and the Simun-
jan and Sebuyau are grouped together. The lower Rajang and
upper Rajang are separated from each other (Fig. 3a). Sim-
ilar groupings are evident in the results of the PCA analy-
sis, which was based on the distribution of factors 1 and 2
that represent total loadings of 45 % and 32 %, respectively
(Fig. 3b). The PCA results implied that factor 1 showed close
correlations with the (Ad/Al)V ratio and grain size, while
factor 2 showed a close correlation with 68 and OC%.

4 Discussion

4.1 Comparison with systems worldwide: lignin
parameters derived from sediment and peat

Table 3 summarizes the distribution of bulk and lignin pa-
rameters of sediments from typical systems worldwide. Al-
though the TOC values of our studied systems are lower than
peat samples, but the concentrations of lignin phenols are
comparable and are typically more enriched in lignin phe-
nol compared with other river systems (Table 3; Bianchi et
al., 2002; Gandois et al., 2014; Li et al., 2015; Sun et al.,
2017; Pradhan et al., 2014; Winterfeld et al., 2015). The TN
values of our peat samples are between 2 and 4 times higher
than those seen in other systems worldwide, as was also ob-
served in small rivers along India’s west coast (Pradhan et
al., 2014). The higher values of 38 found in our studied sys-
tems were linked to vegetation types (trees dominated) (Za-
ccone et al., 2008) and partially caused by peat draining and
intense human activity near the watersheds (e.g., land-use
change and logging activities), as reported previously (Mil-
liman and Farnsworth, 2011; Moore et al., 2013; Rieley et
al., 2008). Much of the peatland neighboring the Simunjan
and Sebuyau catchments has been changed to oil palm plan-

tations (Martin et al., 2018). The terrigenous OM has been
affected by diagenesis, as (Ad/Al)V varies markedly among
the different systems (Table 3). The (Ad/Al)V values of the
sediments sampled here are comparable to fresh and only low
to medium oxidation. Elevated (Ad/Al)V values observed
from the Maludam’s sediments (March 2017) may also be
attributed to source plant variations as observed in a previous
study case (Zhu et al., 2019).

4.2 Origin of sediment organic matter in tropical
peat-draining rivers

The depleted average δ13C values (−31.8 ‰ to −28.1 ‰)
of our vegetation samples indicate an insignificant contribu-
tion from C4 plants in the study area (Gandois et al., 2014;
Sun et al., 2017). The high C/N ratio (64.8) indicates a pre-
dominance of terrestrial high plant species (e.g., Nepenthes
sp. and Avicennia marina Vierh.). The δ13C and C/N values
(−27.2 ‰ and 12, respectively) obtained from the soil and
sediments collected near the rivers suggest that terrestrial or-
ganic matter is the dominant contributor (Table 1). The clus-
ter and PCA analyses suggest that there are no significant
seasonal differences in these rivers. Previous studies have
reported that the sediment load from the basin to the delta
was not a seasonal pattern; when combined with comparable
precipitation during our two sampling seasons, our observa-
tions matched this conclusion (Martin et al., 2018; Staub and
Gastaldo, 2000). The close correlation of factor 2 with OC%
and 68 in the PCA suggests factor 2 relates to the source of
the organic matter (Fig. 3), as also indicated by the strong
correlation between OC% and 68 (r2: 0.53–0.85) (Fig. 2).
Correlation of OC% and 68 of the Maludam (r2

= 0.81)
show the highest slope, possibly related to its pristine con-
dition, which promotes better conservation of vegetation in
its peat. Furthermore, the differences between the upper and
lower Rajang are highlighted by the PCA results (score 1 rep-
resents 45 % of the total loading while score 2 is 32 %) and
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Figure 3. (a) Cluster analysis of the studied systems based on bulk and lignin phenol parameters. (b) Plot of PCA results based on the
distribution of scores 1 and 2. Raj: Rajang; Seb: Sebuyau; Sim: Simunjan; Mal: Maludam.

bulk parameters; i.e., the upper Rajang drains a mineral soil,
whereas peat is dominant in the delta region. This also ex-
plains why the Rajang data do not plot with the other small
river systems; the linear relationship between δ13C and 68
for the Rajang (r2

= 0.92) forms a distinct group separate
from the small rivers (r2

= 0.59).
The S/V and C/V ratios are often used as indicators of the

vegetation origin of the lignin fraction, e.g., the woody and
nonwoody parts of gymnosperm and angiosperms (Hedges
and Mann, 1979). The S/V values (< 0.8) of the peat-
draining rivers are slightly lower than the values of other
peats (< 1.5), but the C/V ratios are comparable (Tareq et al.,
2004). The differences in these parameters between the sed-
iments and the vegetation and soils, as illustrated in Fig. 2,
suggests that they are composed mostly of angiosperm wood.
This finding is further confirmed by the LPVI values (gym-
nosperm wood: 1; nonwoody gymnosperm tissue, 3–27; an-
giosperm wood: 67–415; non-angiosperm tissue: 176–2782),
which are commonly less than 60 in these sediment sam-
ples (Tareq et al., 2004). Previous studies have concluded
that tropical peats are derived mainly from wood (Ander-
son, 1983; Gandois et al., 2014). For the Rajang, the LPVI
values show a positive linear correlation with 38 concen-
trations (r2

= 0.56); however, for the small rivers (based on

mean values, except the samples collected in March 2017
from the Maludam) this relationship shows a negative cor-
relation (r2

= 0.91). This suggests that the small rivers re-
ceive more lignin derived from woody material, whereas the
Rajang has a mixture of sources. The unusual behavior of
the Maludam’s samples might be related to the dominance
of finer-grained sediments when compared with the other
rivers because woody material tends to be concentrated in
the coarser fraction (Table 1).

P phenols in the Rajang are derived from lignin, as sup-
ported by the significant correlation of the content of P phe-
nols and lignin content (r2

= 0.93). However, there is no
correlation between P phenols and lignin content for the
small rivers. All P/V values from the samples (0.13–0.28)
are higher than the average P/V ratio of wood (0.05) but
similar to the range observed for leaves (0.16–6.9; Hedges
et al., 1986). Considering this, some nonwoody angiosperms
are the most likely source of high-P phenols in the small
rivers. Combined the composition of P and V in plants sam-
ples listed in Table S2, we find some dominant species, e.g.,
Dipterocarpaceae, Bruguiera gymnorrhiza (L.) Poir., Elaeis
guineensis Jacq. have relatively high P/V ratios in their non-
woody parts.
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4.3 Transformation of lignin signatures in tropical
peat-draining rivers

(Ad/Al)V ratios are often used to evaluate the degradation
status of terrestrial OM. The (Ad/Al)V ratios for soils re-
ported in previous studies fall within the ranges 0.16–4.36
and 0.1–0.2 for fresh angiosperm wood and 0.2–0.6 for non-
woody tissues (Hedges et al., 1988; Opsahl and Benner,
1995; Thevenot et al., 2010). In our study, the variability of
the (Ad/Al)V ratios obtained from the vegetation, soil, and
sediments was limited, with values between 0.3 and 0.58 ex-
cept from the samples from the upper Rajang (∼ 1.0), which
suggests the mild degradation of OCterr in most samples. The
degradation status of lignin is negatively correlated with the
38 values (r2

= 0.73) in the Rajang, and with a higher degra-
dation signal observed in the upper Rajang, which drains
mineral soils with lower lignin levels (Fig. 4a). However,
the 38 values with (Ad/Al)V ratios was not as significant
in the small river systems as we expected, partially resulting
from the variation in (Ad/Al)V, which could also be con-
trolled by the vegetation source (Fig. 4b). In addition, such
a distribution could be related to the grain size effect, as il-
lustrated in the Rajang with high correlation (Fig. 4c) and
to a lesser extent but in small rivers (Fig. 4d). Of the sedi-
ments sampled here, the upper Rajang samples contain the
largest coarse fraction, and the finest sediments are collected
from the Maludam in March 2017. The (Ad/Al)V ratios in-
crease with the increasing coarse fraction of the sediments
in the Rajang, which is typically also observed in other sys-
tems (Bianchi et al., 2002; Li et al., 2015; Sun et al., 2017)
(Fig. 4c). The variation in (Ad/Al)V ratios with mean size
of the sediments in the small rivers is not as significant as in
the Rajang (Fig. 4d). Selective sorption of acid to aldehyde
might affect the variation in the (Ad/Al)V ratio in the small
river systems (Hernes et al., 2007). Additionally, the rela-
tively fresh condition of the OM in the Maludam samples
(in September 2017) might be related to the fluvial supply of
fresh vegetation.

The syringyl and cinnamyl series are preferentially de-
graded when compared with the vallinyl series, resulting in
a decrease in the S/V and C/V ratios during lignin degra-
dation (Goñi and Hedges, 1995; Opsahl and Benner, 1995).
Our samples show a negative linear relationship between the
S/V and (Ad/Al)V ratios in the Rajang samples (r2

= 0.85;
Fig. 5a). However, the variation in the S/V and (Ad/Al)V
ratios in the small rivers is limited, with a scattering decrease
trend (Fig. 5b). Both correlations indicate that the decrease
in the S/V ratios is linked to degradation, and this suggests
that we should be cautious when using S/V ratios for source
evaluation in this study.

Previous studies demonstrated that lignin mineralization
in humid tropical forest soils is dominated by methoxyl-C
mineralization under aerobic and fluctuating redox condi-
tions (Hall et al., 2015). Demethylation reduces the yield of
methoxylated phenols (V and S phenols) but does not affect P
phenols. Therefore, the P/(S+V) ratio can be used as an in-
dicator of lignin transformation (Dittmar and Kattner, 2003).
However, in this study the ratio of P/(S+V) in most sediment
samples did not vary greatly (∼ 0.2). Although there was a
linear correlation between the P/(S+V) and (Ad/Al)V ra-
tios among all the sediments (r2

= 0.89), no clear trend was
observed for the small rivers, which may suggest both param-
eters have more links to the source rather than a diagenetic
process in these systems.

4.4 Impact of environmental parameters on lignin
dynamics

It is well-explored that bulk organic matter composition and
degradation are influenced by many environmental factors
such as climate, grain size, mineral composition, soil char-
acteristics, land-use changes, logging, and biomass burning
(Hernes et al., 2007; Gandois et al., 2014; Sun et al., 2017;
Thevenot et al., 2010). Most Southeast Asian peat-draining
rivers are impacted by human activities such as deforesta-
tion, urbanization, and damming (Milliman and Farnsworth,
2011). The PCA analysis revealed that the behavior of lignin
in the Rajang is substantially different from that in the three
peat-draining rivers, and especially in the upper Rajang,
which drains through a mineral soil with low 38 values
and strong degradation (Figs. 3 and 4), since it was recently
shown that lignin could decompose as fast as litter bulk car-
bon in mineral soils (Duboc et al., 2014). In the delta re-
gion, most parameters were quite comparable, except 68
and OC% (Table S1). The higher values of 68 and OC%
were observed in Simunjan and Sebuyau, where land use and
drainage observed. Usually, land use and drainage of tropical
peat will accelerate the loss of vegetation and OC degrada-
tion (Kononen et al., 2016); here it may be explained by the
high content of OC and lignin in oil palm, which is the major
plantation in both regions.

In this study, the OC content increases with decreasing
grain size, implying that fine sediments, with larger spe-
cific surface areas that are rich in clay, contain more OM
than coarser sediments, as reported previously (Sun et al.,
2017). Increasing (Ad/Al)V values are observed in the Ra-
jang with increasing grain size, which suggests that lignin
associated with larger mineral particles is more strongly de-
graded. This observation indicates the preferential preserva-
tion of lignin in finer-grained sediments, resulting from their
ability to provide better protection against further oxidative
degradation (Killops and Killops, 2005). For the small river
systems, the (Ad/Al)V ratios inattentively decrease with in-
creasing grain size, corresponding to the increasing 68 val-
ues (Fig. 4b and d). Such trends have been described by
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Figure 4. Variation in (Ad/Al)V with 38 values of sediments from (a) the Rajang and (b) the small river systems. Variation in (Ad/Al)V
with mean sediment grain size for (c) the Rajang and (d) the small river systems.

Figure 5. Relationship between (Ad/Al)V and S/V ratios based on average values of the various systems for (a) the Rajang and (b) the
small river systems.

Keil et al. (1998) and Tesi et al. (2016), who found that
lower (Ad/Al)V values were present in the coarser fractions
due to the less efficient processing of plant remains prior
to deposition. The sediments collected from the three small
peat-draining rivers (except samples from the Maludam in
September 2017) could contain limited amounts of plant de-

bris, in which case fresh plant tissue would have been incor-
porated into the coarser sediment fractions, leading to the low
(Ad/Al)V values. However, the variation in 68 values does
not support this speculation, and therefore we conclude that
the selective sorption of acid to aldehyde could explain the
elevated (Ad/Al)V ratios recorded in the fine fraction. The
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Figure 6. (a) Correlation of TN% with 68 based on average values of the studied systems. (b) Correlation of (Ad/Al)V with C/N ratio
based on average values of the studied systems.

different grain-size effects on OCterr composition, as seen
when comparing the Rajang with the small rivers, suggests
that there are other processes (microbial process, logging,
etc.) working on OCterr in these two systems that cause post-
depositional changes in the OCterr characteristics.

Tropical soils are reported as being naturally poor in N and
P, but some studies have shown that with intensive manage-
ment (land use and deforestation) they tend to become rich
in recalcitrant compounds, since nitrogen content tends to
stimulate decomposition of low-lignin litter with decomposer
microbes but usually decreases the activity of lignolytic en-
zymes and inhibits decomposition of high-lignin litter (Knorr
et al., 2005; Thevenot et al., 2010). In our study, we found a
higher TN% in the small rivers compared with the Rajang.
A significant correlation between 68 and TN% (r2

= 0.74)
is observed in all systems, which might suggest a contri-
bution from plant litter affecting both parameters (Fig. 6a).
The relation of (Ad/Al)V ratios with C/N ratios of the Ra-
jang appears correlated (r2

= 0.34). For the comparison, av-
erage values were applied to two systems, we found the av-
erage (Ad/Al)V ratios had certain correlation with the aver-
age C/N ratios but with different slopes for the Rajang and
the small rivers (Fig. 6b). Quicker decline of C/N ratios re-
lated to slower lignin degradation in small rivers could be
related to the expected impact of nitrogen on lignin degrada-
tion (Dignac et al., 2002; Thevenot et al., 2010). A high N
content will inhibit fungal lignin biodegradation (Fog, 1988;
Osono and Takeda, 2001), and this explains why higher-
lignin phenols with moderately degraded characteristics were
observed in the small river systems in which higher TN%
was recorded. The exceptional data were collected during
September 2017, which was a time of saline water intrusion.

Large-scale land reclamation, including deforestation and
urbanization, has taken place in Southeast Asia over the
past few decades (Miettinen et al., 2016). Logging activities
have had a significant influence on peat decomposition pro-
cesses and the quality of organic matter inputs (Hoscilo et

al., 2011; Hooijer et al., 2012; Gandois et al., 2014). Gandois
et al. (2013) reported an increase in the N content at a de-
forested site and concluded that it was caused by an increase
in the microbial deposition of peat. The lignin yield (68)
is closely correlated with the OC% in the different rivers
(Fig. 2). The highest yield was observed at the Maludam,
which confirmed the significant contribution of plant litter
and better preservation due to the low pH and DO levels,
especially woody carbon. However, the relatively high yield
in the Rajang compared with the other two disturbed peat-
draining rivers (i.e., the Simunjan and Sebuyau) suggests an
additional source of lignin, which might implicate the addi-
tion of logging residue to the Rajang systems, as proposed
by Gandois et al. (2014).

5 Conclusions

We used sediment grain size data, TOC contents, the stable
carbon isotopic composition of organic matter, and lignin
phenol concentrations to investigate the characteristics of
OCterr in a tropical peat-draining river system, as well as its
fate and environmental controls. The depleted δ13C levels of
all of the sediment samples demonstrate that contributions
from C3 plants dominated the OCterr in the study region. The
lignin composition of the organic matter indicates that the
most important plant sources of organic matter were woody
angiosperm C3 plants, especially in the three small rivers.
Our cluster and PCA analyses show no distinct seasonal
variations in the bulk and lignin compositional signatures in
the study area, although the upper Rajang receives contribu-
tions from mineral soils with unique lignin parameters and a
coarser grain size. Both the bulk organic matter parameters
and the lignin compositions seemed to be correlated to the
grain size of the riverbed sediments. The (Ad/Al)V ratios
increased with decreasing mean size of the sediments from
the small rivers. Selective sorption of acid to aldehyde might
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affect the variation in the (Ad/Al)V ratio in the small river
systems. Our samples show a negative linear relationship be-
tween the S/V and (Ad/Al)V ratios in the Rajang samples,
which implies that the decrease in S/V ratios is linked to
degradation. The (Ad/Al)V ratios appear to be related to the
C/N ratio in the Rajang and the small rivers. A high N con-
tent will inhibit fungal lignin biodegradation, which might
explain higher-lignin phenols with moderately degraded pro-
cesses observed in the small river systems where a higher
TN% is recorded. Most of the OCterr discharged from the
Rajang and small river systems was composed of woody an-
giosperm plants, and the terrestrial organic matter undergoes
limited diagenetic alteration before deposition and could po-
tentially become a significant regional carbon source to the
atmosphere after extensive degradation. This study provides
new insights into the amount of terrestrial OC preserved in
the tropical delta region of southeastern Borneo, as well as
into the biogeochemical transformation of OM from terres-
trial sources to marine sink across this region.
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